
HAL Id: hal-00878630
https://inria.hal.science/hal-00878630

Submitted on 7 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Practical Everlasting Privacy
Myrto Arapinis, Véronique Cortier, Steve Kremer, Mark D. Ryan

To cite this version:
Myrto Arapinis, Véronique Cortier, Steve Kremer, Mark D. Ryan. Practical Everlasting Privacy.
2nd Conferences on Principles of Security and Trust (POST’13), Mar 2013, Rome, Italy. pp.21-40,
�10.1007/978-3-642-36830-1_2�. �hal-00878630�

https://inria.hal.science/hal-00878630
https://hal.archives-ouvertes.fr

Practical everlasting privacy

Myrto Arapinis1, Véronique Cortier2, Steve Kremer2, and Mark Ryan1

1 School of Computer Science, University of Birmingham
2 LORIA, CNRS, France

Abstract. Will my vote remain secret in 20 years? This is a natural question
in the context of electronic voting, where encrypted votes may be published on
a bulletin board for verifiability purposes, but the strength of the encryption is
eroded with the passage of time. The question has been addressed through a prop-
erty referred to as everlasting privacy. Perfect everlasting privacy may be difficult
or even impossible to achieve, in particular in remote electronic elections. In this
paper, we propose a definition of practical everlasting privacy. The key idea is
that in the future, an attacker will be more powerful in terms of computation (he
may be able to break the cryptography) but less powerful in terms of the data he
can operate on (transactions between a vote client and the vote server may not
have been stored).
We formalize our definition of everlasting privacy in the applied-pi calculus. We
provide the means to characterize what an attacker can break in the future in
several cases. In particular, we model this for perfectly hiding and computation-
ally binding primitives (or the converse), such as Pedersen commitments, and
for symmetric and asymmetric encryption primitives. We adapt existing tools, in
order to allow us to automatically prove everlasting privacy. As an illustration,
we show that several variants of Helios (including Helios with Pedersen commit-
ments) and a protocol by Moran and Naor achieve practical everlasting privacy,
using the ProVerif and the AKiSs tools.

1 Introduction

Electronic voting schemes such as Helios [2], JCJ/Civitas [14, 8], and Prêt-à-Voter [7]
aim simultaneously to guarantee vote privacy (that is, the link between the voter and
her vote will not be revealed), and outcome verifiability (that is, voters and observers
can check that the declared outcome is correct). A common way to achieve verifiability
is to publish a “bulletin board” that contains all encrypted votes (indeed, this is the way
it is done in the systems cited above). The strength and key-length of the encryption
should be chosen so that decryption by an attacker is impossible for as long as the votes
are expected to remain private. To prevent coercer reprisal not just to the voter but also
to her descendants, one may want vote privacy for up to 100 years.

Unfortunately, however, it is not possible to predict in any reliable way how long
present-day encryptions will last. Weaknesses may be found in encryption algorithms,
and computers will certainly continue to get faster. A coercer can plausibly assert that a
voter should follow the coercer’s wishes because the bulletin board will reveal in (say)
10 years whether the voter followed the coercer’s instructions. For this reason, systems
with “everlasting privacy” have been introduced by [18]. These systems do not rely

on encryptions whose strength may be eroded, but on commitments that are perfectly
or information-theoretically hiding. These systems have computational verifiability in-
stead of perfect verifiability, and are considered less usable and computationally more
expensive than systems relying on encryptions. More recently, schemes have been pro-
posed with a weaker form of everlasting privacy (e.g., [10, 12]); they rely on encryptions
for counting votes, but use commitments rather than encryptions for verifiability pur-
poses. Thus, the bulletin board which only publishes the commitments does not weaken
the privacy provided by the underlying scheme. Although the encrypted votes must be
sent to the election administrators, it is assumed that these communications cannot be
intercepted and stored en masse. We call this weaker form of everlasting privacy prac-
tical everlasting privacy.

Symbolic models for security protocol analysis have been used to model both pri-
vacy properties (e.g., [11, 3, 13]) and verifiability properties (e.g.,[16, 17]) of voting
systems, but they are currently not capable of distinguishing perfect versus computa-
tional notions of privacy, or indeed, of verifiability. Our aim in this paper is to extend
the model to allow these distinctions. We focus on practical everlasting privacy, and use
our definitions to verify whether particular schemes satisfy that property.

