M. Belshaw, B. Taati, J. Snoek, and A. Mihailidis, Towards a single sensor passive solution for automated fall detection, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.1773-1776, 2011.
DOI : 10.1109/IEMBS.2011.6090506

M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri, Actions as space-time shapes, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, pp.1395-1402, 2005.
DOI : 10.1109/ICCV.2005.28

T. Brox and J. Malik, Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.3, pp.500-513, 2011.
DOI : 10.1109/TPAMI.2010.143

A. Castrodad and G. Sapiro, Sparse Modeling of Human Actions from Motion Imagery, International Journal of Computer Vision, vol.31, issue.2, pp.1-15, 2012.
DOI : 10.1007/s11263-012-0534-7

F. Daniyal and A. Cavallaro, Abnormal motion detection in crowded scenes using local spatio-temporal analysis, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.1944-1947, 2011.
DOI : 10.1109/ICASSP.2011.5946889

A. Efros, A. Berg, G. Mori, M. , and J. , Recognizing action at a distance, Proceedings Ninth IEEE International Conference on Computer Vision, pp.726-733, 2003.
DOI : 10.1109/ICCV.2003.1238420

G. Farnebäck, Two-Frame Motion Estimation Based on Polynomial Expansion, Scandinavian Conference on Image Analysis, pp.363-370, 2003.
DOI : 10.1007/3-540-45103-X_50

A. Gaidon, Z. Harchaoui, and C. Schmid, A time series kernel for action recognition, Procedings of the British Machine Vision Conference 2011, 2011.
DOI : 10.5244/C.25.63

URL : https://hal.archives-ouvertes.fr/inria-00613089

E. Jouneau and C. Carincotte, Particle-based tracking model for automatic anomaly detection, 2011 18th IEEE International Conference on Image Processing, pp.513-516, 2011.
DOI : 10.1109/ICIP.2011.6116394

V. Kellokumpu, G. Zhao, and M. Pietikinen, Human activity recognition using a dynamic texture based method, BMVC, 2008.

V. Mahadevan, W. Li, V. Bhalodia, and N. Vasconcelos, Anomaly detection in crowded scenes, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.1975-1981, 2010.
DOI : 10.1109/CVPR.2010.5539872

M. Raptis and S. Soatto, Tracklet Descriptors for Action Modeling and Video Analysis, ECCV, 2010.
DOI : 10.1007/978-3-642-15549-9_42

H. Wang, A. Kläser, C. Schmid, and L. Cheng-lin, Action recognition by dense trajectories, CVPR 2011, pp.3169-3176, 2011.
DOI : 10.1109/CVPR.2011.5995407

URL : https://hal.archives-ouvertes.fr/inria-00583818

M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers et al., Anisotropic Huber-L1 Optical Flow, Procedings of the British Machine Vision Conference 2009, pp.108-109, 2009.
DOI : 10.5244/C.23.108

S. Wu, O. Oreifej, and M. Shah, Action recognition in videos acquired by a moving camera using motion decomposition of Lagrangian particle trajectories, 2011 International Conference on Computer Vision, 2011.
DOI : 10.1109/ICCV.2011.6126397

T. Xiang and S. Gong, Video behaviour profiling and abnormality detection without manual labelling, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, pp.1238-1245, 2005.
DOI : 10.1109/ICCV.2005.248

T. Xiang and S. Gong, Activity based surveillance video content modelling, Pattern Recognition, vol.41, issue.7, pp.2309-2326, 2008.
DOI : 10.1016/j.patcog.2007.11.024

S. Zaidenberg, B. Boulay, and F. Bremond, A Generic Framework for Video Understanding Applied to Group Behavior Recognition, 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance, pp.136-142, 2012.
DOI : 10.1109/AVSS.2012.1

URL : https://hal.archives-ouvertes.fr/hal-00702179