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ON PROVING LINEAR CONVERGENCE OF

COMPARISON-BASED STEP-SIZE ADAPTIVE

RANDOMIZED SEARCH ON SCALING-INVARIANT

FUNCTIONS VIA STABILITY OF MARKOV CHAINS

ANNE AUGER AND NIKOLAUS HANSEN

Abstract. In the context of numerical optimization, this paper develops a methodology to ana-
lyze the linear convergence of comparison-based step-size adaptive randomized search (CB-SARS), a
class of probabilistic derivative-free optimization algorithms where the function is solely used through
comparisons of candidate solutions. Various algorithms are included in the class of CB-SARS algo-
rithms. On the one hand, a few methods introduced already in the 60’s: the step-size adaptive random
search by Schumer and Steiglitz, the compound random search by Devroye and simplified versions of
Matyas’ random optimization algorithm or Kjellstrom and Taxen Gaussian adaptation. On the other
hand, it includes simplified versions of several recent algorithms: the covariance-matrix-adaptation
evolution strategy algorithm (CMA-ES), the exponential natural evolution strategy (xNES), or the
cross entropy method.

CB-SARS algorithms typically exhibit several invariances. First of all, invariance to composing
the objective function with a strictly monotonic transformation which is a direct consequence of the
fact that the algorithms only use comparisons. Second, scale invariance that translates the fact that
the algorithm has no intrinsic absolute notion of scale.

The algorithms are investigated on scaling-invariant functions defined as functions that preserve
the ordering of two points (with respect to their objective function values) when they are both scaled
with the same positive parameter (this scaling is done w.r.t. a single constant reference point). This
class of functions includes composite of norms by strictly increasing functions as well as some non
quasi-convex functions and non-continuous functions.

We prove that the algorithm invariance properties entail on scaling-invariant functions the ex-
istence of a homogeneous Markov chain whose stability implies linear convergence of the original
algorithm. Hence we turn the problem of studying linear convergence of CB-SARS optimization
algorithms into a study of the stability of a joint Markov chain. We naturally derive sufficient
conditions expressed in terms of different stability conditions for the Markov chain (irreducibility,
positivity, Harris recurrence, geometric ergodicity) for the global linear convergence of CB-SARS.

The methodology presented here is applied in a companion paper where stability sufficient con-
ditions are proven for the (1+1)-ES with a generalized one-fifth success rule that coincides with
Schumer and Steiglitz’ or Devroye’s algorithms. This leads to a first proof of linear convergence for
the algorithm considered and first proof of linear convergence for a scale-invariant CB-SARS for such
a wide family of functions including in particular non quasi-convex and non continuous functions.

Key words. linear convergence, derivative-free optimization, comparison-based algorithm,
function-value-free optimization, discrete time Markov chain on continuous state space, stability
of Markov chain, step-size adaptive randomized search, Evolution Strategies, CMA-ES, xNES

1. Introduction. Derivative-free optimization (DFO) algorithms were already
proposed in the 60’s to solve numerical optimization problems: see for instance the
pattern search method by Hooke and Jeeves [17], the simplex method by Nelder and
Mead [28] or randomized DFO proposed by Matyas [26], Schumer and Steiglitz [35],
Rechenberg [31] or Devroye [12].

DFO methods have the advantage that they can handle problems posed in a black-
box setting, where the function f : Rn 7→ R to be (w.l.o.g.) minimized is seen as a
black-box that is solely capable to return a function value f(x) for any input vector x.
In particular gradients are not needed. Such a black-box scenario is very common in
industry for instance where the function can result from heavy numerical simulation
codes for which it is too complex to extract information, compute a gradient or simply
the person that has to optimize the problem has only access to an executable of the
function but not its source code.
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2 A. AUGER AND N. HANSEN

While almost abandoned for a few decades in the mathematical optimization
community, there was recently a revival of interest for deterministic DFO with the
introduction of new methods like the NEWUOA algorithm by Powell [30] or see also
e.g. the book [11]. At the same time, randomized DFO, like Evolution Strategies, have
been continuously developed and improved in the evolutionary computation commu-
nity since their introduction in the 60’s [31]. The elegant and powerful covariance
matrix adaptation Evolution Strategy (CMA-ES) [15] method is now considered as
state-of-the-art for randomized continuous optimization with numerous empirical ev-
idence of its efficiency and working principles [14].

While DFO methods optimize f without using its derivatives, an important dis-
tinction, however rarely recognized, among DFO algorithms can be made. Indeed,
some DFO algorithms are also function-value-free (FVF): they optimize f without
using its function value but solely the comparison between function values. For in-
stance the simplex method or Evolution Strategies are comparison based and thus
FVF.

This paper focuses on a specific subclass of FVF methods namely comparison-
based step-size adaptive randomized search (CB-SARS). Underlying the algorithms
is a family of probability distributions that is iteratively updated. More precisely we
consider methods whose current state at iteration t is described by a random vector
(Xt, σt) ∈ R

n × R
+
> with Xt standing for the favorite solution and σt ∈ R

+
> being a

step-size representing commonly the standard deviation of the underlying probability
distribution (while Xt is its expected value). When convergence towards a solution
x⋆ occurs, the vector Xt converges to x⋆ and the step-size goes to zero. Linear
convergence is characterized by both Xt − x⋆ and σt converging to zero linearly at
the same rate as will be explained below (see also Figure 5.1 left and middle plot).

The algorithms considered here share the same general structure based on three
steps: (i) sample the underlying probability distribution and form some candidate
solutions, (ii) evaluate the candidate solutions on f , (iii) rank the solutions (in these
solutions we could include the ones from the previous iteration) according to their
f -values and update the current state (Xt, σt) based on the ranked solutions. This
framework includes several methods proposed in the past: Step-size adaptive Evolu-
tion Strategies [8], the step-size random search algorithm by Schumer and Steiglitz
[35] or Devroyes’ compound random search [12]; and it can be seen as a simplified
version of various other methods: Matyas’ random optimization algorithm [26] that
additionally to the step-size adapts a search direction, CMA-ES, exponential natural
evolution strategies (xNES) [13] or Gaussian adaptation [25] with the adaptation of
the covariance matrix turned off or also the cross entropy method [33] provided the
covariance matrix divided by σ2

t is constant and has full rank.

One key feature of CB-SARS is their invariance to increasing transformations
of the objective function. In particular the update function in (iii) uses solely the
ranking of candidate solutions instead of their function value. It implies that the
sequence (Xt, σt) generated for the optimization of f will be almost surely equal to
the sequence generated for optimizing g ◦ f for any strictly monotonic function g.
Consequently a convex smooth function f can be as “efficiently” optimized by a CB-
SARS as any non-convex, non-smooth function g◦f for a choice of a strictly monotonic
g that renders g ◦ f non-convex, non-smooth. Remark that a method like simulated-
annealing does not share the property of invariance to increasing transformations as
the acceptance of a new solution depends on the function value itself [24].

Another important invariance for an optimization algorithm is scale-invariance,
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that is, the algorithm has no intrinsic absolute notion of scale. For a step-size adap-
tive randomized search (SARS), the given step-size defines the scale the algorithm is
operating on, but the operations do not depend on the scale otherwise.

Linear convergence of many CB-SARS is observed on a relatively wide class of
functions. However few formal proofs of linear convergence exist. On the one hand
Jägersküpper proved linear convergence for a variant of the (1+1)-ES and (1+, λ)-ES
with one-fifth success rule on spherical functions [21, 20] and on a certain class of
convex quadratic functions [18, 19] using an ad-hoc technique consisting in deriving
upper and lower bounds on the number of iterations to reduce the approximation
error. On the other hand, another type of approach was proposed in [9] for a step-size
adaptive ES with self-adaptation on spherical functions. The authors pointed out that
the norm of the distance to the optimum divided by the step-size is a homogeneous
Markov chain and deduced that studying the Markov chain could lead to a linear con-
vergence proof. The study of the Markov chain was achieved in [3]. All those results
however hold for a restricted class of functions, namely spherical or convex-quadratic
functions (and of course their composite by a strictly monotonic transformation).

We develop in this paper a methodology generalizing [9, 3] to analyze the linear
convergence of scale-invariant CB-SARS algorithms on the class of scaling-invariant
functions, where we define a function f as scaling-invariant with respect to x⋆ if for
all ρ > 0, x,y ∈ R

n

f(ρ(x− x⋆)) ≤ f(ρ(y − x⋆)) ⇔ f(x− x⋆) ≤ f(y − x⋆) .

This class of functions includes functions that are the composition of norm functions
by increasing transformations–having hence convex sublevel sets–but also non quasi-
convex functions. Non-constant scaling-invariant functions do not admit strict local
optima nor plateaux and are thus essentially unimodal. We prove that the algorithm
properties of (i) invariance to strictly monotonic transformations and (ii) translation
and scale-invariance imply on scaling-invariant functions, that the mean vector Xt

(w.l.o.g. x⋆ lies in zero) normalized by the step-size σt is a homogeneous Markov
chain1. We then explain how linear convergence is a consequence of the stability—
irreducibility, Harris recurrence, positivity, geometric ergodicity—of the normalized
Markov chain and explicit in details the typical form of stability we can prove. We
naturally derive sufficient conditions for linear convergence, expressed as stability of
the normalized chain. Stability per se is studied for the (1 + 1)-ES with generalized
one-fifth success rule in the companion paper [6]. Because of the stochastic nature of
the algorithms, linear convergence can be formulated in different ways. We formulate
almost sure linear convergence as the existence of a convergence rate CR such that
1
t ln ‖Xt‖/‖X0‖ and 1

t lnσt/σ0 converge to −CR almost surely. Linear convergence

in expectation is formulated as the log-progress E ln ‖Xt+1‖
‖Xt‖ and E ln σt+1

σt
converge

to −CR. We also prove that under geometric ergodicity of the normalized chain
the error between the log-progress and −CR decreases to zero like 1/rt (for r > 1)
and formulate a Central Limit theorem to characterize the speed of convergence of
1
t ln ‖Xt‖/‖X0‖ and 1

t ln
σt

σ0
towards −CR.

