Skip to Main content Skip to Navigation
New interface
Journal articles

Joint state and parameter estimation with an iterative ensemble Kalman smoother

Abstract : Both ensemble filtering and variational data assimilation methods have proven useful in the joint estimation of state variables and parameters of geophysical models. Yet, their respective benefits and drawbacks in this task are distinct. An ensemble variational method, known as the iterative ensemble Kalman smoother (IEnKS) has recently been introduced. It is based on an adjoint model-free variational, but flow-dependent, scheme. As such, the IEnKS is a candidate tool for joint state and parameter estimation that may inherit the benefits from both the ensemble filtering and variational approaches. In this study, an augmented state IEnKS is tested on its estimation of the forcing parameter of the Lorenz-95 model. Since joint state and parameter estimation is especially useful in applications where the forcings are uncertain but nevertheless determining, typically in atmospheric chemistry, the augmented state IEnKS is tested on a new low-order model that takes its meteorological part from the Lorenz-95 model, and its chemical part from the advection diffusion of a tracer. In these experiments, the IEnKS is compared to the ensemble Kalman filter, the ensemble Kalman smoother, and a 4D-Var, which are considered the methods of choice to solve these joint estimation problems. In this low-order model context, the IEnKS is shown to significantly outperform the other methods regardless of the length of the data assimilation win- dow, and for present time analysis as well as retrospective analysis. Besides which, the performance of the IEnKS is even more striking on parameter estimation; getting close to the same performance with 4D-Var is likely to require both a long data assimilation window and a complex modeling of the background statistics.
Document type :
Journal articles
Complete list of metadata

Cited literature [43 references]  Display  Hide  Download
Contributor : Nathalie Gaudechoux Connect in order to contact the contributor
Submitted on : Tuesday, October 29, 2013 - 2:31:49 PM
Last modification on : Friday, November 18, 2022 - 10:14:08 AM
Long-term archiving on: : Thursday, January 30, 2014 - 4:39:08 AM


Publisher files allowed on an open archive




Marc Bocquet, Pavel Sakov. Joint state and parameter estimation with an iterative ensemble Kalman smoother. Nonlinear Processes in Geophysics, 2013, 20 (5), pp.803-818. ⟨10.5194/npg-20-803-2013⟩. ⟨hal-00877943⟩



Record views


Files downloads