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Abstract The adjoint method provides a computationally elcient means of calculating the gradient for
applications in constrained optimization. In this article , we consider a network of scalar conservation laws
with general topology, whose behavior is modibed by a set of @ntrol parameters in order to minimize a
given objective function. After discretizing the correspondi ng partial di"erential equation models via the
Godunov scheme, we detail the computation of the gradient of the discretized system with respect to the
control parameters and show that the complexity of its compu tation scales linearly with the number of
discrete state variables for networks of small vertex degree. The method is applied to solve the problem of
coordinated ramp metering on freeway networks. Numerical simulations on the 115 freeway in California
demonstrate an improvement in performance and running time c ompared to existing methods.
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1 Introduction

Networks of one-dimensional conservation laws, describedby systems of nonlinear brst-order hyperbolic
partial dilerential equations (PDESs), are an e!cient framework for modeling physical phenome na, such as
gas pipeline Bow [1], supply chain [2], water channels [3, 4] or freeway tralc evolution [5, 6, 7]. Optimization
and control of these networks is an active beld of research [8 9, 10]. More generally, numerous techniques
exist for the control of conservation laws, such as, for example, backstepping [11, 12], Lyapunov-based
methods [11], and optimal control methods [13, 14, 15].

One such approach, known as theadjoint method, as used in optimal control and estimation of PDE-
constrained systems, can be derived in various ways dependig on the framework of interest (PDE, dis-
cretization of the PDE, or code implementing the discretiza tion of the PDE). The continuous adjoint
method [16, 8, 17, 18] operates directly on the PDE and a so-cdled adjoint PDE system, which when
solved can be used to obtain an explicit expression of the gradient of the underlying optimization problem.
Conversely, the discrete adjoint method [19, 8, 10] brst discretizes a continuous-time PDE and then requires
the solution of a set of linear equations to solve for the gradient. Finally, a third approach exists, which
uses automatic di"erentiation technigques to automaticall y generate an adjoint solver from the numerical
representation of the forward system [20, 21].

While the continuous adjoint formulation results in a compact formulation, better intuition into the
systemOs sensitivities with respect to the objective, and wé-posedness of the control®s solution (when
it can be proved), it is often dilcult to derive for systems of hyp erbolic nonlinear PDEs controlled by
boundary conditions, when these boundary conditions have to be written in the weak sense. Additionally,
the continuous adjoint must eventually be discretized in ord er to produce numerical solutions for the
optimization problem. Finally, the di"erentiation of the fo rward PDE is sometimes problematic due to
the lack of regularity of the solution [5, 6] which makes the fo rmal debnition of the adjoint problem more
di'cult. The discrete adjoint approach derives the gradient directly from the discretized system, thus
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avoiding working directly with weak boundary conditions in  the continuous system [5, 6, 22]. Automatic
di"erentiation techniques can simplify the repetitive step s of the discrete adjoint derivation, but sometimes
at the cost of sub-optimal code implementations with respect to memory and CPU consumption [23]. A
more-detailed analysis of the trade-0"s associated with each method is given in [23].

There exist many applications of the adjoint method for contro |, optimization and estimation of phys-
ical systems in engineering. Shape optimization of aircraft [18, 24, 17] has applied the method e"ectively
to reduce the computational cost in gradient methods associated with the large nhumber of optimization
parameters. The technique has also been applied in paramete identibcation of biological systems [25].
State estimation problems can be phrased as optimal control problems by setting the unknown state vari-
ables as control parameters and penalizing errors in resulting state predictions from known values. This
approach has been applied to such problems as open water sta¢ estimation [26, 27] and freeway tralc
state estimation [28].

Since conservation laws may be nonlinear by nature and lead to non-convex or nonlinear formulations
of the corresponding optimization problem, fewer elcient op timization techniques exist for the discretized
version of these problems than for convex problems for example One approach is to approximate the
system with a OrelaxedO version in order to use elcient linea programming techniques. In transportation,
by relaxing the Godunov discretization scheme, the lineari zation approach was used in [29] for optimal ramp
metering, and in [30] for optimal route assignment which is ex act when the relaxation gap can be shown to
be zero. The ramp metering technique in [31] uses an additional control parameter (variable speed limits)
to mimic the linearized freeway dynamics. While the upside of these methods is reduced computational
complexity and the guarantee of bnding a globally optimal so lution, the downside is that the model of the
linearized physical system may greatly di"er from the actual system to which the control policies would be
applied.

Alternatively, nonlinear optimization techniques can be a pplied to the discretized system without any
modibcation to the underlying dynamics. This approach lead s to more expensive optimization algorithms,
such as gradient descent, and no guarantee of bnding a globaloptimum. One dilculty in this approach
comes in the computation of the gradient, which, if using Pni te di"erences, requires a full forward-simulation
for each perturbation of a control parameter. This approach i s taken in [32, 33] to compute several types of
decentralized ramp metering strategies. The increased conplexity of the Pnite di"erences approach for each
additional control parameter makes the method unsuitable fo r real-time application on moderately-sized
freeway networks.

Ramp metering is a common freeway control strategy, providin g a means of dynamically controlling
freeway throughput without directly impeding mainline Bow o r implementing complex tolling systems.
While metering strategies have been developed using microgopic models [34], most strategies are based
0" macroscopic state parameters, such as vehicle density anl the densityOs relation to speed [35, 36, 37].
Reactive metering strategies [38, 39, 40] use feedback from freway loop detectors to target a desired
mainline density, while predictive metering strategies [3 3, 10, 29, 41] use a physical model with predicted
boundary Bow data to generate policies over a bnite time horizon. Predictive methods are often embedded
within a model predictive control loop to handle uncertaint ies in the boundary data and cumulative model
errors [31].

This article develops a framework for e!cient control of discr etized conservation law PDE networks using
the adjoint method [19, 42] via Godunov discretization [43], w hile detailing its application to coordinated
ramp metering on freeway networks. Note that the method can be extended without signibcant di'culty
to other numerical schemes commonly used to discretize hypebolic PDEs. We show how the complexity
of the gradient computation in nonlinear optimal control pr oblems can be greatly decreased by using the
discrete adjoint method and exploiting the decoupling natur e of the problem®s network structure, leading to
elcient gradient computation methods. After giving a genera | framework for computing the gradient over
the class of scalar conservation law networks, we show that the systemOs partial derivatives have a sparsity
structure resulting in gradient computation times linear i n the number of state and control variables for
networks of small vertex degree. The results are demonstrated by running a coordinated ramp metering
strategy on a 19 mile freeway stretch in California faster than r eal-time, while giving tralc performance
superior to that of state of the art practitioners tools.

The rest of the article is organized as follows. Section 2 gives an overview of scalar conservation law
networks and their discretization via the Godunov method, w hile introducing the nonlinear, Pnite-horizon
optimal control problem. Section 3 details the adjoint metho d derivation for this class of problems and
shows how it can be used to compute the gradient in linear time in the number of discrete state and control
variables. Section 4 shows how the adjoint method can be applied to the problem of optimal coordinated



ramp metering, with numerical results on a real freeway netwo rk in California shown in Section 5. Finally,
some concluding remarks are given in Section 6.