Our contributions. Our first and main contribution is a general and practical definition
of everlasting privacy. The key idea is that, in the future, an attacker will be more pow-
erful in terms of computation (he may be able to break cryptography) but less powerful
in terms of the data he can operate on (transactions between a vote client and the vote
server may not have been stored). We therefore distinguish between standard communi-
cation channels (on which eavesdropping may be possible, but requires considerable ef-
fort) and everlasting channels, on which the information is intentionally published and
recorded permanently (e.g. web pages that serve as a public bulletin board). Formally,
we model everlasting privacy in the applied-pi calculus [1], a framework well-adapted
to security protocols and already used to define privacy [11] and verifiability [16]. Our
definitions apply not only to voting protocols but also to situations where forward se-
crecy is desirable, such as for instance untraceability in RFID protocols.

Modeling everlasting privacy also requires to precisely model what an attacker can
break in the future. Our second contribution is a characterization, for several primi-
tives, of what can be broken. The first natural primitive is encryption, for which we
provide an equational theory that models the fact that private keys can be retrieved
from public keys, or even from ciphertexts. Some other primitives have been primarily
designed to achieve everlasting privacy. This is the case of perfectly hiding and compu-
tationally binding primitives, such as Pedersen commitments [19]. Intuitively, perfectly
hiding means that the hidden secret cannot be retrieved even by a computationally un-
bounded adversary, while computationally binding means that, binding is ensured only
for a (polynomially) limited attacker. We provide an equational theory that models such
perfectly hiding and computationally binding primitives in general.

As an application, we study everlasting privacy for several variants of Helios [2],
an e-voting protocol used for electing the president of the University of Louvain and
board members of the IACR3. We study in particular its latest variants with Pedersen

3 International Association for Cryptologic Research

commitments [12], designed to achieve everlasting privacy, still providing full verifia-
bility. We also model and prove everlasting privacy of a (simplified) version of Moran
and Naor’s protocol [18]. Interestingly, we were able to adapt algorithms in existing
tools to automate the verification of everlasting privacy and we use adapted versions of
the AKisS [6] and ProVerif [4] tools to analyze everlasting privacy for half a dozen of
protocols.

Outline. In the following section we recall the applied pi calculus and introduce nota-
tions and basic definitions. In Section 3 we define new equivalence relations, namely
forward and everlasting indistinguishability. Then, in Section 4 we instantiate these
equivalences to the case of voting protocols, define everlasting privacy and illustrate
this property on several examples. In Section 5 we present a modeling of perfectly hid-
ing and computationally binding (and vice-versa) primitives in the applied pi calculus.
In particular we model Pedersen commitments, which are for studying two protocols
that provide everlasting privacy. In Section 6 we discuss tool support for automatically
proving everlasting indistinguishability before concluding.

2 The applied pi calculus

The applied pi calculus [1] is a language for modeling distributed systems and their
interactions. It extends the pi calculus with an equational theory, which is particularly
useful for modeling cryptographic protocols. The following subsections describe the
syntax and semantics of the calculus.

2.1 Syntax

Terms. The calculus assumes an infinite set of names N = {a, b, c, . . .}, an infi-
nite set of variables V = {x, y, z, . . .} and a finite signature Σ, that is, a finite set
of function symbols each with an associated arity. We use meta-variables u, v, w to
range over both names and variables. Terms M,N, T, . . . are built by applying func-
tion symbols to names, variables and other terms. Tuples M1, . . . ,Ml are occasionally
abbreviated M̃ . We write {M1/u1, . . . ,Ml/ul} for substitutions that replace u1, . . . , ul
with M1, . . . ,Ml. The applied pi calculus relies on a simple type system. Terms can
be of sort Channel for channel names or Base for the payload sent out on these chan-
nels. Function symbols can only be applied to, and return, terms of sort Base. A term is
ground when it does not contain variables.

The signature Σ is equipped with an equational theory E, that is a finite set of
equations of the form M = N . We define =E as the smallest equivalence relation on
terms, that contains E and is closed under application of function symbols, substitution
of terms for variables and bijective renaming of names.

Example 1. A standard signature for pairing and encryption is:

Σenc = {0, 1, 〈 , 〉, fst(), snd(), pk(), aenc(, ,), adec(,), senc(, ,), sdec(,)}

The term 〈m1,m2〉 represents the concatenation of m1 and m2, with associated projec-
tors fst() and snd(). The term aenc(k, r,m) represents the asymmetric encryption of

P,Q,R ::= processes
0 null process
P | Q parallel composition
!P replication
νn.P name restriction
u(x).P message input
u〈M〉.P message output
if M = N then P else Q conditional

A,B,C ::= extended processes
P plain process
A | B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

where u is either a name or variable of channel sort.