The paper is organized as follows. We define in Section 2.1 SARS and CB-
SARS algorithms. In Section 2.2, we formalize different invariance properties. First

1We assume for the sake of simplicity a specific form of the operator for sampling new solutions
typical of CB-SARS algorithms (property (2.15)). Otherwise the definition of the normalized Markov
chain needs to be adapted.
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invariance to strictly monotonic transformations satisfied directly by CB-SARS. Then
we give a general definition of translation and scale-invariance for SARS and derive
sufficient practical conditions for a CB-SARS to be translation and scale-invariant. In
Section 2.3 we present several examples of methods that follow our general definition
of CB-SARS and study their invariance properties. In Section 3 we define the class
of scaling-invariant functions. In Section 4, we prove that for certain translation and
scale-invariant CB-SARS algorithms optimizing scaling-invariant functions (w.l.o.g.
w.r.t. zero), the mean vector divided by the step-size is a homogeneous Markov
chain. In Section 5, we give sufficient conditions to linear convergence expressed in
terms of stability of the normalized Markov chain exhibited in Section 3. A discussion
is finally provided in Section 6.

Notations and definitions. The set of nonnegative real numbers is denoted R
+

and R
+
> denotes elements of R+ excluding 0, N is the set of natural numbers including

zero while N> excludes zero. The Euclidian norm of a vector x of Rn is denoted
‖x‖. A Gaussian vector or multivariate normal distribution with mean vector m and
covariance matrix C is denoted N (m,C). The identity matrix in R

n×n is denoted In
such that a standard multivariate normal distribution, i.e. with mean vector zero and
identity covariance matrix is denoted N (0, In). The density of a standard multivariate
normal distribution (in any dimension) is denoted pN . The set of strictly increasing
functions g from R to R or from a subset I ⊂ R to R is denoted M.

2. Comparison Based Step-size Adaptive Randomized Search. In this
section, we present a formal definition of SARS and CB-SARS algorithms. We then
define invariance properties typically associated to those algorithms and finish by
giving several concrete examples of CB-SARS algorithms as well as analyzing their
invariance properties.

2.1. Algorithm Definitions. For a SARS algorithm, the state of the algorithm
is a mean vector living in R

n and a step-size living in R
+
>. Hence, the state space for

the algorithm is Ω = R
n × R

+
>. Mathematically, a SARS algorithm is described by

a stochastically recursive sequence on the state space Ω. Given (X0, σ0) ∈ R
n × R

+
>,

the sequence is inductively defined as

(2.1) (Xt+1, σt+1) = F((Xt, σt),Ut)

where Xt ∈ R
n represents the favorite solution at iteration t, σt ∈ R

+
> is the so-

called step-size, F is a measurable function and (Ut)t∈N is an independent identically
distributed (i.i.d.) sequence of random vectors. Each vector Ut belongs to a space
U

p = U×. . .×U and has p coordinatesUi
t belonging to U. The probability distribution

of the vectorUt is denoted pU. From the definition (2.1) follows that ((Xt, σt))t∈N
is a

time homogeneous Markov chain. We call F the transition function of the algorithm.
The objective function f is also an input argument to the transition function F as
the update of (Xt, σt) depends on f , however we omit this dependence in general for
the sake of simplicity in the notations. If there is an ambiguity we add the function
f as upper-script, i.e. Ff(x) or Ff .

A CB-SARS is a SARS where the transition function F depends on f only through
comparison of candidate solutions and is the composition of several functions that we
specify in the sequel. The p coordinates of Ut are in a first time used to create new
candidate solutions according to a Sol function:

Xi
t = Sol((Xt, σt),U

i
t) , i = 1, . . . , p .
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(For instance in the case where U = R
n the Sol function can equal Sol((x, σ),ui) =

x + σui.) The p candidate solutions are then evaluated on f and ordered according
to their objective function value. The permutation corresponding to the ordered
objective function values f(Xi

t) is denoted S ∈ S(p) where we denote S(p) the set
of permutations of p elements. Formally S is the output of the Ord function defined
below. It is then used to order the coordinates of the vector Ut accordingly. More
formally the permutation acts on the coordinates of Ut via the following function:

(2.2)
S(p)× U

p →U
p

(S,Ut) 7→S ∗Ut =
(

U
S(1)
t , . . . ,U

S(p)
t

)

where the previous equation implicitly defines the operator ∗.
The update of (Xt, σt) is achieved using the current state (Xt, σt) and the ranked

coordinates of Ut. More precisely let us consider a measurable function G called
update function that maps Ω× U

p onto Ω, the update of (Xt, σt) reads

(2.3) (Xt+1, σt+1) = G((Xt, σt),S ∗Ut) = G((Xt, σt),Yt) ,

where Yt denotes the ordered coordinates of Ut, i.e. Yt = (U
S(1)
t , . . . ,U

S(p)
t ). We

formalize the definition of a CB-SARS below after introducing a definition for the
function Sol for generating solutions as well as for the ordering function.

Definition 2.1 (Sol function). Given U, the state space for the sampling co-
ordinates of Ut, a Sol function used to create candidate solutions is a measurable
function mapping Ω× U into R

n, i.e.

Sol : Ω× U 7→ R
n .

We now define the ordering function that returns a permutation based on the objec-
tive function values.

Definition 2.2 (Ord function). The ordering function Ord maps R
p to S(p),

the set of permutations with p elements and returns for any set of real values (f1, . . . , fp)
the permutation of ordered indexes. That is S = Ord(f1, . . . , fp) ∈ S(p) where

fS(1) ≤ . . . ≤ fS(p) .

When more convenient we might denote Ord((fi)i=1,...,p) instead of Ord(f1, . . . , fp).
When needed for the sake of clarity we might use the notations Ordf or Sf to em-
phasize the dependency in f .

We are now ready to give a formal definition of a comparison-based step-size
adaptive randomized search.

Definition 2.3 (CB-SARS minimizing f : Rn → R). Let p ∈ N> and U
p =

U× . . .×U where U is a subset of Rm. Let pU be a probability distribution defined on
U

p where each U distributed according to pU has a representation (U1, . . . ,Up) (each
Ui ∈ U). Let Sol be a solution function as in Definition 2.1. Let G1 : Ω × U

p 7→ R
n

and G2 : R+ × U
p 7→ R

+ be two mesurable mappings and let denote G = (G1,G2).
A CB-SARS is determined by the quadruplet (Sol,G,Up, pU) from which the re-

cursive sequence (Xt, σt) ∈ Ω is defined via (X0, σ0) ∈ Ω and for all t:

Xi
t = Sol((Xt, σt),U

i
t) , i = 1, . . . , p(2.4)

S = Ord(f(X1
t ), . . . , f(X

p
t )) ∈ S(p)(2.5)

Xt+1 = G1 ((Xt, σt),S ∗Ut)(2.6)

σt+1 = G2 (σt,S ∗Ut)(2.7)
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where (Ut)t∈N is an i.i.d. sequence of random vectors on U
p distributed according to

pU, Ord is the ordering function as in Definition 2.2.
The previous definition illustrates the function value free property as we see that

the update of the state (Xt, σt) is performed using solely the information given by the
permutation that contains the order of the candidate solutions according to f . For
a comparison-based step-size adaptive randomized search, the function F introduced
in (2.1) is the composition of the update function G, the solution operator Sol and
the ordering function, more precisely

(2.8) Ff ((x, σ),u) = G((x, σ),Ord(f(Sol((x, σ),ui))i=1,...,p) ∗ u) .

Note that for the update of the step-size (equation (2.7)), we assume that Xt does
not come into play. Examples of CB-SARS are given in Section 2.3.

2.2. Invariance Properties. Invariance is an important principle in science in
general and in optimization. Invariance generalizes properties that are true on a sin-
gle function to a whole class of functions. Some invariances are taken for granted in
optimization like translation invariance while others are less common or less recog-
nized. In the sequel we start by formalizing that CB-SARS are invariant to strictly
monotonic transformations of f . We focus then in Section 2.2.2 on invariance in
search space and formalize translation invariance and scale invariance. We also derive
sufficient conditions for a CB-SARS to be translation and scale invariant.

2.2.1. Invariance to Strictly Monotonic Transformations of f . Invari-
ance to strictly monotonic transformations of f of a CB-SARS algorithm is a direct
consequence of the algorithm definition. It stems from the fact that the objective
function only comes into play through the ranking of the solutions via the ordering
function (see (2.5), (2.6) and (2.7)). This ordering function does output the same
result on f or any strictly monotonic transformation of f . More formally let us define
MI the set of strictly monotonic mappings g : I → R, where I is a subset of R i.e. if
for all x and y in I such that x < y we have g(x) < g(y) and define M = ∪IMI . The
elements of M preserve the ordering. The invariance to composite of f by a function
in M is stated in the following proposition.

Proposition 2.4. [Invariance to strictly monotonic transformations] Consider
(Sol,G,Up, pU) a CB-SARS as defined in Definition 2.3 optimizing f : Rn → R and
let (Xt, σt) be the Markov chain sequence defined as (X0, σ0) ∈ R

n × R
+
> and

(Xt+1, σt+1) = G((Xt, σt),Sf ∗Ut)

where (Ut)t∈N is an i.i.d. sequence of random vectors on U
p distributed according to

pU and Sf = Ord(f(Sol((Xt , σt),U
i
t))1≤i≤p). Let g : f(Rn) → R (where f(Rn) is the

image of f) in M be a strictly monotonic mapping and (X′
t, σ

′
t) be the Markov chain

obtained when optimizing g◦f using the same sequence (Ut)t∈N and same initial state
(X0

′, σ0
′) = (X0, σ0). Then almost surely for all t

(Xt, σt) = (X′
t, σ

′
t) .

Proof. The proof is immediate, by induction. Assume (Xt, σt) = (X′
t, σ

′
t) and let

denoteXi
t = Sol((Xt, σt),U

i
t). BecauseOrd(f(X1

t ), . . . , f(X
p
t )) = Ord(g◦f(X1

t ), . . . , g◦
f(Xp

t )) = S, then

(Xt+1, σt+1) = G((Xt, σt),S ∗Ut) = G((X′
t, σ

′
t),S ∗Ut) = (X′

t+1, σ
′
t+1) .
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Fig. 2.1. Illustration of invariance to strictly increasing transformations. Representation of
three instances of functions belonging to the invariance (w.r.t. strictly increasing transformations)
class of f(x) = ‖x‖2 in dimension 1. On the left the sphere function and middle and right functions
g ◦ f for two different g ∈ M. On those three functions, a comparison-based step-size adaptive
randomized search will generate the same sequence (Xt, σt) (see Proposition 2.4) and consequently
convergence will take place at the same rate.