2 Preliminaries
2.1 Conservation Law PDEs

In this paper we focus on scalar hyperbolic conservation laws. In particular, we consider the non-linear
transport equation of the form:

e (Kx)+ Ixf (" (X)) =0 (t,x)! R"" R 1)

where" = "(t,x) ! R" isthe scalar conserved quantity and f : R* # R is the Bux function. Throughout
the article we suppose that f is a stricly concave function.
The Cauchy problem to solve is then
!
"+ 1, (")=0,(tx)! R"" R, @
"(0,x)=4(x), x!R

where '%(x) is the initial condition. It can be shown that there exists a u nique weak entropy solution for the

Cauchy problem (2) as described in Debnition 21.

Debnition 21 Afunction " ! C°(R*; L%, $BV ) is an admissible solution to (2) if " satisPes the Kru"hkov
entropy condition [44] on (R* " R), i.e.,for every k! R and for all # ! C }(R?;R"),

1" 9k(! 4590 (" % K)(F (*) %f (K)! x#)
+ € 1B%K|#(0, X)dx & O. @3)

R+

For further details regarding the theory of hyperbolic conse rvation laws we refer the reader to [5, 45].

Debnition 22  Riemann Problem.
A Riemann problem is a Cauchy problem with a piecewise-constant initial datum (called the Riemann
data):

" ox< 0
Wx) =
Hx) "y X&0
. - ) # $
We denote the corresponding self-similar entropy weak solutions by Wg = 5"+ ,"+ .

2.2 Network of PDEs

A network is dePned as a set ofN links | = {1,...,N}, with junctions J . Fach junctign J!J s debned

as the union of two non-empty, sets: the set of ny, incoming links Inc (J) = i},...,i7° 'I and the set of
m, outgoing links Out (J) = i}’ ,...,i7°*™ "' _Eachlink i !l has an associated upstream junction
JY 13 and downstream junction JP° !'J , and has an associated spatial domain(0,L;) over which the
evolution of the state on link i, "i (t,x), solves the Cauchy problem:

Cide+ £, =0 @

i (O.X) =% (X)

where s ! BV $ Li. (Li;R) is the initial condition on link i. For simplicity of notation, this section
considers a single junctionJ 'J  withInc (J)=(,...,n)andOut (J)=(n+1,...,n+ m).

Remark 1 There is redundancy in the labeling of the junctions, if link i is directly upstream of link j, then
we haveJP = JU. See Fig. 2.

While the dynamics on each link "; (t,x) is determined by (4), the dynamics at junctions still needs to be
debned.



Fig. 1: Solution of boundary conditions at junction. The boun dary conditions (%1,...,'s) are produced by
applying the Riemann solver to the initial conditions, (%1,...,%).

Debnition 23  Riemann problem at junctions.
A Riemann problem at J is a Cauchy problem corresponding to an initial datum (&1,...,"%+m)! R"*™
which is constant on each link i.

Debnition 24 A Riemann solver is a map that assigns a solution to each Riemann initial data. For each
junction J it is a function

RS : RM* N # R™T"
(Br,...., h+m) #RS(B1,...,H+m)=(81,...,6h+m)

where ' provides the trace for link i at the junction for all time t & 0.

For a link i ! Inc(J), the solution " (t,x) over its spatial domain x < 0 is given by the solution to the
following Riemann problem:

Q
W x< 0 (5)
G x&D0,

%
& (") + f (")
@L"i(O,X) =

The Riemann problem for an outgoing link is debned similarly, with the exception that "; (0,x > 0) = &;
and "i (0,x) 0)= d;. Fig. 1 gives a depiction of Riemann solution at the junction.
Note that the following properties for the Riemann Solver hold s:

b All waves produced from the solution to Riemann problems on all links, generated by the boundary
conditions at a junction, must emanate out from the junction. Mo reover, the solution to the Riemann
problem on an incoming link must produce waves with negative speeds, while the solution on an outgoing
link must produce waves with positive speed.

B The sum of all incoming Buxes must equal the sum of all outgoing Buxes:

) )
f (&)= f(g).

i#lnc (J) j#out (J)

This condition guarantees mass conservation at junctions.
b The Riemann solver must produce self-similar solutions, i.e.

RS(RS (B1,...,%h+m))= RS(B1,.... Mh+m)=(81,..., 6hem)

The justibcation for these conditions can be found in [5].

2.3 Godunov Discretization

In order to bnd approximate solutions we use the classical Godunov scheme [43]. We use the following
notation: Xj. 1 are the cell interfaces and t“ = k$t the time with k! Nandj ! Z. Xj is the center of the
cell, $x = Xx;, 1 %X; - 1 the cell width, and $t is the time step.

4
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Fig. 2: Space discretization for a link i ! | . Step size is uniform $x , with discrete value Jk representing

the state between xi " * and xI .

Godunov scheme for a single link. The Godunov scheme is based on the solutions of exact Riemannprob-
lems. The main idea of this method is to approximate the initi al datum by a piecewise constant function,
then the corresponding Riemann problems are solved exactlyand a global solution is found by piecing them
together. Finally one takes the mean on the cell and proceed by iteration. Given "(t, x), the cell average of
" at time t* in the cell G =Ix;- 1%y %] is given by

ke 1T h e e 6)

Then we proceed as follows:

1. We solve the Riemann problem at each cell interface x; , 1 with initial data ("J-k,"jkﬂ ).
2. Compute the cell average at time t“** in each computational cell and obtain "jk*l .
We remark that waves in two neighbouring cells do not interse ct before $t if the following CourantbFriedrichsDLewy
(CFL) condition holds, %" ) % where %" = max |f $(a) | is the maximum wave speed of the Riemann
: a

solution at the interfaces.
Godunov scheme can be expressed as follows:

wk+ " $t R " !
£ = Xk ) g ), "

where g® is the Godunov numerical Rux given by

s "
. R"R # R
ST TsT e s
itien #QT " e = F(WR(0: 41 ))

Godunov scheme at junctions. The scheme just discussed applies to the case in which a singleell is adjacent
to another single cell. Yet, at junctions, a cell may share a b oundary with more than one cell. A more general
Godunov 3ux can be derived for such cases. For incoming links rear the junction, we have:

" " $t . " " .

= % (0 ) %e (" ) i1{1....n}
whege LI are th% number of cells for link i (see Fig. 2) and % is the solution of the Riemann solver
RS "k, ...,"K, . forlink i at the junction. The same can be done for the outgoing links:

kel o "i%%(ge("‘z,"é %f (85)), it{n+1,....,n+ m}

Remark 2 Using the Godunov scheme, each mesh grid at a given® can be seen as a node for a 1-to-1
junction with one incoming and one outgoing link. It is therefore more conve nient to consider that every
discretized cell is, rather, a link with both an upstream and downstream junction. Thus, we consider networks
in which the state of each linki !l atatime-stepk!{ O,...,T %1} is represented by the single discrete

value "K.
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Fig. 3: Self-similar solution for Riemgnn problegl with initia | data kakﬂ . The self-similar solution at

f— =0 for the top diagram (i.e. Wg 0;"}‘,"}‘+1 ), gives the RBux solution to the discretized problem in the

bottom diagram.