Fig. 1. Applied pi calculus grammar

message m with public key k and randomness r while the associated decryption opera-
tor is adec. Similarly, senc(k, r,m) represents the symmetric encryption of message m
with key k and randomness r. The associated decryption operator is sdec. The proper-
ties of these primitives are modeled by the following standard equational theory Eenc:

Eenc =


fst(〈x, y〉) = x
snd(〈x, y〉) = y

adec(x, aenc(pk(x), y, z)) = z
sdec(x, senc(x, y, z)) = z


Processes. The grammar for processes is shown in Figure 1. Plain processes are stan-
dard. Extended processes introduce active substitutions which generalize the classi-
cal let construct: the process νx.({M/x} | P) corresponds exactly to the process
let x = M in P . As usual names and variables have scopes which are delimited by
restrictions and by inputs. All substitutions are assumed to be cycle-free.

The sets of free and bound names, respectively variables, in process A are denoted
by fn(A), bn(A), fv(A), bv(A). We also write fn(M), fv(M) for the names, respec-
tively variables, in term M . An extended process A is closed if it has no free variables.
A context C[] is an extended process with a hole. We obtain C[A] as the result of fill-
ing C[]’s hole with A. An evaluation context is a context whose hole is not under a
replication, a conditional, an input, or an output.

Example 2. Throughout the paper we illustrate our definitions with a simplified version
of the Helios voting system [2]. Two techniques can be used for tallying in Helios: either
a homomorphic tally based on El Gamal encryption, or a tally based on mixnets. We
present here the version with mixnets.

1. The voter V computes her ballot by encrypting her vote with the public key pk(skE)
of the election. The corresponding secret key is shared among several election au-
thorities. Then she casts her ballot together with her identity on an authenticated
channel. Upon receiving the ballot, the administrator simply publishes it on a pub-
lic web page (after having checked that V is entitled to vote).

2. Once the voting phase is over, the votes are shuffled and reencrypted through
mixnets. The permuted and rerandomized votes are again published on the pub-
lic web page (together with a zero knowledge proof of correct reencryption and
mixing).

3. Finally, the authorities decrypt the rerandomized votes and the administrator pub-
lishes the decrypted votes (with a zero knowledge proof of correct decryption).

The process representing the voter is parametrized by her vote v, and her identity id .

V (auth, id , v)
def
= νr.auth〈〈id , aenc(pk(skE), r, v)〉〉

The administrator BB receives votes on private authenticated channels and pub-
lishes the votes. It is parametrized by the authenticated channels of the voters. Then the
ballots are forwarded to the tally T over the private channel c. The tally consists in de-
crypting the vote. The shuffle through mixnets is modeled simply, by non deterministic
parallel composition after all ballots have been received. For simplicity, we consider
here an election system for three voters.

BB(a1, a2, a3)
def
= νc. a1(x). bb〈x〉. c〈x〉 | a2(y). bb〈y〉. c〈y〉 | a3(z). bb〈z〉. c〈z〉 | T

T
def
= c(x′).c(y′).c(z′).

(bb〈adec(skE , snd(x′))〉 | bb〈adec(skE , snd(y′))〉 | bb〈adec(skE , snd(z′))〉)
The process H then represents the whole Helios system with two honest voters and

one dishonest voter (which does therefore not need to be explicitly specified and whose
authenticated channel is public).

H
def
= νskE . νauth1. νauth2.

bb〈pk(skE)〉. (V (auth1, id1, a) | V (auth2, id2, b) | BB(auth1, auth2, auth3))

The first honest voter casts the vote a while the second honest voter casts the vote b.