Consequently, on the three functions depicted in Figure 2.1, a comparison-based step-
size adaptive randomized search will produce the same sequence (Xt, σt)t∈N. Hence if
convergence takes place on one of those functions, it will take place on the two others
and at the same convergence rate.

2.2.2. Invariances in the Search Space: Translation and Scale-Invariance.
We consider now invariance of comparison-based step-size adaptive randomized search
related to transformations in the search space. We use a classical approach to formal-
ize invariance using homomorphisms transforming state variables via a group action
and visualize invariances with a commutative diagram. We start by translation in-
variance, usually taken for granted in optimization.

Translation invariance. Most optimization algorithms are translation invariant,
which implies the same performance when optimizing f(x) or f(x − x0) for all x0

provided a respective initialization of the algorithm. More precisely, let us consider
R

n endowed with the addition operation + as a group and consider A(Ω) the set of
invertible mappings from the state space Ω to itself, that is, the set of all (invertible)
state space transformations. Endowed with the function composition ◦, (A(Ω), ◦)
yields also a group structure. We remind the definition of a group morphism.

Definition 2.5 (Group homomorphism). Let (G1, .) and (G2, ∗) be two groups.
A mapping Φ : G1 → G2 is called group homomorphism if for all x, y ∈ G1 we have
Φ(x.y) = Φ(x) ∗ Φ(y).

From the definition follows that for any x ∈ G1, Φ(x
−1) = [Φ(x)]−1 where x−1

(resp.[Φ(x)]−1) denotes the inverse of x (resp. of [Φ(x)]). Note that in case x belongs
to an additive group, the inverse is denoted −x. Let Homo((Rn,+), (A(Ω), ◦)) be
the set of group homomorphisms from (Rn,+) to (A(Ω), ◦). For instance, consider
Φ ∈ Homo((Rn,+), (A(Ω), ◦)), i.e. Φ : y ∈ (Rn,+) 7→ Φ(y) where Φ(y) is a state
space transformation such that for all (x, σ) ∈ R

n × R
+
>, Φ(y)((x, σ)) = (x + y, σ).

We are now ready to state a definition of translation invariance.
Definition 2.6 (Translation Invariance). A SARS with transition function F is

translation invariant if there exists a group homomorphism Φ ∈ Homo((Rn,+), (A(Ω), ◦))
such that for any objective function f , for any x0 ∈ R

n, for any (x, σ) ∈ Ω and for
any u ∈ U

p

(2.9) Ff(x)((x, σ),u) = Φ(x0)
−1

︸ ︷︷ ︸

Φ(−x0)

(

Ff(x−x0)(Φ(x0)(x, σ),u)
)

,
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(Xt, σt) -
Ff(x)

(Xt+1, σt+1)

(X′
t, σ

′
t)

-
Ff(x−x0)

(X′
t+1, σ

′
t+1)

?

6

Φ(x0) Φ(−x0)

6

?

Φ(x0) Φ(−x0)

(Xt, σt) -
Ff(x)

(Xt+1, σt+1)

(X′
t, σ

′
t)

-
Ff(αx)

(X′
t+1, σ

′
t+1)

?

6

Φ(α) Φ( 1
α )

6

?

Φ( 1
α )Φ(α)

Fig. 2.2. Left: Commutative diagram for the translation invariance property applied to one
iteration of a step-size adaptive algorithm (Φ(−x0) = [Φ(x0)]−1). Right: Commutative diagram for
the scale-invariance property applied to one iteration of a step-size adaptive algorithm (Φ(1/α) =
[Φ(α)]−1). The homomorphisms Φ (different on the left and right) define for any x0 (resp. α) a
search space transformation Φ(x0) (resp. Φ(α)).

where the function to be optimized is shown as upper-script of the transition function
F . The previous definition means that a SARS algorithm is translation invariant, if
we can find an homomorphism Φ (that depends on the algorithm) that defines for any
translation x0, a search space transformation Φ(x0), such that: (i) if we start from
(Xt, σt) and apply one iteration of the algorithm to optimize f(x) or (ii) apply the
state space transformation Φ(x0) to the state of the algorithm, apply one iteration
of the algorithm on x 7→ f(x − x0) and transform back the state of the algorithm
via Φ(−x0), then we recover (Xt+1, σt+1). This property is pictured via a double-
commutative diagram (see Figure 2.2).

We consider in the next proposition some specific properties of Sol and G that
render a comparison-based step-size adaptive randomized search translation invariant.
These properties are satisfied for algorithms presented in Section 2.3.

Proposition 2.7. Let (Sol,G,Up, pU) be a CB-SARS according to Definition 2.3.
If the following conditions are satisfied:
(i) for all x,x0 ∈ R

n for all σ > 0, for all ui ∈ U

(2.10) Sol((x + x0, σ),u
i) = Sol((x, σ),ui) + x0

(ii) for all x,x0 ∈ R
n for all σ > 0, for all y ∈ U

p

(2.11) G1((x+ x0, σ),y) = G1((x, σ),y) + x0

then (Sol,G,Up, pU) is translation invariant and the associated group homomorphism
Φ is defined by

(2.12) Φ(x0)(x, σ) = (x+ x0, σ) for all x0,x, σ .

In addition, assuming that the Sol function satisfies property (2.10), then if (Sol,G,Up, pU)
is translation invariant with (2.12) as homomorphism, then (2.11) is satisfied.

Proof. Consider the homomorphism defined in (2.12), then (2.11) writes

(2.13) G(Φ(x0)(x, σ),y) = Φ(x0) (G((x, σ),y)) ,

and (2.10) writes Sol(Φ(x0)(x, σ),u
i) − x0 = Sol((x, σ),ui). This latter equation

implies that the same permutation S will result from ordering solutions generated by
the Sol function on f from (x, σ) or on f(x − x0) starting from Φ(x0)(x, σ). Using

(2.13) we hence have G(Φ(x0)(x, σ),Sf(x−x0)
Φ(x0)(x,σ)

∗ u) = Φ(x0)
(

G((x, σ),Sf
(x,σ) ∗ u)

)

which turns out to coincide with (2.9). The inverse is immediate.
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Scale-invariance property. The scale invariance property translates the fact that
the algorithm has no intrinsic notion of scale. It can be defined similarly to translation
invariance by considering the set of group homomorphisms from the group (R+

>, .)
(where . denotes the multiplication between two real numbers) to the group (A(Ω), ◦).
We denote this set Homo((R+

>, .), (A(Ω), ◦)).
Definition 2.8 (Scale-invariance). A SARS with transition function F is scale-

invariant if there exists an homomorphism Φ ∈ Homo((R+
>, .), (A(Ω), ◦)) such that for

any f , for any α > 0, for any (x, σ) ∈ R
n × R

+
> and for any u ∈ U

p

(2.14) Ff(x)((x, σ),u) = Φ(1/α)
(

Ff(αx)(Φ(α)(x, σ),u)
)

,

where the function optimized is shown as upper-script of the transition function F . In
the previous definition we have used the fact that for any element α of the multiplica-
tive group (R+

>, .) its inverse is 1/α. The scale-invariance property can be pictured
via a double-commutative diagram (see Figure 2.2).

We derive in the next proposition some conditions for a CB-SARS to be scale-
invariant that will be useful in the sequel to prove that the algorithms presented in
Section 2.3 are scale-invariant.

Proposition 2.9. Let (Sol,G,Up, pU) be a CB-SARS according to Definition 2.3.
If for all α > 0 the following three conditions are satisfied: (i) for all ui ∈ U, (x, σ) ∈
R

n × R
+
>,

(2.15) Sol((x, σ),ui) = αSol
((x

α
,
σ

α

)

,ui
)

(ii) for all y ∈ U
p, (x, σ) ∈ R

n × R
+
>

(2.16) G1((x, σ),y) = αG1

((x

α
,
σ

α

)

,y
)

and (iii) for all y ∈ U
p, σ ∈ R

+
>

(2.17) G2(σ,y) = αG2

(σ

α
,y
)

,

then it is scale invariant and the associated homomorphism is Φ : α ∈ R
+
> 7→ Φ(α)

where for all (x, σ) ∈ R
n × R

+
>,

(2.18) Φ(α)(x, σ) = (x/α, σ/α) .

Inversely, assuming that the Sol function satisfies (2.15), if (Sol,G,Up, pU) is scale-
invariant with the homomorphism defined in (2.18), then (2.16) and (2.17) are satis-
fied.

Proof. From (i) we deduce that for any (x, σ) in R
n × R

+
> and any ui ∈ U,

f(Sol((x, σ),ui)) = f
(

αSol
((x

α
,
σ

α

)

,ui
))

which implies that the same permutation S will result from ordering solutions (with
Ord) on f starting from (x, σ) or on f(αx) starting from (x/α, σ/α), i.e. with some

obvious notations Sf(x)
(x,σ) = Sf(αx)

( x
α , σα ). On the other hand using (2.8) the following holds

Ff(x)((x, σ),u) = G((x, σ),Sf(x)
(x,σ) ∗ u)(2.19)

Ff(αx)
((x

α
,
σ

α

)

,u
)

= G
((x

α
,
σ

α

)

,Sf(αx)
( x
α , σα ) ∗ u

)

.(2.20)
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Assuming (ii) and (iii) we find that Ff(x)((x, σ),u) = αFf(αx)
((

x
α ,

σ
α

)
,u
)
. Using

the homomorphism defined in (2.18) the previous equation reads

Ff(x)((x, σ),u) = Φ(1/α)Ff(αx) ((Φ(α)(x, σ)) ,u)

which is (2.14). Hence we have found an homomorphism such that (2.14) holds, which
is the definition of scale-invariance. The inverse is immediate.