The previous remark allows us to develop a generalized updae step for all discrete state variables. We

prst introduce a dePnition in order to reduce the cumbersome nature of the preceding notation. Let

the state variables adjacgnt to a junction J ! J at a time-step k ! { 0,..., T %1} be represented as

!5 = IK} iknﬁmj . Similarly, we let the solution of a Riemann solver be represented as ©; :=
J

RS(!;). Then, for a link i ! I with upstream and downstream junctions, JU and JP, and time-step

k!'{O...,T %1}, the update step becomes:

$t *ookk * ++ + *k * ++ ++
nkl = ks> f RS 1K, f RS 1K,
i)t( *ooHk N + ++ S
"o B %P B, ®)
$x b [

where (s); is the ith element of the tuple s. This equation is thus a general way of writing the Godunov
scheme in a way which applies everywhere, including at junctions.

Working directly with Bux solutions at junctions. The equations can be simplibed if we do not explicitly
represent the solution of the Riemann solver, §;, and, instead, directly calculate the RBux solution from the
Riemann data. We denote this direct computation by g¢$, the Godunov Rux solution at a junction:

g? :RnJ+mJ # RnJ+mJ
y  #ERS)=(F®B),....f (Grem)). )

This gives a simplibed expressions for the update step:

o L T
wk+l _ wk G k G k
i =" 00—$X gJiD !J‘D : % gJiU !JiU . (10)

Full discrete solution method. We assume a discrete scajar hyperbglic network of PDEs with links | and
junctions J , and a known discrete state at time-step k, '#:i!l . The solution method for advancing
the discrete system forward one time-step is given in Algorit hm (1), or alternatively Algorithm (2).



Algorithm 1 Riemann solver update procedure

| "
Input: initial state at time t=kit , "K:itl # $

Output: resulting state at time t=(k+1) it , Ko
for junction J1
# Apply, Riemann solver to J

Bk = RS 1K
for link i!l :

# update densd')y[yq/n Ii@(k& i wg}h jgngkion fluxes

nk+l _ uwkn ! Of ’ Obk "of ’ Obk

T 0 v
) . . 8
Algorithm 1 takes as input the state at a time-step Kk for all links "{ :i!l = and returns the state

advanced by one time-step "i'“l ;i 'l . The algorithm Pprst iterates over all junctions J, calculating all
the boundary conditions, &%. Then, the algorithm iterates over all links i !| to compute the updated state

"!‘*l using the previously computed boundary conditions, as in 8.

Algorithm 2 Godunov junction flux update procedure

!
Input: initial state at time t= kit , Ik il # $
Output: resulting state at time t=(k+1) "t , "ikﬂ ditl
for link i!l

# update densd}))% on%link&& i 0ith %ire%}&%odonuv fluxes

wk+l _ wkw G k
i = gJ‘U !Jlu

Gk "
950 ‘3o
Ix 3 Ji i i

Algorithm 2 is similar to Algorithm 1, except that the bounda ry conditions b"j are not explicitly com-
puted, but rather the Godunov Rux solution is used to update t he state, as in 10. Algorithm 2 is more
suitable if a Godunov Bux solution is derived for solving junct ions, while Algorithm 1 is more suitable if
one uses a Riemann solver at junctions.

2.4 State, Control, and Governing Equations

The rest of the article focuses on controlling systems of the form in Equation (10) in which some parts of the
state can be controlled directly (for example, in the form of bo undary control). We wish to solve the system

in Algorithm 2 T time-steps forward, i.e. we wish to determine the discrete state values ¥ for all links
i1l andall time-stegs k !{ 0,...,T %1}. Furthermore, at each time-step k, we assume a set of OcontrolO
variables uk,...,ul, ! R™ that inBuence the solution of the Riemann problems at junctio ns, where M

is the number of controlled values at each time-step, and eac control may be updated at each time-step.
We assume that a control may only infSuence a subset of junctions, which is a reasonable assumption if the

controls have some spatial locality. Thus, for a jungtion J !'J , we assume without loss of generality that

a subset of the control parameters ujkJ1 ey ujkMJ ! RM3 inRuence the solution of the I*?iemann solver.
J +

Similar to the notation developed for state variables, for con trol variables, we debneu¥ := uij1 e ujkMJ

as the concatenation of the control variables around the junction J. To account for the addition of contréls,
we modify the Riemann problem at a junction J !'J at time-step k to be a function of the current state
of connecting links ! ¥, and the current control parameters u¥. Then using the same notation as before, we
express the Riemann solver as:

RsJ.RnJ+mJu RMJ# RnJ+mJ
R R . .
Lk uk #RS; !5, uf = 1.



We represent the entire state of the solved system with the vector | ! RNT | where fori | | and
k!1{0....,T %1}, we have! nk+i = I‘ Similarly, we represent the entire control vector by u ! RMT |
where uyi +j = uf.

For each state variable ", write the corresponding update equation h¥:

hE:RNT " RMT & R
(,u)  @#hE(Q,u)=o0.

This takes the following form:

h(t,u)="? %% =0 1y
. St o Lt
hi(u)= "o T+ = RSy it ulet
st e et
%, —f RS PO usUt =0 rk{ 2., T %1}, (12)
i ! i i i
or in terms of the Godunov junction Rux:
$t * ot
hiC(,u)y= "% K P+ 2 g5 1o, ufet
G k k" 1
%$7 ngu !Jlu,UJiU , (13)
for all links i !'| , where 1 is the initial condition for link i. Thus, we can construct a system of NT

governing equations H (! ,u) = 0, where the h;x is the equation in H at index Nk + i, identical to the
ordering of the corresponding discrete state variable.

3 Adjoint Based Flow Optimization
3.1 Optimal Control Problem Formulation

In addition to our governing equations H (! ,u) =0, we also introduce a cost function C, which we assume
to be in C2:

C:RNT n RMT # R
(',u) #C((,u)
which returns a scalar that serves as a metric of performance d the state and control values of the system.
We wish to minimize the quantity C over the set of control parameters u, while constraining the state of

the system to satisfy the governing equations H (! ,u) = 0, which is, again, the concatenated version of (12)
or (13). We summarize this with the following optimization pr oblem:

muin C(',u)

subject to: H (! ,u) =0 (14)

Both the cost function and governing equations may be non-convex in this problem.



3.2 Calculating the Gradient

We wish to use gradient information in order to bnd control val uesu' that give locally optimal costs C' =
C (! (u'),u'). Since there may exist many local minima for this optimizatio n problem (14) (which is non-
convex in general), gradient methods do not guarantee global optimality of u'. Still, nonlinear optimization
methods such as interior point optimization utilize gradie nt information to improve performance [46].