2.2 Semantics

The operational semantics of the applied pi calculus is defined by the means of two
relations: structural equivalence and internal reductions. Structural equivalence (≡) is
the smallest equivalence relation closed under α-conversion of both bound names and
variables and application of evaluation contexts such that:

A | 0 ≡ A νn.0 ≡ 0
A | (B | C) ≡ (A | B) | C νu.νw.A ≡ νw.νu.A

A | B ≡ B | A A | νu.B ≡ νu.(A | B)
!P ≡ P |!P if u 6∈ fn(A) ∪ fv(A)

νx.{M/x} ≡ 0 {M/x} ≡ {N/x}
{M/x} | A ≡ {M/x} | A{M/x} if M =E N

a(x).P
a(M)−−−→ P{M/x}

A
α−→ A′ u does not occur in α

νu.A
α−→ νu.A′

a〈u〉.P a〈u〉−−−→ P
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

A
a〈u〉−−−→ A′ u 6= a

νu.A
νu.a〈u〉−−−−−→ A′

A ≡ B B
α−→ B′ A′ ≡ B′

A
α−→ A′

Fig. 2. Labelled reductions.

Internal reduction (−→) is the smallest relation closed under structural equivalence,
application of evaluation contexts satisfying the following rules:

COMM c〈x〉.P | c(x).Q −→ P | Q
THEN if N = N then P else Q −→ P
ELSE if L =M then P else Q −→ Q

for ground terms L,M where L 6=E M

Labelled reduction (α−→) extends the internal reduction and enables the environment
to interact with the processes as defined in Figure 2. The label α is either an input, or
the output of a channel name or a variable of base type.

We write =⇒ for an arbitrary (possibly zero) number of internal reductions and α
=⇒

for =⇒ α−→=⇒. Whenever the equational theory is not clear from the context we annotate
the above relations by the equational theory and write e.g. −→E.

A trace of a process is the sequence of actions (i.e. labels) together with the corre-
sponding sent messages. Formally, the set of traces of a processA is defined as follows.
Note that it depends on the underlying equational theory E.

traceE(A) = {(α1 · α2 · . . . · αn, ϕ(B)) | A α1=⇒E A1
α2=⇒E · · ·An−1

αn=⇒E B}

Example 3. Consider the process H representing the Helios protocol as defined in Ex-
ample 2. A possible execution for H is:

H
νxk. bb〈xk〉
=======⇒ H1

νx. bb〈x〉
=====⇒ νy. bb〈y〉

=====⇒ auth3(〈id3,x〉)
=========⇒ νz. bb〈z〉

=====⇒ νx′. bb〈x′〉
======⇒ νy′. bb〈y′〉

======⇒ νz′. bb〈z′〉
======⇒ H2

where H1 and H2 are defined below (we omit the other intermediate processes). Note
that H2 is simply an active substitution.

H1 = νskE . νauth1. νauth2. νr1.

({pk(skE)/xk} | V (auth1, id1, a) | V (auth2, id2, b) | BB(auth1, auth2, auth3))

H2 = νskE . νauth1. νauth2. νr1. νr2.{pk(skE)/xk} | {a/x′, b/y′, a/z′} |
{〈id1, aenc(pk(skE), r1, a)〉/x, 〈id2, aenc(pk(skE), r2, b)〉/y, 〈id3, aenc(pk(skE), r1, a)〉/z}

This execution trace corresponds to the case where the two honest voters cast their vote
as expected, while the dishonest voter replays the first voter’s ballot. As we shall see in
Example 5, this corresponds to the attack on privacy discovered in [9].

2.3 Equivalence Relations for Processes

Privacy is often stated in terms of equivalence [11]. We recall here the definitions of
static and trace equivalence.

Sequences of messages are often stored as frames. Formally, a frame is an extended
process built from 0 and active substitutions {M/x}, and closed by parallel composition
and restriction. The domain of a frame φ = νñ. {M1/x1, . . . ,Mn/xn} such that xi /∈ ñ
is dom(φ) = {x1, . . . , xn}. Every extended process A can be mapped to a frame ϕ(A)
by replacing every plain process in A with 0. The frame ϕ(A) represents the static
knowledge output by a process to its environment.

Two frames are indistinguishable to an attacker if it is impossible to build a test that
allows to differentiate between the two.

Definition 1 (Static equivalence). Given an equational theory E two frames φ and ψ
are are statically equivalent, denoted φ ∼E ψ, if dom(φ) = dom(ψ) and there exist
ñ, σ, τ such that φ ≡ νñ.σ, ψ ≡ νñ.τ and for all terms M,N such that ñ ∩ (fn(M) ∪
fn(N)) = ∅, we have Mσ =E Nσ if and only if Mτ =E Nτ . By abuse of notation, we
may write Mφ instead of Mσ when σ is clear from the context.