Remark that given a CB-SARS that satisfies the conditions (i), (ii) and (iii)
from the previous proposition, we can reparametrize the state of the algorithm by
σ̃t = σ2

t (if the underlying sampling distribution is Gaussian, this means parametrize
by variance instead of standard deviation) leaving unchanged the parametrization for
the mean vector. Then the conditions of the previous proposition are not anymore
valid for the new parametrization. Yet the algorithm is still scale-invariant but a
different morphism needs to be considered, namely

(2.21) Φ(α)(x, σ̃) = (x/α, σ̃/α2) .

Hence the sufficient conditions derived are not general at all, however they cover typ-
ical settings for CB-SARS. Adapting however Proposition 2.9 for other parametriza-
tions is usually easy.

2.3. Examples of CB-SARS. In order to illustrate the CB-SARS framework
introduced, we present in this section several examples of CB-SARS algorithms and
analyze their invariance properties.

2.3.1. Non-elitist Step-size Adaptive Evolution Strategies (ES). We con-
sider two examples of algorithms following Definition 2.3 that were introduced un-
der the name Evolution Strategies (ES). They all share the same sampling space
U

p = R
n×p. A vector Ut ∈ U

p = R
n×p is composed of p i.i.d. standard multi-

variate normal distributions, i.e. Ui
t ∼ N (0, In) ∈ R

n and thus the joint density
pU(u1, . . . ,up) is the product pN (u1) . . . pN (up) where pN (x) = 1

(2π)n/2 exp
(
− 1

2x
Tx
)
.

The solution operator to sample new solutions is given by:

(2.22) Sol((Xt, σt),U
i
t)(= Xi

t) = Xt + σtU
i
t , i = 1, . . . , p ,

and hence each candidate solution Xi
t follows the distribution N (Xt, σ

2
t In). The vec-

tor Xt is thus the mean vector of the underlying distribution N (Xt, σ
2
t In). Using

the terminology sometimes employed for evolution strategies–for stressing the paral-
lel with biology–, (2.22) implements a mutation: the new solutions Xi

t, also called
offspring, are obtained by mutation of the solution Xt also referred as parent.

Given the vector of ordered samples Yt = S ∗ Ut = (U
S(1)
t , . . . ,U

S(p)
t ) where

S is the permutation resulting from the ranking of objective function values of the
solutions (see (2.5)), the update equation for the mean vector Xt that defines the
function G1 is given by

(2.23) Xt+1 = G1((Xt, σt),Yt) := Xt + κmσt

p
∑

i=1

wiY
i
t

where κm ∈ R
+ is usually called the learning rate and is often set to 1 and wi ∈ R are

weights that satisfy w1 ≥ . . . ≥ wp and
∑p

i=1 |wi| = 1. The update implements the
idea to move the vector towards better solutions by doing a weighted recombination
of the p best solutions [34, 15, 2]. Often, only positive weights are considered where



LINEAR CONVERGENCE OF CB-SARS VIA STABILITY OF MARKOV CHAINS 11

optimally half of the weights should be non zero, i.e. w1 ≥ w2 ≥ . . . ≥ w⌊p/2⌋ > 0
and wi = 0 for i > ⌊p/2⌋. If equals weights are used the terminology intermediate
recombination is employed [7].

Recently, an interesting interpretation of the meaning of the vector σt

∑p
i=1 wiY

i
t

was given: it is an approximation of the (n first coordinates) of the natural gradi-
ent of a joint criterion defined on the manifold of the family of gaussian probability
distribution [1, 29].

Several step-size updates have been used with the update of the mean vector
Xt in (2.23). First of all, consider the update derived from the cumulative step-size
adaptation or path-length control without cumulation [16] that reads

(2.24) σt+1 = G2(σt,Yt) = σt exp

(

κσ

(√
µw‖

∑p
i=1 wiY

i
t‖

E[‖N (0, In)‖]
− 1

))

where κσ > 0 is the learning rate for the step-size update usually set close to one
and µw = 1/

∑
w2

i . The value 1/κσ is often considered as a damping parameter.
The ruling principle for the update is to compare the length of the recombined step
∑p

i=1 wiY
i
t to its expected length if the objective function would return independent

random values. Indeed if the signal given by the objective function is random, the
step-size should stay constant. It is not difficult to see that in such condition, a random
ordering takes place and hence the distribution of the vector Yt is the same as the
distribution of the vector Ut, finally it follows that

√
µw

∑p
i=1 wiY

i
t is distributed

according to a standard multivariate normal distribution. Hence (2.24) implements
to increase the step-size if the observed length of

√
µw

∑p
i=1 wiY

i
t is larger than the

expected length under random selection and decrease it otherwise. Overall, the update
function associated to the CSA without cumulation reads

GCSAw/o((x, σ),y) =

(
x+σκm

∑p
i=1 wiy

i

σ exp

(

κσ

(√
µw‖ ∑p

i=1
wiy

i‖
E[‖N(0,In)‖] −1

))

)

.

In practice the step-size update CSA is used in combination with cumulation and
in the update, the norm of the selected step is replaced by the norm of a path that
cumulates steps of previous generation [15]. The CSA with cumulation is the default
step-size adaptation mechanism used in the CMA-ES algorithm.

The second example we present corresponds to the natural gradient update for
the step-size with exponential parametrization [13] that writes

σt+1 = σt exp

(

κσ

2n
Tr

(
p
∑

i=1

wiY
i
t(Y

i
t)

T − In

))

= σt exp

(

κσ

2n

p
∑

i=1

wi(‖Yi
t‖2 − n)

)

.

We then define the update function for the step-size update in xNES as

(2.25) GxNES((x, σ),y) =

(
x+σκm

∑p
i=1 wiy

i

σ exp(κσ
2n

∑p
i=1 wi(‖yi‖2−n))

)

.

Often the parameter p is denoted λ, a parameter µ corresponding to the number
of positive weights is introduced and the terminology comma selection as opposed to
plus (or elitist selection) that will be detailed later is employed. This terminology
stresses that the update of the vector Xt and step-size takes into account solutions
sampled anew and do not consider “old” solutions. Consequently it is not guaranteed
that the best solutions at iteration t + 1 has a smaller objective function value than
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the best solution at iteration t. In the case where only positive weights are used, a
compact notation for the algorithms described above is (µ/µw, λ)-ES where λ = p
and µ equals the number of non-zero weights.

Invariance properties. The two different comparison-based step-size adaptive ran-
domized search algorithms presented in this section are translation invariant and scale-
invariant. They indeed satisfy the sufficient conditions derived in Proposition 2.7 and
Proposition 2.9.

2.3.2. Evolution Strategy with Self-adaptation. Another type of algorithms
included in the comparison-based step-size adaptive randomized search definition are
the so-called self-adaptive step-size ES. The idea of self-adaptation dates back from
the 70’s and consists in adding the parameters to be adapted (step-size, covariance
matrix, ...) to the vector that undergo variations (mutations and recombinations) and
let the selection (through the ordering function) adjusts the parameters [31, 36]. In
the case where one single step-size is adapted, the step-size undergoes first a mutation:
it is multiplied by a random variable following a log-normal distribution Logn(0, τ2)
where τ ≈ 1/

√
n. The mutated step-size is then used as overall standard deviation

for the multivariate normal distribution N (0, In). In this case, the space U
p equals

R
(n+1)×p. The n first coordinates of an element Ui

t ∈ U = R
n+1 denoted [Ui

t]1...n
(∈ R

n) correspond to the sampled standard multivariate normal distribution vector
and the last coordinate denoted [Ui

t]n+1 to the sampled normal distribution for sam-
pling the log-normal distribution used to mutate the step-size. The solution function
is defined as

(2.26) Sol((Xt, σt),U
i
t) = Xi

t = Xt + σt exp
(
τ [Ui

t]n+1

)
[Ui

t]1...n

where [Ui
t]1...n ∼ N (0, In) and [Ui

t]n+1 ∼ N (0, 1). The distribution pU admits thus a
density that equals pU(u1, . . . ,up) = pN (u1) . . . pN (up) ,ui ∈ R

n+1. Remark that the
ordering function selects the couple multivariate normal distribution and log-normal
distribution used to mutate the step-size at the same time. Assuming that only the
best solution plays a role in the update of Xt (i.e. it corresponds to a single non-zero
weight in the recombination equation (2.23)), the update for the mean vector reads

(2.27) Xt = Xt + σt exp(τ [Y
1
t ]n+1)[Y

1
t ]1...n

and the update for the step-size is

(2.28) σt+1 = σt exp(τ [Y
1
t ]n+1) .

A step-size adaptive Evolution Strategy satisfying (2.26),(2.27) and (2.28) is called
(1, p) self-adaptive step-size ES ((1, p)-SA). The (1, p) refers to the fact that a single
solution is selected out of the p. The update function G for the (1, p)-SA reads

G(1,p)−SA((x, σ),y) =
(

x+σ exp(τ [y1]n+1)[y
1]1...n

σ exp(τ [y1]n+1)

)

.

We see thus that the step-size is adapted by the selection that occurs through the
ordering. The rationale behind the method being that unadapted step-size cannot
successfully give good solutions and that selection will adapt (for free) the step-size
(explaining thus the terminology “self-adaptation”). Self-adaptive algorithms have
been popular in the 90’s certainly due to the fact that its idea is simple and attractive.
However self-adaptation leads in general to too small step-size. Different variants
of self-adaptation using multiple parents and recombinations exist, we refer to the
review paper [8] for further readings and references.
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Invariances. In virtue of Proposition 2.7 and Proposition 2.9 the (1, p)-SA is
translation and scale-invariant.

The linear convergence of the self-adaptive ES algorithm described in this sec-
tion in dimension 1 was proven in [3] on spherical functions using the Markov chain
approach presented here.

2.3.3. Step-size Random Search or Compound Random Search or (1+1)-
ES with 1/5 Success Rule. The last example presented is an algorithm where the
sequence f(Xt) is decreasing, i.e. updates that only improve or leave Xt unchanged
are performed. The algorithm is often characterized of elitist as the best solution at
a current iteration is kept for the next iteration. For the example presented, at each
iteration a single new solution is sampled from Xt, i.e.