In a descent algorithm, the optimization prgcedure will hav e to descend a cost function, by coupling
the gradient, which, at a nominal point ! %, u® is given by:

duC#!$,u$$= !C(!,u)z d !C(!,u)z . (15)

1l e du u e

The main dilculty is to compute the term (%. Next we take advantage of the fact that the derivative
of H (!, u) with respect to u is equal to zero along trajectories of the system:

duH#! $,u$$: M a ., M =0, (16)

I neowodu Tu .

u u”

The partial derivative terms, H; | RNT#NT j, 1 RNT%MT "¢, 1 RNT and Cy ! RMT | can all be
evaluated (mage de@ils provided in Section 3.3) and then tr eated as constant matrices. Thus, in order to
evaluate dyC ! % u® | RMT | we must solve a coupled system of matrix equations.

Note 1 In (16), H: and Hy might not necessarily be debned, either becausef itself is not smooth (note
that we took f to be C? to avoid this problem), or because g® is not smooth. The derivations below are
valid when the partials H, and H, can indeed be taken. There are several settings in which the ©nditions
for di"erentiability are satisbed, see in particular [8, 47] .

dt | RNT %MT

Forward system. If we solve for g

in (16), which we call the forward system:

d!
H, m = %Hy,

then we can substitute the solved value for g—L into (15) to obtain the full expression for the gradient.

Section 3.3 below gives details on the invertibility of H,, guaranteeing a solution for S—L

Adjoint system. Instead of evaluating 3—:1 directly, the adjoint method solves the following system, call ed
the adjoint system, for a new unknown variable %! RNT (called the adjoint variable):

H %= %C/ 17

Then the expression for the gradient becomes:

#
d,C !$,u$$=°/JHu+Cu (18)

We debneD, to be the maximum junction degree on the network:
= +
Dr =max (ny + my), (19)

and also debneD, to be the maximum number of constraints that a single control variable appears in,
which is equivalent to:
)
Dy = max (ng + my). (20)
Uu#u
J#) wu#u

Note that u! u‘j :J1J ' is ak-dependent set. By convention, junctions are either actuate d or not,
so there is no dependency onk, i.e. if +k s.t. u! u¥, then *k, u! u¥.

Using these dePnitions, we show later in Section 3.4 how the omplexity of computing the gradient is
reduced from O(Dy NMT 2) to O(T (DN + DyM)) by considering the adjoint method over the forward
method.

A graphical depiction of D, and D are given in Fig. 4. Freeway networks are usually considered to

have topologies that are nearly planar, leading to junctions degrees which typically do not exceed 3 or 4,
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Fig. 4: Depiction of D, and Dy for an arbitrary graph. Fig. 4a shows the underlying graphical structure
for an arbitrary PDE network. Some control parameter u1 has inBuence over junctionsA, B, and F, while
another control parameter uz has inBuence over only junction C. Fig. 4b depicts the center junction having
the largest number of connecting edges, thus giving D1 = 5. Fig. 4c shows that control parameter ui
inBuences three junctions with sum of junctions degrees equalto six, which is maximal over the other
control parameter u». leading to the result Dy = 6. Note that in Fig. 4c, the link going from junction A to
junction B is counted twice: once as an outgoing link AB and once as in incoming link BA .

regardless of the total number of links. Also, from the locali ty argument for control variables in Section (2.4),
a single control variableOs inRuence over state variables Wl not grow with the size of the network. Since
the D, and Dy typically do not grow with NT or MT for freeway networks, the complexity of evaluating
the gradient for such networks can be considered linear for the adjoint method.

3.3 Evaluating the Partial Derivatives

While no assumptions are made about the sparsity of the cost function C, the networked-structure of the
PDE system and the Godunov discretization scheme allows us to say more about the structure and sparsity
of Hi and Hy.

Partial derivative expressions. Given that the governing equations require the evaluation o f a Riemann
solver at each step, we detail some of the necessary computdbnal steps in evaluating the H, and Hy
matrices.

If we consider a particular governing equation h¥ (! ,u) = 0, then we may determine the partial term
with respect to } I 1 by applying the chain rule:

T I T DT S T I
M g | — !
TEE T 00 ] + L,f RSJID 3P ,UJiD O | RSJ‘D fap ,UJID i (21)
T S L ol
$t s ¥ o * o
s K" 1 k"1 | k"1 k"1
0 — | P |
%0 L, f RSJIU v ,UJiU TN RSJlu N |UJ‘U i

or if we consider the composed Riemann Rux solvergS in (9):

/

k n k w k" 1 * * ++
'hi ! gp L St ! G ki1 ket
TR AT T gJiD s gp Y50
! ! ! L ! i i

| . .
Yoo e Mhuhulet (22)
] i i ] b

-JiU ’ JIU i

A diagram of the structure of the H; matrix is given in Fig. (5a). Similarly for H,, we take a control
parameter u} ! u, and derive the expression:

th ¥ $t $* : k PRI i i K et Tt
Ih' vl ke 1 P 1 ke
=+ — | |
Iy ! Lif RS;p fap o Ugp i lu! RSyp fap oUgp i (23)

! P * ++ D * ++

$ k"1 k"1 ! k"1 k"1
% —f* RS ! u RS ! u
L; I tar Ryt S L F

or for the composed Godunov junction Rux solver gf:
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P P P
— — —
Pj )
0 - 0
h* I 1 h*
k 1
1L Oht hl
8pl~ 2 I
; J hs
. / 1
P P R SRR P
hk Pli 1 _
T-3
rrrrrrrrrrrrrrrrrrrrrr . hl
o T—2
1 h
T-1 : T-1
h I 1 1 1 1 hs
(a) Ordering of the partial derivative terms. Constraints (b) Sparsity structure of the H: matrix. Besides the di-
and state variables are clustered prst by time, and then agonal blocks, which are identity matrices, blocks where
by cell index. I# k" 1 are zero.

Fig. 5: Structure of the H, matrix.

Ihk st / ;o * . . ++ ; * * . ) ++0
thi _ ! G "1kl ! G "1kt
T T IR T R @4)
* * ++
Analyzing (21), the only partial terms that are not trivial t 0 compute are —— RS;o ! p% uX,?t
¥ * + + #i % IP % P 4+

k" 1

and o+ RS;v ! kohukyt s Similarly for (23), the only nontrivial terms are  —— RS;o !, u';
] i

Ju Mgy i " i

and —+ RS;u ! ‘J‘L e u'j'[, 1 Once one obtains the solutions to these partial terms, then one can con-
j ! i i i
struct the full H, and H, matrices and use (17) and (18) to obtain the gradient value.
As these expressions are written for a general scalar conseration law, the only steps in computing the
gradient that are specibc to a particular conservation law a nd Riemann solver are computing the derivative
of the RBux function f and the partial derivative terms just discussed. These expressions are explicitly

calculated for the problem of optimal ramp metering in Sectio n (4).

3.4 Complexity of Solving Gradient via Forward Method vs. Adjo int Method

This section demostrates the following proposition:

Proposition 31  The total complexity for the adjoint method on a scalar hyperbo lic network of PDEs is
O(T(DiN + DyM)).

