Superpixel-based saliency detection

Abstract : In this paper, we propose an effective superpixel-based saliency model. First, the original image is simplified by performing superpixel segmentation and adaptive color quantization. On the basis of superpixel representation, inter-superpixel similarity measures are then calculated based on difference of histograms and spatial distance between each pair of superpixels. For each superpixel, its global contrast measure and spatial sparsity measure are evaluated, and refined with the integration of intersuperpixel similarity measures to finally generate the superpixel-level saliency map. Experimental results on a dataset containing 1,000 test images with ground truths demonstrate that the proposed saliency model outperforms state-of-the-art saliency models.
Type de document :
Communication dans un congrès
WIAMIS - 14th International Workshop on Image and Audio Analysis for Multimedia Interactive Services, Jul 2013, Paris, France. IEEE, 2013
Liste complète des métadonnées

https://hal.inria.fr/hal-00876184
Contributeur : Olivier Le Meur <>
Soumis le : jeudi 24 octobre 2013 - 08:57:31
Dernière modification le : jeudi 15 novembre 2018 - 11:57:53
Document(s) archivé(s) le : lundi 27 janvier 2014 - 12:10:39

Identifiants

  • HAL Id : hal-00876184, version 1

Citation

Zhi Liu, Olivier Le Meur, Shuhua Luo. Superpixel-based saliency detection. WIAMIS - 14th International Workshop on Image and Audio Analysis for Multimedia Interactive Services, Jul 2013, Paris, France. IEEE, 2013. 〈hal-00876184〉

Partager

Métriques

Consultations de la notice

607

Téléchargements de fichiers

714