X1
t = Xt + σtU

1
t

where U1
t ∈ R

n follows a standard multivariate normal distribution, and hence X1
t

follows the distributionN (Xt, σ
2
t In). The stepU1

t is accepted if the candidate solution
is better than the current one and rejected otherwise. Let us denote U2

t = 0 ∈ R
n

the zero vector and take Ut = (U1
t ,U

2
t ). Hence U

p = R
n×2 and the probability

distribution of U equals pU(u1,u2) = pN (u1)δ0(u
2) where δ0 is the Dirac delta

function. The Sol function corresponds then to the function in (2.22).

The update equation for Xt is similar to (2.23) with weights (w1, w2) = (1, 0).
Remark that contrary to the non-elitist algorithms presented before, the sampled
step Ut, the selected step Yt and the new mean Xt+1 have a singular part w.r.t.
the Lebesgue measure. An algorithm following such an update is often referred as
(1 + 1)-ES but was also introduced under the name Markov monotonous search [37],
step-size random search [35] or compound random search [12].

The adaptation of the step-size idea starts from the observation that if the step-
size is very small, the probability of success (i.e. to sample a better solution) is ap-
proximately one-half but the improvements are small because the step is small. On
the opposite if the step-size is too large, the probability of success will be small, typ-
ically the optimum will be overshoot and the improvement will also be very small.
In between lies an optimal step-size associated to an optimal probability of success
[35, 31, 12]. A proposed adaptive step-size algorithm consists in trying to maintain a
probability of success (i.e. probability to sample a better solution) to a certain target
value ptarget, increase the step-size in case the probability of success is larger than
ptarget and decrease it otherwise [12, 31, 32]. The optimal probability of success, i.e.
allowing to obtain an optimal convergence rate has been computed on the sphere func-
tion f(x) = ‖x‖2 for dimension of the search problem going to infinity and is roughly
equal to 0.27 [35, 31]. Another function where the asymptotic optimal probability
of success was computed is the corridor function2 where it is equal to 1/(2e) [32].
As a trade-off between the probability of success on the sphere and on the corridor,
the target probability is often taken equal to 1/5 = 0.20 and gave the name one-fifth
success rule to the step-size adaptive algorithm. We call the algorithm with ptarget as
target success probability the generalized one-fifth success rule.3

2The corridor function is defined as f(x) = x1 for −b < x2 < b, . . . − b < xn < b, for b > 0
otherwise +∞.

3Note that ptarget does not correspond to the optimal probability of success as indeed if the
probability of success equals the target probability, the step-size is kept constant. Hence if conver-
gence occurs the achieved probability of success is smaller than the target probability. Therefore, on



14 A. AUGER AND N. HANSEN

Several implementations of the generalized one-fifth success rule exist. In some
implementations, the probability of success is estimated by fixing a step-size for a few
iterations, counting the number of successful solutions and deducing an estimation of
the probability of success. The step-size is then increased if the probability of success
is larger than ptarget and decreased otherwise [31, 32]. This version of the one-fifth
success rule is in particular the one investigated theoretically by Jägersküpper [22, 21,
20, 19]. A somehow simpler implementation consists in estimating at each iteration
the probability of success as 1{f(X1

t )<f(Xt)} = 1{Y1
t 6=0}

4: this indicator function being
equal to one in case of success and zero otherwise. Consequently the algorithm will
increase the step-size after a successful step and decrease it otherwise as proposed in
[12, 23]. The update rule for the step-size reads

σt+1 = σt exp

(

κσ

1{Y1
t 6=0} − ptarget

1− ptarget

)

where κσ > 0 is a learning rate coefficient. Denoting γ = exp(κσ) and q =
1−ptarget

ptarget

(for a target success probability set to 1/5, the parameter q = 4) yields

(2.29) σt+1 = σt

(

γ1{Yt 6=0} + γ−1/q1{Y1
t=0}

)

= σt

(

(γ − γ−1/q)1{Y1
t 6=0} + γ−1/q

)

.

Overall, the update transformation for the (1+1)-ES with generalized one-fifth success
rule is

G(1+1)1/5((x, σ),y) =
(

x+σy1

σ((γ−γ−1/q)1{y1 6=0}+γ−1/q)

)

.

Elitist selection is not robust to outliers and presence of noise on the objective func-
tion explaining why the state-of-the-art method CMA-ES is using a comma selection.
However, elitist algorithms are theoretically interesting and the fact that the objective
function value of the best solution at a given iteration decreases renders some theo-
retical proofs often easier. This most certainly explicates why the (1+1) algorithm is
popular among theoretician.

Invariance. Using again Proposition 2.7 and Proposition 2.9, the (1+1)-ES with
generalized one-fifth success rule is translation and scale-invariant.

Remark 1. In all the examples presented, the p components (Ui
t)1≤i≤p of the

vectors Ut are independent. It is however not a requirement of our theoretical setting.
Some algorithms using within an iteration non independent samples were recently
introduced [5, 4] and could be analyzed with the Markov chain approach presented in
this paper.

3. Scaling-Invariant Functions. In this section we define the class of scaling-
invariant functions that preserve the f -ordering of two points centered with respect
to a reference point x⋆ when they are scaled by any given factor.

Definition 3.1 (Scaling-invariant function). A function f : Rn 7→ R is scaling-
invariant with respect to x⋆ ∈ R

n, if for all ρ > 0, x,y ∈ R
n

(3.1) f(ρ(x− x⋆)) ≤ f(ρ(y − x⋆)) ⇔ f(x− x⋆) ≤ f(y − x⋆) .

the sphere, if convergence occurs, ptarget = 0.20 corresponds to an achieved probability of success
smaller than 0.20, hence a probability of success smaller than optimal which will consequently favor
larger step-sizes as the probability of success decreases with increasing step-sizes [6].

4This equality is true only almost everywhere.
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This definition implies that two points x − x⋆ and y − x⋆ belong to the same level
set if and only if for all ρ > 0 also ρ(x − x⋆) and ρ(y − x⋆) belong to the same level
set, i.e.

f(x− x⋆) = f(y − x⋆) ⇔ f(ρ(x− x⋆)) = f(ρ(y − x⋆)) .

Hence, scaling-invariance can be equivalently defined with strict inequalities in (3.1).
Remark that if f is scaling-invariant, then for any g strictly increasing the composite
g ◦ f is also scaling-invariant.

Proposition 3.2. Let f be a scaling-invariant function, then, f cannot admit
any strict local optima except x⋆. In addition, on a line crossing x⋆ a scaling invariant
function is either constant equal to f(x⋆) or cannot admit a local plateau, i.e. a ball
where the function is locally constant.

Proof. We can assume w.l.o.g. scaling-invariance with respect to x⋆ = 0. Assume
to get a contradiction that f admits a strict local maximum different from x⋆, i.e.
there exist x0 and ǫ > 0 such that for all x ∈ B(x0, ǫ) (open ball of center x0 and
radius ǫ), f(x) < f(x0). We now consider a point x1 belonging to B(x0, ǫ) and
to the line (0,x0) such that ‖x1‖ > ‖x0‖. Then f(x1) < f(x0) as x0 is a strict
local maximum and x1 can be written x1 = θx0 with θ > 1 as x1 ∈ (0,x0) and
has a larger norm than x0. Hence f(x0) > f(x1) = f(θx0) which is by the scaling-
invariance property equivalent to f(x0/θ) > f(x0). However, x0/θ ∈ B(x0, ǫ) as
‖x0/θ−x0‖ = |1− 1/θ|‖x0‖ = (θ− 1)‖x0‖/θ = ‖x1−x0‖/θ < ǫ/θ < ǫ. Then we have
found a point x0/θ ∈ B(x0, ǫ) that has a function value strictly larger than f(x0)
which contradicts the fact that x0 is a strict local maximum. The same reasoning
holds to prove that the function has no strict local minimum.

The fact that the function is constant on a line crossing x⋆ or cannot admit a local
plateau, comes from the fact that if the function is non-constant on a line and admits
a local plateau, then we can find two points from the plateau x and y with equal
function value such that the point x is at the extremity of the local plateau, then we
just scale x and y such that x is outside the plateau and y stays on the plateau. By
the scaling invariant property, the scaled points should still have an equal function
value which is impossible as we have scaled x to be outside the plateau.

Examples of scaling-invariant functions include linear functions or composite of
norm functions by functions in M, i.e. f(x) = g(‖x‖) where ‖.‖ is a norm on
R

n and g ∈ M. Thus the famous sphere function f(x) =
∑n

i=1 x
2
i which is the

square of the Euclidian norm or more generally any convex quadratic function f(x) =
(x− x⋆)TH(x− x⋆) with H ∈ R

n×n positive definite symmetric are scaling-invariant
functions with respect to x⋆. The sublevel sets defined as the sets {x ∈ R

n, f(x) ≤ c}
for c ∈ R for those previous examples are convex sets, i.e. the functions are quasi-
convex. However, functions with non-convex sublevel sets can also be scaling-invariant
(see Figure 3.1).

A particular class of scaling-invariant functions are positively homogeneous func-
tions whose definition is reminded below.

Definition 3.3 (Positively homogeneous functions). A function f : Rn 7→ R

is said positively homogeneous with degree α if for all ρ > 0 and for all x ∈ R
n,

f(ρx) = ραf(x). From this definition it follows that if a function f̂ is positively

homogeneous with degree α then f̂(x − x⋆) is scaling-invariant with respect to x⋆

for any x⋆ ∈ R
n. Remark that positive homogeneity is not always preserved if f is

composed by a strictly increasing transformation.
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Fig. 3.1. Illustration of scaling-invariant functions w.r.t. the point x⋆ in the middle depicted
with a star. The three functions are composite of g ∈ M by f(x − x⋆) where f is a positively
homogeneous function (see Definition 3.3). Left: composite of g ∈ M and f(x) = ‖x − x⋆‖.
Middle: composite of g ∈ M and f(x) = (x − x⋆)TA(x − x⋆) for A symmetric positive definite.
Both functions on the left have convex sublevel sets contrary to the one on the right.

Examples of positively homogeneous functions are linear functions that are pos-
itively homogeneous functions with degree 1. Also, every function deriving from a
norm is positively homogeneous with degree 1. Examples of scaling-invariant func-
tions deriving from positively homogenous functions are depicted in Figure 3.1.