We can show the lower-triangular structure and invertibili ty of H, by examining (11) and (12). For
k!{1,...,T %1}, we have that h¥ is only a function of "¥ and of the state variables from the previous
time-step k % 1. Thus, based on our ordering scheme in Section 2.4 of orderingvariables by increasing
time-step and ordering constraints by corresponding varia ble, we know that the diagonal terms of H, are
always 1 and all upper-triangular terms must be zero (since those terms correspond to constraints with a
dependence offuture values). These two conditions demonstrate both that H: is lower-triangular and is
invertible due to the ones along the diagonal.

Additionally, if we consider taking partial derivatives wi th respect to the variable ";, then we can
deduce from Equation (12) that all partial terms will be zero e xcept for the diagonal term, and those
terms involving constraints at time j +1 with links connecting to the downstream and upstream junctio ns
JjD and JJ-U respectively. To summarize, H: matrices for systems described in Section 2.4 will be square,
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Fig. 6: Freeway network model. For a junction Jz- 3 = Jg;. 5 = J3 attime-step k!{ 0,...,T %1}, the

upstream mainline density are represented by " 'g(i.. 1)» the downstream mainline density by "X, , the on-ramp

density by "5+ 1, and the o"-ramp split ratio by = & 1.

invertible, lower-triangular and each column will have a ma ximum cardinality equal to D in (19). The
sparsity structure of H is depicted in Fig. 5b.

Using the same line of argument for the maximum cardinality of H:, we can bound the maximum
cardinality of each column of H,. Taking a single control variable u} , the variable can only appear in the
constraints at time-step j +1 that correspond to a link that connects to a junction J such that u} ! u'fl .
These conditions give us the expression forD in (20), or the maximum cardinality over all columnsin Hy.

If we only consider the lower triangular form of H. , then the complexity of solving for the gradient using
the forward system is O((NT)2 MT ), where the dominating term comes from solving (15), which requi res
the solution of MT separate NT " NT lower-triangular systems. The lower-triangular system al lows for
forward substitution, which can be solved in O((NT)?) steps, giving the overall complexity O((NT)2MT).
The complexity of computing the gradient via the adjoint meth od is O((NT)? + (NT)(MT)), which
is certainly more elcient than the forward-method, as long as MT > 1. The elciency is gained by
considering that (17) only requires the solution of a single NT " NT upper-triangular system (via backward-
substitution), followed by the multiplication of 9 Hy, an NT " NT andanNT " MT matrix in (18), with
a complexity of O((NT)? + (NT)(MT)).

For the adjoint method, this complexity can be improved upon b y considering the sparsity of the H
and H, matrices, as detailed in Section 3.4. For the backward-substitution step, each entry in the %vector
is solved by at most D1 multiplications, and thus the complexity of solving (17) is reduced to O(D: NT).
Similarly, for the matrix multiplication of 9 Hy, while %is not necessarily sparse, we know that each entry
in the resulting vector requires at most D, multiplications, giving a complexity of O(D,MT).

4 Applications to Optimal Coordinated Ramp Metering on Freeway s
4.1 Formulation of the Network Model And Explicit Riemann So Iver

Model. Consider a freeway section with links | = {1,...,2N} with a linear sequence of mainline links =
{2,4,...,2N} and connecting on-ramp links = {1,3,...,2N %1}. At discrete time t = k$t, 0) k) T %1,
mainline link 2i 'l ,i '{ 1,...,N} has a downstream junction J5 = JE(M) and an upstream junction
J3 = I3+ 1y, while on-ramp 2i %111 ,i !{ 1,...,N} has a downstream junction J3. ; = J3 = Jg;. ;)
and an upstream junction J3. ;.

The o"-ramp directly downstream of link 2i,i ! { 1,...,N} has, at time-step k, a split ratio &; rep-
resenting the ratio of cars which stay on the freeway over the total cars leaving the upstream mainline of
junction JX. The model assumes that all Rux from on-ramp 2i %1 enters downstream mainline 2i. Since Jy
is the source of the network, it has no upstream mainline or 0" -ramp, and similarly J5, has no downstream
mainline or on-ramp (& = 0). Each link i ! | has a discretized state value"¥ ! R at each time-step
k!{O0...,T %1}, that represents the density of vehicles on the link. These values are depicted in Fig. 6.
Junctions that have no on-ramps can be e"ectively represented by adding an on-ramp with no demand
while junctions with no o"-ramps can be represented by settin g the split ratio to 1.

The vehicle Bow dynamics on all links i (mainlines, on-ramps, and o"-ramps) are modeled using the
conservation law governing the density evolution (1), wher e" is the density state, and f is the RBux function
(or fundamental diagram) f ("). In the context of tralc, this model is referred to as the Light hill-Whitham-
Richards (LWR) model [36, 35]. The fundamental diagram f is typically assumed to be concave, and has a
bounded domain [0, " ™® ] and a maximum Bux value F ™ attained at a critical density "¢ :f ("¢)= F™,
We assume that the fundamental diagram has a trapezoidal form as depicted in Fig. 7. For the remainder of
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the article, we instantiate the conservation law in (1) with  the LWR equation as it applies to tralc Row mod-
eling.

As control input, an on-ramp 2i % 1! ,i!
{1,...,N} attime-step k! { O,...,T %1} has a A}
metering rate u'gi-v 1 ! [0, 1] which limits the Bux f max
of vehicles leaving the on-ramp. Intuitively, the
metering rate acts as a fractional decrease in the
Row leaving the on-ramp and entering the main-

line freeway. The domain of the metering control v w

is to force the control to neither impose nega-

tive Bows nor send more vehicles than present - D :,0

in a queue. Its mathematical model is expressed P P

in (31). Fig. 7: Fundamental diagram (the name of the RBux

For notational simplicity we debne the set of - fh0hion in transportation literature) with free-Bow
densities of links incidgnt to Jai = Jyis 1) & gpeedy, congestion wave speedw, max Rux F ™
time-step k as ! Ez“i = "S5 p."5- 1.5 . The  critical density "¢, and max density "™ .
o"-ramp is considered to have inPnite capacity,
and thus has no bearing on the solution of junc-
tion problems. Initial conditions are handled as
in (11), while for k1{ 1,...,T %1}, the mainline density "%; using the Godunov scheme from (12) is given

by:

k k1, St i G : k"1 k"1 A
hsi (1, u)= "% %"y T+ Lo e !JZDi U4l . (25)
$t| i G i k"1 k"1 i
0, ] .
/Oin *ngui TIg ’ui'" 1
o ke St k1, k1 _
=5 % L, %o %gy,y =0 (26)

where we have introduced some substitutions to reduce the ndational burden of this section: gfp is the
Godunov RBux at time-step k exiting a link i at the downstream boundary of the link, and gi'fu is the
Godunov Bux entering the link at the upstream boundary.