Example 4. Let Eenc be the equational theory defined at Example 1. Let H2 be the
process/frame defined in Example 3. Let φ = ϕ(H2) (= H2 actually). Consider the
following frame ψ.

ψ = νskE . νr1. νr2.{pk(skE)/xk} | {a/x′, b/y′, b/z′} |
{〈id1, aenc(pk(skE), r1, b)〉/x, 〈id2, aenc(pk(skE), r2, a)〉/y, 〈id3, aenc(pk(skE), r1, b)〉/z, }

The two frames φ and ψ are not statically equivalent for the equational theory Eenc.
Indeed, consider for example M = z′ and N = a, we have Mφ = a = Nφ but
Mψ = b 6= Nψ. Therefore, φ 6∼Eenc ψ.

The active counterpart of static equivalence is trace equivalence. Intuitively, two
processes A and B are indistinguishable to an attacker if any execution of A can be
matched to an execution of B that is equal for their observable actions and such that the
corresponding sequences of sent messages are statically equivalent.

Definition 2 (Trace equivalence). Given an equational theory E two processes A and
B are trace equivalent, denoted A

tr
≈ EB, if for any trace (trA, φA) ∈ traceE(A) there

is a corresponding trace (trB , φB) ∈ traceE(B) such that trA = trB and φA ∼E φB
(and reciprocally).

Example 5. We consider the Helios system H ′ with two honest voters and one dishon-
est voter where one honest voter casts the vote b while the other one casts the vote a.

H ′
def
= νskE . νauth1. νauth2.

bb〈pk(skE)〉. (V (auth1, id1, b) | V (auth2, id2, a) | BB(auth1, auth2, auth3))

Let (tr , φ) be the trace corresponding to the execution of H described in Example 3
where φ = ϕ(H2) = H2 (as defined in Example 3) and tr = νxk. bb〈xk〉 · νx. bb〈x〉 ·
νy. bb〈y〉·auth3(〈id3, x〉)·νz. bb〈z〉·νx′. bb〈x′〉·νy′. bb〈y′〉·νz′. bb〈z′〉. Then (tr , φ) ∈
traceEenc(H) and for any (tr , φ′) ∈ traceEenc(H

′), it is easy to check that we have
φ 6∼Eenc φ

′. (In fact, φ′ = ψ from Example 4.) Therefore, H 6
tr
≈EencH

′

Intuitively, if the dishonest voter’s strategy is to replay the first voter’s vote, then
he would cast a vote of the form 〈id3, aenc(pk(skE), r1, a)〉 in the system H while he
would cast a vote of the form 〈id3, aenc(pk(skE), r1, b)〉 in the system H ′. Once the
result is published, an attacker would be then able to distinguish H from H ′ since the
tally in H is {a, b, a} while it is {b, a, b} in H ′. This corresponds exactly to the replay
attack against Helios, explained in [9].

3 Forward and everlasting indistinguishability

In this section we introduce and illustrate our definitions of forward and everlasting
indistinguishability. In the next section we will show how the here presented definitions
can be used to define practical everlasting privacy in electronic voting.

3.1 Definitions of forward and everlasting indistinguishability

From now on we suppose thatΣ is a signature and that E0 and E1 are equational theories
over Σ. We want to model that an attacker may interact with a protocol today and
store some data which may be exploited in the future when his computational power
has increased. We model the fact that the attacker’s computational power may change
by using two different equational theories: E0 models the attacker’s capabilities while
interacting with the protocol at the time of the election, while E1 models his capabilities
when exploiting the published data in the future when the strength of cryptography has
been eroded.

We also argue that in many situations it is reasonable to suppose that the attacker
does not store all of the data that was sent over the network. We will therefore con-
sider some channels to be everlasting: data sent over such channels will remain in the
attacker’s knowledge for future analysis while other data will be “forgotten” and can
only be used during the interaction with the protocol. Typically, everlasting channels
are media such as web-pages published on the Internet (that can easily be accessed by
anyone, for a rather long period of time) while public but non-everlasting channels can
be communications over the Internet, which can be recorded only by the active and
costly involvement of an attacker.

In order to reason about data that has been sent on certain channels we introduce
the following notation. Let P be a process, C a set of channels (corresponding to the

everlasting channels), and tr = (α1 · α2 · . . . · αn, ϕ) ∈ traceE(P) a trace of P . We
define the set of variables in the domain of ϕ corresponding to terms sent on channels
in C as VC(α1 · α2 · . . . · αn) = {x | c ∈ C, 1 ≤ i ≤ n, αi = νx. c〈x〉} and denote by
φV(Pn) the substitution φ(Pn) whose domain is restricted to the set of variables V .