In the paper [6], stability of the normalized Markov chain is studied on functions
h = g ◦ f where f is positive homogeneous and g ∈ M.

4. Joint Markov chains on Scaling-Invariant Functions. We consider CB-
SARS algorithms that are translation invariant and scale-invariant satisfying the
properties (2.15), (2.16) and (2.17) in Proposition 2.9. The functions considered
are scaling-invariant with x⋆ = 0. This can be assumed w.l.o.g. because of the trans-
lation invariance of the algorithms. We prove under those conditions that Xt/σt is a
homogeneous Markov chain.

Proposition 4.1. Consider a scaling-invariant (in zero) objective function f
optimized by (Sol, (G1,G2),U

p, pU), a CB-SARS algorithm assumed to be translation-
invariant and scale-invariant satisfying (2.15), (2.16) and (2.17). Let (Xt, σt)t∈N be
the Markov chain associated to this CB-SARS. Let Zt = Xt

σt
for all t ∈ N. Then

(Zt)t∈N is a homogeneous Markov chain that can be defined independently of (Xt, σt),
provided Z0 = X0/σ0 via

Zi
t = Sol((Zt, 1),U

i
t), i = 1, . . . , p(4.1)

S = Ord(f(Z1
t ), . . . , f(Z

p
t ))(4.2)

Zt+1 = G(Zt,S ∗Ut)(4.3)

where the function G equals for all z ∈ R
n and y ∈ U

p

(4.4) G(z,y) =
G1((z, 1),y)

G2(1,y)
.

Translated in words, the normalized homogeneous Markov chain (Zt)t∈N of the pre-
vious definition is generated independently of (Xt, σt) by (i) sampling candidate solu-
tions with the Sol function starting from (Zt, 1) (i.e. with step-size 1) (ii) ordering the
candidate solutions (iii) using the ranking of the candidate solutions to compute Zt+1

as the ratio of G1((Zt, 1),S ∗Ut) (i.e. the mean update equation but with step-size 1
and starting from Zt) divided by the multiplicative update for the step-size taken in
σ = 1.
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Remark 2. If the function is scale-invariant in x⋆ with x⋆ being not necessarily
zero, then the normalized Markov chain to consider in the previous proposition is
Zt =

Xt−x⋆

σt
.

Remark 3. The previous proposition assumes that scale-invariance is satisfied
via the conditions specified in Propositions 2.9. We believe however that when a CB-
SARS is scale-invariant under different conditions, a normalized homogeneous Markov
chain can be found. For instance when the parametrization (Xt, σ̃t) = (Xt, σ

2
t ) is used

(see discussion around (2.21)) the normalized Markov chain is Xt/
√
σ̃t.

Proof. (of Proposition 4.1) Consider a scaling-invariant function in zero, f . Can-
didate solutions sampled according to the Sol operator satisfy according to property
(2.15) Sol((x, σ),ui) = σSol((x/σ, 1),ui). However in a comparison-based step-size
adaptive randomized search, the permutation S results from ordering the objective
function of the candidate solutions, i.e. ordering f(Sol((x, σ),ui)) which is the same as
ordering f(σSol((x/σ, 1),ui)) according to property (2.15). By the scaling-invariant
property of the function f , we see that it is the same as ordering f(Sol((x/σ, 1),ui)).

In other words, on a scaling-invariant function, S = Sf
(Xt,σt)

= Sf
(Xt/σt,1)

(putting the

initial state as lower subscript).

Let Xt, σt,Ut be given and let Zt = Xt/σt, then Zt+1 = Xt+1

σt+1
= G1((Xt,σt),S∗Ut)

G2(σt,S∗Ut)
.

Because of properties (2.16) and (2.17), Zt+1 =
σtG1((Xt/σt,1),Sf

(Xt,σt)
∗Ut)

σtG2(1,Sf
(Xt,σt)

∗Ut)
and thus

Zt+1 =
G1((Zt,1),Sf

(Zt,1)
∗Ut)

G2(1,Sf
(Zt,1)

∗Ut)
. Since we have assume translation invariance of the algo-

rithm, the same construction holds if x⋆ 6= 0 with Zt =
Xt−x⋆

σt
.

Because we assume scale-invariance via the properties of Proposition 2.9, the
step-size update has a specific shape. Indeed (2.17) implies that

(4.5) σt+1 = σtG2(1,Yt)

where Yt = S ∗Ut. Let us denote the multiplicative step-size update as η⋆, i.e.

(4.6) η⋆(Yt) = G2(1,Yt) .

As explained in the proof of the previous proposition, on a scaling-invariant function
the ranking permutation is the same starting from (Xt, σt) or from (Zt, 1) such that
we find that on scaling-invariant functions

(4.7) η⋆(S(Xt,σt) ∗Ut) = η⋆(S(Zt,1) ∗Ut)

where S(Xt,σt) is the permutation giving the ranking starting from the state (Xt, σt)
that equals S(Zt,1) the ranking permutation starting from (Zt, 1).

Remark that the construction of the homogeneous Markov chain in the previous
proposition only requires that the function is scaling-invariant. We do not assume here
that the function has a unique global optimum. Hence the function could be the linear
function f(x) = [x]1. We will now explicit the transition functions G associated to the
different comparison-based step-size adaptive randomized search examples described
above.

Non-elitist ES with CSAw/o, xNES step-size adaptation. Given a vector y ∈
U

p = R
n×p, the update functions for the normalized Markov chains Z associated to
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the different algorithms given in Section 2.3.1 read:

GCSAw/o(z,y) =
z+ κm

∑p
i=1 wiy

i

exp
(

κσ

(√
µw‖∑p

i=1 wiyi‖
E[‖N (0,In)‖] − 1

))(4.8)

GxNES(z,y) =
z+ κm

∑p
i=1 wiy

i

exp
(
κσ

2n (
∑p

i=1 wi(‖yi‖2 − n))
) .(4.9)

(1, p)-SA-ES. For the (1, p)-SA-ES described in Section 2.3.2, the transition func-
tion G reads for y ∈ U

p

(4.10) GSA(z,y) =
z+ exp(τ [y1]n+1)[y

1]1...n
exp(τ [y1]n+1)

(1 + 1)-ES with generalized 1/5 success rule. The transition function G for the
normalized Markov chain of the (1 + 1)-ES with generalized one-fifth success rule
reads, for all z ∈ R

n, for all y in R
n×2

(4.11) G(1+1)(z,y) =
z+ y1

(
(γ − γ−1/q)1{y1 6=0} + γ−1/q

) .

5. Sufficient Conditions for Linear Convergence of CB-SARS on Scaling-
Invariant Functions. We consider throughout this section that (Xt, σt)t∈N is a
Markov chain resulting from a CB-SARS (as defined in Definition 2.3) that is transla-
tion invariant and scale-invariant satisfying the conditions of Proposition 2.9. The
function optimized is a scaling-invariant function f in zero. In this context, let
(Zt =

Xt

σt
)t∈N be the homogeneous Markov chain defined in Proposition 4.1.

For proving linear convergence, we investigate the log-progress ln ‖Xt+1‖/‖Xt‖.
The chains (Xt, σt)t∈N and (Zt)t∈N being connected by the relation Zt = Xt/σt, the
log-progress can be expressed as

(5.1) ln
‖Xt+1‖
‖Xt‖

= ln
‖Zt+1‖η⋆(Y(Zt,Ut))

‖Zt‖

where the ordered vector S(Zt,1) ∗Ut is denoted Y(Zt,Ut) to signify its dependency
in Zt and Ut, i.e.

(5.2) Y(z,u) = S(z,1) ∗ u = Ord(f(Sol((z, 1),ui)i=1,...,p)) ∗ u .

For (5.1) we have used the fact that the step-size change starting from (Xt, σt)
equals the step-size change starting from (Zt, 1) = (Xt/σt, 1) (see (4.7)). Using the

property of the logarithm, we express 1
t ln

‖Xt‖
‖X0‖ as

1

t
ln

‖Xt‖
‖X0‖

=
1

t

t−1∑

k=0

ln
‖Xk+1‖
‖Xk‖

=
1

t

t−1∑

k=0

ln
‖Zk+1‖
‖Zk‖

η⋆(Y(Zt,Ut)) .(5.3)

Let us define for z ∈ Z, R(z) the expectation of the logarithm of η⋆(Y(z,U)) for
U ∼ pU, i.e.

R(z) = E[ln(η⋆(Y(z,U))](5.4)

=

∫

ln
(
η⋆
(
Ord(f(Sol((z, 1),ui))i=1,...,p)

)
∗ u
)
pU(u)du .(5.5)
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Linear convergence. Almost sure linear convergence can be proven by exploiting
(5.3) that suggests the application of a Law of Large Numbers (LLN) for Markov
chains. Sufficient conditions for proving a LLN for Markov chains are ϕ-irreducibility,
Harris recurrence and positivity whose definitions are briefly reviewed, see however
Meyn and Tweedie for more background [27].

Let Z = (Zt)t∈N be a Markov chain defined on a state space Z equipped with
the Borel sigma-algebra B(Z). We denote P t(z, A), t ∈ N, z ∈ Z and A ∈ B(Z) the
transition probabilities of the chain

(5.6) P t(z, A) = Pz(Zt ∈ A)

where Pz and Ez denote the probability law and expectation of the chain under the
initial condition Z0 = z. If a probability µ on (Z,B(Z)) is the initial distribution
of the chain, the corresponding quantities are denoted Pµ and Eµ. For t = 1, the
transition probability in Eq. (5.6) is denoted P (z, A). The chain Z is ϕ-irreducible if
there exists a non-zero measure ϕ such that for all A ∈ B(Z) with ϕ(A) > 0, for all
z0 ∈ Z, the chain started at z0 has a positive probability to hit A, that is there exists
t ∈ N> such that P t(z0, A) > 0. A σ-finite measure π on B(Z) is said invariant if it
satisfies

π(A) =

∫

π(dz)P (z, A), A ∈ B(Z) .

If the chain Z is ϕ-irreducible and admits an invariant probability measure then it is
called positive. A small set is a set C such that for some δ > 0 and t > 0 and some
non trivial probability measure νt,

P t(z, .) ≥ δνt(.), z ∈ C .