We also make the assumption that on-ramps have inPnite capadty and a free-Bow velocity vai- 1 = L,Zt" s
to prevent the ramp congestion from blocking demand from ever entering the network. Since the on-ramp
has no physical length, the length is chosen arbitrarily and the OvirtualO velocity chosen above is chosen to
replicate the dynamics in [48]. We can then simplify the on-ra mp update equation to be:

$t 3* * ++ 4
h5i 1(1,u) = "5 1 %" 5 % o g?g ! §U17u;i"ll L %D5LY (27)
2i" 1 R 2" 1
1St e .
=G %5 % Giup %D5y =0 (28)
I

where D&.%, is the on-ramp Rux demand, and the same notational simplibcation has been usedfor the
downstream Rux. This formulation results in OstrongO bounday conditions at the on-ramps which guarantees
all demand enters the network. Details on weak versus strong boundary conditions can be found in [48, 22,
6].

The on-ramp model in (27) di"ers from [48] in that we model the o n-ramp as a discretized PDE with an
inbnite critical density, while [48] models the on-ramp as an ODE Obu"erO. While both models implement
strong boundary conditions, the discretized PDE model make s the freeway network more aligned with the

PDE network framework presented in this article.

Riemann solver. For the ramp metering problem, there are many potential Riem ann solvers that satisfy the
properties required in Section 2.2. Following the model of [48], for each junction J3 , we add two modeling
decisions:

1. The Bux solution maximizes the outgoing mainline Bux g‘gi‘ u-
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(a) Case 1: Priority violated due to (b) Case 2: Priority violated due (c) Case 3: Priority rule satisbped due
limited upstream mainline demand to limited on-ramp demand entering to sulcient demand from both main-
entering downstream mainline. downstream mainline. line and on-ramp.

Fig. 8: Godunov junction Bux solution for ramp metering model a t junction Jj}. The rectangular region

represents the feasible Bux values for&i» 1)Uy~ 1y,p and G+ 1o as determined by the upstream de-
mand, while the line with slope ﬁ represents feasible Bux values as determined by mass balanceThe
&(i" 1)Yyi» 1),p term accounts for only the Bux out of link 2 (i %1) that stays on the mainline. The Rux
solution, represented by the red circle, is the point on the fe asible region that minimizes the distance from

the priority line  &i* 1)Up(i» 1y,0 = P2(i* 1)%2i" 1,0-

2. Subject to (1), the Bux solution attempts to satisfy g'g(i.. 1.0 = Piv 1 oi 1,0, Where pyi» 1y ! R+ isa
merging parameter for junction JzD(i" 1 - Since (1) allows multiple Bux solutions at the junction, (2) is
necessary to obtain a unique solution.

This leads to the following system of equations that gives the Rux solution of the Riemann solver at time-step
k!'{1,...,T %1} and junction J§ fori!{ 1,...,N}:

* +
K o wk
2+ 1) = MIN V(e 19" 3¢ 1y, Fo(in 1y (29)
* ok + +
(5 =min wy "5 %"k FI (30)
3 L 4
K K . 20" 1uk
dzi» 1 = Ugi» 1 min S 1, Fay (31)
$t
* +
K . K K K K
GQoi,u = Min - &+ 1) o 1y + 2w 1, (2 (32)
% K P g5 K
' 2(i' 1) J2j, U '
g 21" $§(|1 1)(1+ Pzt 1)) & ity [Case 1]
K — 95\, o' dfi g g;i‘ u & dk C 33
P ooy & daiv 1 [Case 2 (33)

P2git 1) glz(‘, u
(1+ P2(in 1))$12<(u 1)

K k K K
Qi 1,0 = G2i,u P& 1)%2(i" 1),0 o

otherwise [Case 3]

where, for notational simplicity, at the edges of of the range for i, any undebned state values (e.g."g) are
assumed to be zero by convention. Equations (29) and (31) determine the maximum Rux that can exit
link 2(i % 1) and link 2i %1 respectively. Equation (30) gives the maximum Bux allowed i nto link 2i. The
actual Bux into link 2i, shown in (32), is given as the minimum of the OdemandO from upseam links and
OsupplyO of the downstream link. See [48] for more details orhe model for this equation. The Bux out
of link 2(i %1) is split into three cases in (33). The solutions are depicted in Fig. 8, which demonstrates
how the Rux solution depends upon the respective demands andthe merging parameter py(i- 1). Finally,
Equation (34) gives the Bux out of the on-ramp 2i %1, which is the di"erence between the Rux into link 2i
and the Bux out of link 2 (i % 1) the remains on the mainline.

For k = 0, the update equation is given by a pre-specibed initial condition, as in (11). Note that the
equations can be solved sequentially via forward substituti on. Also, we do not include the RBux result for
o"-ramps explicitly here since its value has no bearing on fur ther calculations, and we will henceforth ignore
its calculation. To demonstrate that indeed the Bux solutio n satisbPes the Bux conservation property, the
o"-ramp Bux is trivially determined to be & ;. 15 1) p-
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4.2 Formulation of the Optimal Control Problem

Optimal coordinated ramp-metering. Including the initial conditions as specibed in (11) with (2 5) and (27)
gives a complete description of the systemH (! ,u)=0,! ! R®N  u! R, where:

Ponk+i = "K' 1) i) 2N,0) k) T %1
Unk+i:= U5 1) i) N,0) k) T%1

The objective of the control is to minimize the total travel time on the network, expressed by the cost
function C:

T N
C(!,u)=$t) F Lk
k=1 i=1

The optimal coordinated ramp-metering problem can be formul ated as an optimization problem with
PDE-network constraints:

muin C(',u) (35)
subjectto: H (!,u) =0
0) u) 1*u! u

Since the adjoint method in Section 3 only deals with equality constraints, we add barrier penalties to the
cost function [49, 9]:

c(,u,))= C(!,u)%)) log ((1 %u) (u%0)) . (36)
u#u

As) ! R" tends to zero, the solution to (36) will approach the solutio n to the original problem (35).
Thus we can solve (35) by iteratively solving the augmented p roblem:

min € (!, u,)) (37)
subjectto: H (!,u) =0

with decreasing values of ). As a result, C will approach C as the number of iterations increases.
Applying the adjoint method. To use the adjoint method as described in Section 3, we need to ompute the

partial derivative matrices H,, H,, Ci and C,. Computing the partial derivatives with respect to the cost
function is straight forward:

Ne

|Ck = $tL 1) i) 2N,0) k) T %1
: |

e o

e =) 1,,%%% 1) i) N,0) k) T%1
U5

To compute the partial derivatives of H, we follow the procedure in Section 3.2. For an upstream

junction J3 1J and time-gtep k' { 1,...,T %1}, we only need to compute the partial derivatives of the
Rux solver g?g [ ké, ,uk;» 1 with respect to the adjacent state variables ! § and ramp metering control uf.
We calculate the partial derivatives of the functions in (29) -(34) with respect to either a state or control
variables! !, u:
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Is 0 otherwise
" # $
k _ nk nmax nk max
W2 _ Yw2i s="5,wai "5 %3 ) F
Is 0 otherwise
%
k — nk nk max
Id & Uz S="%1,"2i"1) Fainq
: — H nwk max — 1k
s &mln 2in LR s = ugie g
0 otherwise
% k k
' k "%2(i| 1) "d 2(i1 1) k vk k k
bk &ZQ L R i 1y 2¢iv 1y ¥ b2 1) (2
s @i, u (& )
: 2i otherwise