Two processes A and B are said to be forward indistinguishable if, informally, an
attacker cannot observe the difference between A and B being given the computational
power modeled by E1 (where it can break keys for example), but for executions that
happened in the past, that is over E0 (the standard theory) and observing only the infor-
mation that was passed through everlasting channels.

Definition 3 (Forward indistinguishability). Let A and B be two closed extended

processes and C a set of channels. We define A
fwd

v CE0,E1
B, if for every trace (α1 ·

α2 · · ·αn, ϕA) ∈ traceE0(A) there exists ϕB s.t. (α1 ·α2 · · ·αn, ϕB) ∈ traceE0(B)

and φAV ∼E1
φBV .

where V = VC(α1 · α2 · · ·αn). A and B are forward indistinguishable w.r.t. C, E0 and

E1, denoted A
fwd
≈CE0,E1

B, if A
fwd

vCE0,E1
B and B

fwd

vCE0,E1
A.

Note that in the above definition we only check equivalence of messages that were
sent on channels in the set C. We may also require that A and B are indistinguishable in
the standard way (over E0). Standard indistinguishability and forward indistinguisha-
bility yield everlasting indistinguishability.

Definition 4 (Everlasting indistinguishability). Let A and B be two closed extended
processes, C a set of channels. A and B are everlasting indistinguishable w.r.t. C, E0

and E1, denoted A
ev
≈CE0,E1

if

1. A
tr
≈E0

B, i.e. A and B are trace equivalent w.r.t. E0; and
2. A

fwd
≈CE0,E1

B, i.e. A and B are forward indistinguishable w.r.t. C, E0 and E1.

3.2 Examples

We illustrate the above definitions on a simple RFID protocol. In the context of RFID
systems, forward secrecy is often a desired property: even if an RFID tag has been tam-
pered with, and its secrets have been retrieved by a malicious entity, its past transactions
should remain private. This can be seen as a form of everlasting security requirement.
Indeed, RFID tags being devices vulnerable to tampering, one would like to make sure
that when an intruder gains access to an honest device, he is not able to trace back the
movements of the tag. Such tampering can be modelled by the following equational
theory Ebreak, that gives direct access to keys.

Ebreak =

{
breakaenc(aenc(pk(x), y, z)) = x

breaksenc(senc(x, y, z)) = x

}
We also use this equational theory later to model that in 20 or 30 years an adversary
will be able to break nowadays encryption keys.

Consider the following toy RFID protocol

session = νr. c〈enc(k, r, id)〉
tag = νk. νid. !session
system = !tag

where a tag identifies itself to a reader by sending its tag identifier id encrypted with a
long-term symmetric key shared between the tag and the reader.

We can model unlinkability as being the property that an attacker cannot distinguish
the situation where the same tag is used in several sessions from the situation where
different tags are used. Formally unlinkability is modelled as the trace equivalence:

system
tr
≈Eencsystem

′

where
system′ =!νk.νid. session.

Intuitively, this protocols satisfies unlinkability only as long as the keys are not leaked.
Indeed, since each identification uses a different random in the encrypted message sent
to the reader, each of the sent messages is different and looks like a random message
to the intruder. However, system and system′ are not forward indistinguishable when
considering a theory E1 which allows to break keys, i.e.,

system 6
fwd
≈{c}Eenc,Eenc∪Ebreak

system′

where Eenc is the equational theory introduced in Example 1. Indeed, once the key k of
a tag is obtained by the intruder, he can retrieve the identity behind each blob he has
seen on channel c, and thus distinguish the set of messages obtained by an execution of
system where the same tag executes at least two sessions, from the set of messages ob-
tained by the corresponding execution of system′ where each tag has executed at most
one session. Thus this protocol does not satisfy the stronger requirement of everlasting
indistinguishability either:

system 6
ev
≈{c}Eenc,Eenc∪Ebreak

system′

4 Application to practical everlasting privacy

We model a practical version of everlasting privacy in voting protocols based on ever-
lasting indistinguishability.

4.1 Definition of practical everlasting privacy

We first recall the definition of vote privacy introduced in [15].