The set C is then called a νt-small set. Consider a small set C satisfying the previous
equation with νt(C) > 0 and denote νt = ν. The chain is called aperiodic if the g.c.d.
of the set

EC = {k ≥ 1 : C is a νk-small set with νk = αkν for some αk > 0}

is one for some (and then for every) small set C.
A ϕ-irreducible Markov chain is Harris-recurrent if for all A ⊂ Z with ϕ(A) > 0,

and for all z ∈ Z, the chain will eventually reach A with probability 1 starting
from z, formally if Pz(ηA = ∞) = 1 where ηA be the occupation time of A, i.e.
ηA =

∑∞
t=1 1Zt∈A. An (Harris-)recurrent chain admits an unique (up to a constant

multiple) invariant measure [27, Theorem 10.0.4].
Typical sufficient conditions for a Law of Large Numbers to hold are ϕ-irreducibility,

positivity and Harris-recurrence:
Theorem 5.1. [[27] Theorem 17.0.1] Assume that Z is a positive Harris-recurrent

chain with invariant probability π. Then the LLN holds for any g with π(|g|) =
∫
|g(x)|π(dx) < ∞, that is for any initial state Z0, limt→∞ 1

t

∑t−1
k=0 g(Zk) = π(g) a.s.

This theorem allows to state sufficient conditions for the almost sure linear con-
vergence of scale-invariant CB-SARS satisfying the assumptions of Proposition 4.1.
However, before stating those sufficient conditions, let us remark that as a consequence
of (5.1), assuming positivity of Z and denoting π its invariant probability measure,
and assuming that (i) Z0 ∼ π, (ii)

∫
ln ‖z‖π(dz) < ∞ and (iii)

∫
R(z)π(dz) < ∞,
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then for all t ≥ 0

Eπ

[

ln
‖Xt+1‖
‖Xt‖

]

=

∫

EU∼pU
[ln(η⋆(Y(z,U)))]π(dz) =

∫

R(z)π(dz) .

We define the convergence rate CR as the opposite of the RHS of the previous equa-
tion, i.e.

CR = −
∫

EU∼pU
[ln(η⋆(Y(z,U)))]π(dz) = −

∫

R(z)π(dz) .

We now state sufficient conditions such that linear convergence at the rate CR holds
almost surely independently of the initial state.

Theorem 5.2 (Almost sure linear convergence). Let (Xt, σt)t∈N be the recursive
sequence generated by a translation and scale-invariant CB-SARS satisfying the as-
sumptions of Proposition 4.1 and optimizing a scaling-invariant function. Let (Zt)t∈N

be the homogeneous Markov chain defined in Proposition 4.1. Assume that (Zt)t∈N is
Harris-recurrent and positive with invariant probability measure π, that Eπ ln ‖z‖ < ∞
and EπR(z)dz < ∞. Then for all X0, for all σ0, linear convergence holds asymptot-
ically almost surely, i.e.

lim
t→∞

1

t
ln

‖Xt‖
‖X0‖

= −CR and lim
t→∞

1

t
ln

σt

σ0
= −CR .

Proof. Using (5.3) we obtain

1

t
ln

‖Xt‖
‖X0‖

=
1

t

t−1∑

k=0

ln ‖Zk+1‖ −
1

t

t−1∑

k=0

ln ‖Zk‖+
1

t

t−1∑

k=0

ln η⋆(Y(Zt,Ut)) .

We then apply Theorem 5.1 to each term of the RHS and find

lim
t→∞

1

t
ln

‖Xt‖
‖X0‖

=

∫

ln ‖z‖π(dz)−
∫

ln ‖z‖π(dz) +
∫

E[ln η⋆(Y(z,U)]π(dz)

=

∫

E[ln η⋆(Y(z,U)]π(dz) = −CR .

Similarly since 1
t ln

σt

σ0
= 1

t

∑t−1
k=0 ln η

⋆(Y(Zt,Ut)), by applying Theorem 5.1, then

limt→∞ 1
t ln

σt

σ0
= −CR .

Positivity also guarantees convergence of Ez[h(Zt)] from “almost all” initial state
z provided π(|h|) < ∞. More precisely from [27, Theorem 14.0.1] given a ϕ-irreducible
and aperiodic chain Z, for h ≥ 1 a function on Z, the following are equivalent:
(i) The chain Z is positive (recurrent)5 with invariant probability measure π and
π(h) :=

∫
π(dz)h(z) < ∞ . (ii) There exist some petite set C ([27, Section 5.5.2])

and some extended-valued non-negative function V satisfying V (z0) < ∞ for some
z0, and

(5.7) ∆V (z) ≤ −h(z) + b1C(z), z ∈ Z,

5Positive chains are recurrent according to Proposition 10.1.1 of [27] but the term positive recur-
rent is used to reinforce in the terminology the fact that they are recurrent (see [27] page 236).
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where ∆ is the drift operator defined as

(5.8) ∆V (z) =

∫

P (z, dy)V (y) − V (z) = Ez [V (Z1)− V (Z0)] .

Any of those two conditions imply that for any z in SV = {z : V (z) < ∞}
(5.9) ‖P t(z, .) − π‖h −−−→

t→∞
0 ,

where ‖ν‖h := supg:|g|≤h |ν(g)|. Typically the function V will be finite everywhere
such that the convergence in (5.9) will hold without any restrictions on the initial
condition. The conditions (i) or (ii) for the chain Z with h(z) = | ln ‖z‖|+1 imply the
convergence in expectation of the log-progress independently of the starting point z
taken into SV = {z : V (z) < ∞} where V is the function such that (5.7) is satisfied.
More formally

Theorem 5.3 (Linear convergence in expectation). Let (Xt, σt)t∈N be the recur-
sive sequence generated by a translation and scaling-invariant CB-SARS algorithm
satisfying the assumptions of Proposition 4.1 optimizing a scaling-invariant function.
Let (Zt)t∈N be the homogeneous Markov chain defined in Proposition 4.1. Assume
that (Zt)t∈N is ϕ-irreducible and aperiodic and assume that either condition (i) or (ii)
above are satisfied with h(z) = | ln ‖z‖|+1. Assume also that there exists β ≥ 1 such
that

(5.10) y 7→ R(y) =

∫

ln η⋆(Y(y,u))pU(u)du ≤ β(| ln ‖y‖|+1) .

Then for all initial condition (X0, σ0) = (x, σ) such that V (x/σ) < ∞ where V
satisfies (5.7)

(5.11) lim
t→∞

E x
σ

[

ln
‖Xt+1‖
‖Xt‖

]

= −CR and lim
t→∞

E x
σ

[

ln
σt+1

σt

]

= −CR .

Proof. Remark ⋆: Note first that if (5.7) is satisfied for a function V for a given
h ≥ 1 then, for β ≥ 1 the function βV will satisfy (5.7) for the function βh such that
(5.9) will hold with βh.
Let us start by proving the RHS of (5.11) (we set z = x/σ)

E x
σ

[

ln
σt+1

σt

]

= Ez [ln η
⋆(Y(Zt,Ut))]

=

∫

P t(z, dy)

∫

ln η⋆(Y(y,u))pU(u)du =

∫

P t(z, dy)R(y) .

Since R(y) ≤ β(| ln ‖y‖|+ 1) and | ln ‖y‖|+ 1 satisfies either (i) or (ii) we know from
the remark ⋆ that limt→∞ ‖P t(z, .) − π‖β(y 7→| ln ‖y‖|+1) = 0. Hence

|
∫

P t(z, dy)R(y) −
∫

R(y)π(dy)

︸ ︷︷ ︸

−CR

| ≤ ‖P t(z, .)− π‖β(y 7→| ln ‖y‖|+1)

converges to 0 when t goes to ∞ that proves the right limit in (5.11). To prove the
left limit in (5.11), let us write

E x
σ

[

ln
‖Xt+1‖
‖Xt‖

]

= Ez

[

ln
η⋆(Y(Zt,Ut))‖Zt+1‖

‖Zt‖

]

= Ez [ln η
⋆(Y(Zt,Ut))] + Ez[ln ‖Zt+1‖]− Ez[ln ‖Zt‖]
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Fig. 5.1. Convergence simulations on spherical functions f(x) = g(‖x‖) for g ∈ M in dimen-
sion n = 10. Left: Simulation of the (1 + 1)-ES with one-fifth success rule (see Section 2.3.3,
step-size update of (2.29) implemented with parameters ptarget = 1/5, κσ = 1/3 were used)).
Middle: xNES(see Section 2.3.1) using p = 4 + ⌊3 lnn⌋ and ⌊p/2⌋ positive weights equals to

wi = ln
(

λ

2
+ 1

2

)

− ln i (default weights for the CMA-ES algorithm). Each plot is in log scale

and depicts in black the distance to optimum, i.e. ‖Xt‖, in blue the respective step-size σt and in
magenta the norm of the normalized chain ‖Zt‖. The x-axis is the number of function evaluations
corresponding thus to the iteration index t for the (1+1)-ES and to p×t for xNES. For both simula-
tions 6 independent runs are conduced starting from X0 = (0.8, 0.8, . . . , 0.8) and σ0 = 10−6. Right:
Simulation of a (1 + 1)-ES with constant step-size. Two runs conducted with a constant step-size
equal to 10−3 and 10−6. The distance to the optimum is depicted in black and the step-size in blue.

However Ez[ln ‖Zt‖] =
∫
P t(z, dy) ln ‖y‖ that converges to

∫
ln ‖y‖π(dy) according

to (5.9). This in turn implies that Ez[ln ‖Zt+1‖] converges to
∫
ln ‖y‖π(dy) and hence

using the proven result for the right limit in (5.11), we obtain the left limit in (5.11).
Stability like positivity and Harris-recurrence can be studied using drift conditions

or Foster-Lyapunov criteria. A drift condition typically states that outside a set C,
∆V (z) is “negative”. However “negativity” is declined in different forms. A drift
condition for Harris recurrence of a ϕ-irreducible chain reads: if there exist a petite
set C and a function V unbounded off petite sets such that

∆V (z) ≤ 0 , z ∈ Cc

holds, then the chain Z is Harris-recurrent [27, Theorem 9.1.8]. To ensure in addition
positivity, a drift condition reads: if there exist a petite set C and V everywhere finite
and bounded on C, a constant b < ∞ such that

∆V (z) ≤ −1 + b1C(z), z ∈ Z

holds, then Z is positive Harris-recurrent [27, Theorem 11.3.4].
Positivity and Harris-recurrence are typically proven using a stronger stability no-

tion called geometric ergodicity [6, 3]. Geometric ergodicity characterizes that P t(z, .)
approaches the invariant probability measure π geometrically fast, at a rate ρ < 1
that is independent of the initial point z. A drift condition for proving geometric
ergodicity for a ϕ-irreducible and aperiodic chain reads: there exist a petite set C and
constants b < ∞, β > 0 and a function V ≥ 1 finite at some z0 ∈ Z satisfying

(5.12) ∆V (z) ≤ −βV (z) + b1C(z), z ∈ Z .

