Dimensions and bases of hierarchical tensor-product splines

Abstract : We prove that the dimension of trivariate tensor-product spline space of tri-degree (m,m,m) with maximal order of smoothness over a three- dimensional domain coincides with the number of tensor-product B-spline basis functions acting effectively on the domain considered. A domain is required to belong to a certain class. This enables us to show that, for a cer- tain assumption about the configuration of a hierarchical mesh, hierarchical B-splines span the spline space. This paper presents an extension to three-dimensional hierarchical meshes of results proposed recently by Giannelli and Ju ̈ttler for two-dimensional hierarchical meshes.
Type de document :
Article dans une revue
Journal of Computational and Applied Mathematics, Elsevier, 2014, 257, pp.86-104. 〈10.1016/j.cam.2013.08.019〉
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00876557
Contributeur : Bernard Mourrain <>
Soumis le : jeudi 24 octobre 2013 - 18:13:43
Dernière modification le : mercredi 4 mai 2016 - 01:06:07
Document(s) archivé(s) le : lundi 27 janvier 2014 - 12:45:31

Fichier

revision.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Dmitry Berdinsky, Taiwan Kim, Cesare Bracco, Durkbin Cho, Bernard Mourrain, et al.. Dimensions and bases of hierarchical tensor-product splines. Journal of Computational and Applied Mathematics, Elsevier, 2014, 257, pp.86-104. 〈10.1016/j.cam.2013.08.019〉. 〈hal-00876557〉

Partager

Métriques

Consultations de la notice

340

Téléchargements de fichiers

245