%,

g %lz((i! 1) Q;LUPZ(I' H g O/é(uz 1
| s 3 ) 4 1+kpz(,. 1) $§(|, "
Qo = 1 ok or A5 92, u Kk
Is Qi v.0 $5iiy S %iu % s 1+ pain 1 & dz('" D

Pagit 1) "k .
— Oy otherwise
$‘z((u 1) (1+ Pa(in 1)) s Giu
! [ K !
s %i"1p = g %iu % &~ 1 is %26 1.0

These expressions fully quantify the partial derivative valu es needed in (22) and (24). Thus we can
construct the H: and H, matrices. With these matrices and C: and C,, we can solve for the adjoint
variable %! R?NT in (17) and substitute its value into (18) to obtain the gradi ent of the cost function C
with respect to the control parameter u.

5 Numerical Results for Model Predictive Control Implementati ons

To demonstrate the e"ectiveness of using the adjoint ramp met ering method to compute gradients, we
implemented the algorithm on practical scenarios with beld experimental data. The algorithm can then
be used as a gradient computation subroutine inside any desent-method optimization solver that takes
advantage of brst-order gradient information. Our implement ation makes use of the open-sourcelpOpt
solver [46], an interior point, nonlinear program optimize r. To serve as comparisons, two other case scenarios
were run:

1. No control: the metering rate is set to 1 on all on-ramps at a ll times.

2. Alinea [38]: a well-adopted, feedback-based ramp meterirg algorithm commonly used in the practi-
tioner®s community. Alinea is computationally elcient and decentralized, making it a popular choice
for large networks, but does not take estimated boundary 3ow d ata as input. Since Alinea has a number
of tuning parameters, we perform a modibed grid-search technique over the di"erent parameters that
scales linearly with the number of on-ramps, and select the best-performing parameters, in order to be
fair to this framework. A full grid-search approach scales exponentially with the number of on-ramps,
rendering it infeasible for moderate-size freeway networks.

All simulations were run on a 2012 commercial laptop with 8 GB of RAM and a dual-core 1.8 GHz Intel
Core i5 processor.

Note 2 To demonstrate the reduced running time associated with the adjoint approach, we also imple-
mented a gradient descent using a Pnite di"erences approachsimilar to [33, 32], which requires an O(T2NM )
computation for each step in gradient descent, but it proved t o be computationally infeasible for even small,
synthetic networks. Running ramp metering on even a network of 4 links over 6 time-steps for 5 gradient
steps took well over 4 minutes, rendering the method uselessfor real-time applications. The comparison of
running times of bnite di"erences versus the adjoint method i s given in Fig. 9. Due to the impractically
large running times associated with Pnite di"erences, we do not consider the bnite di"erences in further
results, which only becomes worse as the problem scales to leger networks and time horizons.
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Fig. 9: Running time of ramp metering algorithm using IpOpt wi th and without gradient information.
Network consists of 4 links and 6 time-steps with synthetic b oundary Bux data. The method using gradient
information via the adjoint method converged well before the co mpletion of the brst step of the bnite
di"erences descent method.

Fig. 10: Model of section of 115 South in San Diego, California. The freeway section spanning 19.4 miles
was split into 125 links with 9 on-ramps.

5.1 Implementation of 115S in San Diego

As input into the optimization problem, we constructed a mod el of a 19.4 mile stretch of the 115 South
freeway in San Diego, California between San Marcos and Mira Mesa. The network has N = 125 links, and
M =9 on-ramps, with boundary data specibed for T = 1800 time-steps, for a time horizon of 120 minutes
given $t =4 seconds. The network is shown in Fig. 10.

Link length data was obtained using the Scenario Editor softw are developed as part of the Connected
Corridors project, a collaboration between UC Berkeley and PATH resear ch institute in Berkeley, Califor-
nia. Fundamental diagram parameters, split ratios, and bou ndary data were also obtained using calibration
techniques developed by Connected Corridors. Densities resulting in free-Bow speeds were chosen as ini-
tial conditions on the mainline and on-ramps. The data used i n calibration was taken from PeMS sensor
data [50] during a morning rush hour period, scaled to generate congested conditions. The input data was
chosen to demonstrate the e"ectiveness of the adjoint ramp metering method in a real-world setting. A
proble of the mainline and on-ramps during a forward-simulat ion of the network is shown in Fig. 11 under
the described boundary conditions.

5.2 Finite-Horizon Optimal Control

Experimental Setup. The adjoint ramp metering algorithm is compared to the reacti ve Alinea scheme, for
which we assume that perfect boundary conditions and initial conditions are available. The metric we use
to compare the di"erent strategies is reduced-congestion percentage, @! (%- ,100], which we debne as:

3 4

@=100 1% 2
Cnc
where c;,cc ! R+ are the congestion resulting from the control and no-control scenarios, respectively.
We use the metric for congestion as debned in [51]; for a given setion of road S and time horizon T, the
congestion is given as ) 5 6
*
(S, T) = max TTT (s,*)%LTV(S’ ) o
(s#S' #T) s
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(a) Density proble. The units are the ratio of a linkOs (b) On-ramp queue proble in units of vehicles.
vehicle density to a linkOs jam density.

Fig. 11: Density and queue proble of no-control freeway simulation. In the Prst 80 minutes, congestion
pockets form on the freeway and queues form on the on-ramps, then eventually clear out before 120
minutes.

(a) Density di"erence proPle in units of change in density (b) Queue di"erence proble in units of vehicles.
from the control scenario to the no control scenario over
the jam density of the link.

Fig. 12: Proble di"erences for mainline densities and on-ramp queues. Evidenced by the mainly negative
di"erences in the mainline densities and the mainly positiv e di"erences in the on-ramp queue lengths, the
adjoint ramp metering algorithm e"ectively limits on-ramp @ ows in order to reduce mainly congestion.
View in color.

where vs is the free-Row velocity, VMT is total vehicle miles traveled , and TTT is total travel time over
the link s and time-step *. Since it is infeasible to compute the global optimum for all ca ses, a reduced
congestion of 100% serves as an upper bound on the possible aount of improvement.

Results. Fig. 12 shows a di"erence proble for both density and queue lergths between the no control
simulation and the simulation applying the ramp metering po licy generated from the adjoint method.
Negative di"erences in Figs. 12a and 12b indicate where the adjoint method resulted in fewer vehicles for
the specibc link and time-step. The adjoint method was successful in appropriately deciding which ramps
should be metered in order to improve throughput for the mainl ine.

