Integration of fuzzy spatial relations in deformable models - application to brain MRI segmentation

Abstract : This paper presents a general framework to integrate a new type of constraints, based on spatial relations, in deformable models. In the proposed approach, spatial relations are represented as fuzzy subsets of the image space and incorporated in the deformable model as a new external force. Three methods to construct an external force from a fuzzy set representing a spatial relation are introduced and discussed. This framework is then used to segment brain subcortical structures in Magnetic Resonance Images (MRI). A training step is proposed to estimate the main parameters defining the relations. The results demonstrate that the introduction of spatial relations in a deformable model can substantially improve the segmentation of structures with low contrast and ill-defined boundaries.
Type de document :
Article dans une revue
Pattern Recognition, Elsevier, 2006, 39 (8), pp.1401-1414. 〈10.1016/j.patcog.2006.02.022〉
Liste complète des métadonnées

Littérature citée [50 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00878443
Contributeur : Olivier Colliot <>
Soumis le : mercredi 30 octobre 2013 - 10:15:42
Dernière modification le : jeudi 11 janvier 2018 - 06:23:39
Document(s) archivé(s) le : vendredi 31 janvier 2014 - 04:31:44

Fichier

pr2006-Final-Single.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Olivier Colliot, Oscar Camara, Isabelle Bloch. Integration of fuzzy spatial relations in deformable models - application to brain MRI segmentation. Pattern Recognition, Elsevier, 2006, 39 (8), pp.1401-1414. 〈10.1016/j.patcog.2006.02.022〉. 〈hal-00878443〉

Partager

Métriques

Consultations de la notice

219

Téléchargements de fichiers

456