This geometric drift condition implies that there exist constants r > 1 and R < ∞
such that for any starting point in the set SV = {z : V (z) < ∞}

(5.13)
∑

t

rt‖P t(z0, .)− π‖V ≤ RV (z0)
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where ‖ν‖V = supg:|g|≤V |ν(g)| (see [27, Theorem 15.0.1]). This latter equation allows
to have a stronger formulation for the linear convergence in expectation expressed in
Theorem 5.3 as formalized in the next theorem.

Theorem 5.4. Assume that Z is geometrically ergodic satisfying a drift condition
with V as drift function. Let g(z) = E [ln[‖G1((z, 1),Y(z,U))‖/‖z‖]] and assume that
|g| ≤ βV with β ≥ 1. Then, there exist r > 1 and R < ∞ such that for any starting
point (x0, σ0)

(5.14)
∑

t

rt|Ex0
σ0

ln
‖Xt+1‖
‖Xt‖

− (−CR)| ≤ RV

(
x0

σ0

)

In particular, for any initial condition (x0, σ0) limt→∞ |Ex0
σ0

ln ‖Xt+1‖
‖Xt‖ − (−CR)|rt =

0 where r is independent of the starting point. Or also for any initial condition∣
∣
∣Ex0

σ0

ln ‖Xt+1‖
‖Xt‖ − (−CR)

∣
∣
∣ ≤ RV (x0/σ0)

rt . Let g̃(z) = E[ln η⋆(z,Y(z,U)]. If g̃ ≤ βV for

β ≥ 1. Then there exist r > 1 and R < ∞ such that for any starting point (x0, σ0)

(5.15)
∑

t

rt|Ex0
σ0

ln
σt+1

σt
− (−CR)| ≤ RV

(
x0

σ0

)

In particular, for any initial condition (x0, σ0) limt→∞ |Ex0
σ0

ln σt+1

σt
− (−CR)|rt =

0 where r is independent of the starting point. Or also for any initial condition∣
∣
∣Ex0

σ0

ln σt+1

σt
− (−CR)

∣
∣
∣ ≤ RV (x0/σ0)

rt .

Proof. See [6, Theorem 4.8].
Geometric ergodicity is also a sufficient condition for the existence of a Central

Limit Theorem (see [27, Theorem 7.0.1]) that can characterize how fast 1
t lnσt/σ0

or 1
t ln ‖Xt‖/‖X0‖ approach the limit −CR. We refer to [27, Theorem 4.10] for the

details.

Interpretation and Illustration. Figure 5.1 illustrates the theoretical results
formalized above. On the two leftmost plots, six single runs of the (1 + 1)-ES
with one-fifth success rule and of the xNES algorithm optimizing spherical functions
f(x) = g(‖x‖) for g ∈ M in dimension n = 10 are depicted (see caption for param-
eters used). The evolution of ‖Xt‖, σt and ‖Zt‖ are displayed using a logarithmic
scale. In order to be able to compare the convergence rate between both algorithms,
the x-axis represents the number of function evaluations and not the iteration index
(however for the (1 + 1)-ES both number of function evaluations and iteration in-
dex coincide). The runs are voluntarily started with a too small step-size (equal to
106) compared to the distance to the optimum in order to illustrate the adaptivity
property of both algorithms. For the (1 + 1)-ES, we observe a low variance in the
results: after 100 function evaluations all the runs reach a well adapted step-size and
the linear convergence is observed for both the step-size and the norm. The slope of
the linear decrease observed coincides with −CR the convergence rate associated to
the (1 + 1)-ES (up to a factor because a base 10 is used for the display). As theoreti-
cally stated lnσt and ln ‖Xt‖ converge at the same rate (same slope for the curves).
The norm of the normalized chain Zt is depicted in magenta, we observe that the
stationary regime or steady-state of the chain correspond to the moment where linear
convergence starts as predicted by the theory.

For the xNES algorithm, we observe the same behavior for each single run, i.e. a
first phase where the adaptation of the step-size is taking place, here it means that
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the step-size is increased and a second phase where linear convergence is observed. In
terms of normalized chain it corresponds to a first phase where a “transient behavior”
is observed and a second phase where the distribution of the chain is close from the
stationary distribution. We however see a larger variance in the time needed to reach
the stationary state for the normalized chain, i.e. in the time to adapt the step-size
that we believe is related to the variance of the log of the step-size change on the
linear function. Using a cumulation mechanism like in the CSA algorithm reduces
this variance [10]. The slope after reaching a reasonable step-size corresponds to the
convergence rate CR multiplied by p (up to the difference with the base 10 logarithm).
Both convergence rates between the (1 + 1)-ES and xNES are comparable while of
course the number of function evaluations to reach 10−9 starting from a step-size
of 10−6 is much longer for xNES as the adaptation phase is much slower for xNES
than for the (1 + 1)-ES. It illustrates that only comparing the convergence rate (per
function evaluation) can be misleading as it does not reflect the adaptation time.

Convergence of each single run reflects the almost-sure convergence property.
Theoretically, the geometric ergodicity ensures that the adaptation phase is “short” as
the Markov chain reaches its stationary state geometrically fast, i.e. we can start from
a bad initial step-size, this bad choice will be fast corrected by the algorithm that will
then converge linearly. In terms of the Markov chain Zt the bad choice is translated as
starting far away from the stationary distribution and the correction means reaching
the stationary measure. We see however that in those “fast” statements the constants
are omitted as for the xNES we observe that the step-size increase can take up to
more than 3 times more function evaluations than for decreasing the step-size.

The rightmost plot in Figure 5.1 depicts the convergence of a non step-size adap-
tive strategy, here a (1 + 1)-ES with constant step-size equal to 10−3 and 10−6.
Theoretically the algorithm converges with probability one, at the same rate than the
pure random search algorithm though. The plots illustrate the necessity of a step-size
adaptive method: a wrong choice of the initial parameter has a huge effect in terms
of time needed to reach a given target value. Indeed starting from a step-size of 10−3,
1000 function evaluations are needed to reach a target of 10−6 while with a step-size
of 10−6 roughly 6.2×106 function evaluations are needed to reach the same target (i.e.
more than 3 orders of magnitude more). Also we see that starting from a step-size
of 10−3, the number of function evaluations to reach a target of 10−6 will be beyond
what is feasible to compute on a computer.

This rightmost plot also illustrates the importance to study theoretically conver-
gence rates, as convergence with probability one can be associated to an algorithm
having very poor performance for practical purposes.

6. Discussion. This paper provides a general methodology to prove global lin-
ear convergence of some comparison-based step-size adaptive randomized search on
scaling-invariant functions, a class of functions that includes in particular non quasi-
convex and non continuous functions. The methodology exploits the invariance prop-
erties of the algorithms and turns the question of global linear convergence into the
study of the stability of an underlying homogeneous normalized Markov chain. Differ-
ent notions of stability for a Markov chain exist. They imply different (non equivalent)
formulations of linear convergence that give many insights on the dynamic of the al-
gorithm: Under the assumption of positivity and Harris recurrence essentially, the
existence of a convergence rate CR such that for any initial state almost surely

lim
t→∞

1

t
ln

‖Xt‖
‖X0‖

= −CR ; lim
t→∞

1

t
ln

σt

σ0
= −CR
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holds. Under the assumption of positivity essentially, convergence in expectation
holds. More precisely for any initial state X0 = x, σ0 = σ

lim
t→∞

E x
σ

[

ln
‖Xt+1‖
‖Xt‖

]

= −CR ; lim
t→∞

E x
σ

[

ln
σt+1

σt

]

= −CR .

Geometric ergodicity then characterizes that the expected log-progress sequence con-
verges geometrically fast to the convergence rate limit −CR.

Linear convergence holds under any initial condition. This reflects the practical
adaptivity property: the step-size parameter is adjusted on the fly and hence a bad
choice of an initial parameter is not problematic. We have illustrated that the tran-
sition phase, formally how long it takes to be close from the invariant probability
measure, relates to how long it takes to forget a bad initialization.

The methodology provides an exact formula for the convergence rate CR expressed
in terms of expectation w.r.t. the invariant probability measure of the normalized
Markov chain. Exploiting the exact expression for deducing properties on the conver-
gence rate like dependency w.r.t. the dimension, dependency on function properties
(like condition number of the hessian matrix if the function is convex quadratic) seems
however to be quite challenging with this approach while it is feasible with ad-hoc
techniques for specific algorithms (see [18]). Numerical simulations need then to be
performed to investigate those properties. Nevertheless the Markov chain methodol-
ogy proposed here provides a rigorous framework for performing those simulations: it
proves that by essence Monte-Carlo simulations of the convergence rate is consistent
and even provides through the Central Limit Theorem asymptotic confidence intervals
for the simulations.

We have restricted for the sake of simplicity the CB-SARS framework to the
update of a mean vector and step-size. However some step-size adaptive algorithms
like the cumulated step-size adaptation used in the CMA-ES algorithm include other
state variables like an auxiliary vector (the path) used to update the step-size [15].
Adaptation of the present methodology to cases with more state variables seems
however relatively straightforward.

The current approach exploits heavily invariance properties of the algorithms
investigated together with invariance properties of the objective function. Hence, we
expect that the methodology does not generalize directly to any unimodal function.
However we believe that there is room for extension of the framework in some noisy
context for instance (i.e. the objective function is stochastic).
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