Running time analysis shows that the adjoint method can produ ce benepPcial results in real-time appli-
cations. Fig. 13 details the improvement of the adjoint metho d as a function of the overall running time of
the algorithm. After just a few gradient steps, the adjoint method outperforms the Alinea method. Given
that the time horizon of two hours is longer than the period of time one can expect reasonably accurate
boundary Bow estimates, more practical simulations with sh orter time horizons should permit more gradient
steps in a real-time setting.

While the adjoint method leads to queues with a considerable number of cars in some on-ramps, this
can be addressed by introducing barrier terms into the cost fu nction that limit the maximum queue length.
The Alinea method tested for the 115 network had no prescribed maximum queue lengths as well, but was
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Fig. 13: Reduced congestion versus simulation time for freeway network. The results indicate that the
algorithm can run with performance better than Alinea if give n an update time of less than a minute.

not able to produce signibcant improvements in total travel time reduction, while the adjoint method was
more successful.

5.3 Model Predictive Control

To study the performance of the algorithm under noisy input da ta, we embed both our adjoint ramp
metering algorithm and the Alinea algorithm inside of a model predictive control (MPC) loop.

Experimental Setup. The MPC loop begins at a time t by estimating the initial conditions of the tralc
on the freeway network and the predicted boundary Ruxes over a certain time horizon T,. These values
are noisy, as exact estimation of these parameters is not posible on real freeway networks. The estimated
conditions are then passed to the ramp metering algorithm to compute an optimal control policy over
the T, time period. The system is then forward-simulated over an upd ate period of Ty ) Ty, using the
exact initial conditions and boundary conditions, as oppos ed to the noisy data used to compute control
parameters. The state of the system and boundary conditions at t + T, are then estimated (with noise)
and the process is repeated.

A non-negative noise factor, ( ! R+, is used to study how the adjoint method and Alinea perform as
the quality of estimated data decreases. If " is the actual density for a cell and time-step, then the densit y
Y passed to the control schemes is given by:

B="4al+ (4R)

where R is a uniformly distributed random variable with mean 0 and domain [%0.5, 0.5]. The noise factor
was applied to both initial and boundary conditions.
Two di"erent experiments were conducted:

1. Real-time 115 South : MPC is run for the 115 South network with T, = 80 minutes and Ty, = 26
minutes. A noise factor of 2% was chosen for the initial and boundary conditions. The number of
iterations was chosen in order to ensure that each MPC iterat ion Pnished in the predetermined update
time Ty.

2. Noise Robustness : MPC is for over a synthetic network with length 12 miles and bo undary conditions
over 75 minutes. The experiments are run over a probPle of noig factors between 1% and 8000%.

Results. Real-Time 115 South. The results are summarized in Fig. 14a. The adjoint method app lied
once to the entire horizon with perfect boundary and initial ¢ ondition information serves as a baseline
performance for the other simulations, which had noisy input d ata and limited knowledge of predicted
boundary conditions. The adjoint method still performs well u nder the more realistic conditions of the
MPC loop with noise, resulting in 2% reduced congestion or 40 car-hours in relation to no control, as
compared to the 3% reduced (60 car-hours) congestion achieed by the adjoint method with no noise and
full time horizon ( T, = T). In comparison, the Alinea method was only able to achieve 1.5% reduced
congestion (30 car-hours) for both the noisy and no-noise scearios. The results indicate that, under a
realistic assumption of a 2% noise factor in the sensor information, the algorithmOs ability to consider
boundary conditions results in an improvement upon strictl y reactive policies, such as Alinea.
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Fig. 14: Summary of model predictive control simulations. T he results indicate that the adjoint method
has superior performance for moderate noise levels on the inital and boundary conditions.

Robustness to Noise.  Simulation results on the synthetic network with varying le vels of noise are
shown in Fig. 14b. The adjoint method is able to outperform the A linea method when the noise level is
less than 80%, a reasonable assumption for data provided by wdi-maintained loop detectors. As the initial
and boundary condition data deteriorates, the adjoint metho d becomes useless. Since Alinea does not rely
on boundary data, it is able to produce improvements, even with severely noisy data. The results indicate
that the adjoint method will outperform Alinea under reasonab le noise levels in the sensor data.

6 Conclusions

This article has detailed a simple framework for Pnite-horizo n optimal control methods on a network of
scalar conservation laws derived from prst discretizing the network via the Godunov method, then applying
the discrete adjoint to this system. To tailor the framework to  a specibc application, one need only provide
the partial derivatives of the Riemann solver at a network jun ction as well as the partial derivatives of the
objective. Furthermore, we show that for this class of problem s, the sparsity pattern allows the problem
to be implemented with only linear memory and linear computa tional complexity with respect to the
number of state and control parameters. We demonstrate the scalability of the approach by implementing a
coordinated ramp metering algorithm using the adjoint metho d and applying the algorithm to the 1-15 South
freeway in California. The algorithm runs in a fraction of real- time and produces signibcant improvements
over existing algorithms. The ramp metering algorithm has b een fully implemented within Connected
Corridors [52] system, a project by UC Berkeley and PATH for int egrated corridor management, as a
component of the tralc simulator module. Future work includ es investigating decentralized, coordinated
control schemes over physical networks via the adjoint method to allow tralc control strategies to scale to
regional-scale networks.
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Nomenclature

| Variable Space Meaning
t R+ time
X R space
N N Number of links
J Set of junctions
| =[1,N] i Set of links
Li R+ Length of link i !l
"i (t,Xx) R+ " J0,Li[# R conserved quantity for link i !l as function of x
"B BV $ Linc continuous intialial condition
K R discrete conserved quantity for link i at time-step k
f(") f:R# R Bux function
' R Riemann data
" R Left state of the Riemann data
"t R Right state of the Riemann data
® R Point of discontinuity in Riemann problem
Wg R Self-similar solution of the Riemann problem
ny N Number of incoming links at a junction J
&My ¢ N Number of outgoing links at a junction J
Inc(I)F i3,...,07° "lg Set of incoming links at a junction J
Out (J) = ig‘“l ey Set of outgoing links at a junction J
NN Upstream junction for the link i !l
JP 1 Downstream junction for the link i !l
RS R™*M g RMTN Riemann Solver
G RM*N Trace for a link i at the junction
$t R Time grid size
$x R Space grid size
t“ = k$t k! N Time grid points
th = I$x Iz Space grid points
o R Wave speed
1K RM2* M state variables at a junction J !J at a time-step k
T N Number of time steps
6, RM2* M solution of RS at a junction J !'J at a time-step k
u¥ RV control variables at a junction J !J at a time-step k
hK RNT = RMT update equation
C RNT » RNuT cost function
% RNT adjoint variable
D, N maximum junction degree on the network
Dy N maximum number of constraints
&, [0,1] o"-ramp split ratio
D51 Bux demand at the boundary of on-ramp 2i %1
) barrier penalty coelcient
23" 1) demand on the link 2(i %1)
dsiv 1 demand from on-ramp 2i %1
X supply on the link 2i
Vi R+ free Bow speed for linki
Wi [0,1] congestion speedi
Poiv 1 [0,1] merging parameter
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