Definition 5 (Vote privacy). Let VP(v1, v2) be an extended process with two free vari-
ables v1, v2. VP(v1, v2) respects vote privacy for an equational theory E if

VP(a, b)
tr
≈EVP(b, a)

Intuitively, the free variables refer to the votes of two honest voters id1 and id2. Then
this equivalence ensures that an attacker cannot distinguish the situations where voter
id1 voted for candidate a and voter id2 voted for candidate b, from the situation where
the voters swapped their votes, i.e., voter id1 voted for candidate b and voter id2 voted
for candidate a.

Example 6. Let Helios(v1, v2) be the process

νskE . νauth1. νauth2.

bb〈pk(skE)〉. (V (auth1, id1, v1) | V (auth2, id2, v2) | BB(auth1, auth2, auth3))

where processes V and BB are defined in Example 2.
In Example 5, when we illustrated trace equivalence we showed that Helios does

not satisfy vote privacy due to a vote replay attack discovered in [9].
A simple fix of the attack consists in weeding duplicates. The corresponding tally is

T ′
def
= c(x′).c(y′).c(z′).

if snd(x′) 6= snd(y′) ∧ snd(x′) 6= snd(z′) ∧ snd(y′) 6= snd(z′) then
bb〈adec(skE , snd(x′))〉 | bb〈adec(skE , snd(y′))〉 | bb〈adec(skE , snd(z′))〉

In other words, the tally is performed only if there are no duplicates amongst the cast
votes. We define the voting protocol Heliosnoreplay as Helios but with the revised version
T ′ of the tally. Using the tools ProVerif and AKISS we have shown that this protocol
satisfies vote privacy.

Heliosnoreplay(a, b)
tr
≈EencHelios

noreplay(b, a)

The above definition of vote privacy does however not take into account that most
cryptographic schemes rely on computational assumptions and may be broken in the
future. In order to protect the secrecy of votes against such attacks in the future we
propose a stronger definition based on forward indistinguishability.

Definition 6 (Everlasting vote privacy). Let VP(v1, v2) be an extended process with
two free variables v1, v2. VP(v1, v2) satisfies everlasting privacy w.r.t. a set of channels
C and equational theories E0 and E1, if

VP(a, b)
ev
≈CE0,E1

VP(b, a)

We note that everlasting vote privacy is strictly stronger than vote privacy as it re-
quires trace equivalence of VP(a, b) and VP(b, a) (which is exactly vote privacy) and
additionally forward indistinguishability of these processes. Our definition is paramet-
ric with respect to the equational theories and the channels we suppose to be everlasting.
The equational theory E1 allows us to exactly specify what a future attacker may be able
to break. The set of everlasting channels C allows us to specify what data a future at-
tacker has access to. When C corresponds to all channels we typically get a requirement
which is too strong for practical purposes. We argue that it is reasonable to suppose that
in, say 50 years, an attacker does not have access to the transmissions between individ-
ual voters and the system while a bulletin board published on the Internet could easily
have been stored.

4.2 Examples

Helios with identities As discussed In Example 6, Heliosnoreplay does satisfy vote pri-
vacy. However, this protocol does not satisfy everlasting vote privacy with E0 = Eenc,
E1 = Eenc ∪Ebreak and C = {bb}. Intuitively, this is due to the fact that a future attacker
can break encryption and link the recovered vote to the identity submitted together with
the cast ballot. Formally, we can show that

Heliosnoreplay(a, b) 6
fwd
≈Heliosnoreplay(b, a)

Consider the trace (νxk. bb〈xk〉·νx. bb〈x〉·νy. bb〈y〉, ϕA) ∈ traceEenc(Helios
noreplay(a, b))

where
ϕA = νskE, r1, r2.{ pk(skE)/xk,

〈id1, aenc(pk(skE), r1, a)〉/x,
〈id2, aenc(pk(skE), r2, b)〉/y }

Traces (νxk. bb〈xk〉 · νx. bb〈x〉 · νy. bb〈y〉, ϕB) ∈ traceEenc(Helios
noreplay(b, a)) are

either such that

ϕB ≡ νskE, r1, r2.{ pk(skE)/xk,
〈id1, aenc(pk(skE), r1, b)〉/x,
〈id2, aenc(pk(skE), r2, a)〉/y }

or
ϕB ≡ νskE, r1, r2.{ pk(skE)/xk,

〈id2, aenc(pk(skE), r1, a)〉/x,
〈id1, aenc(pk(skE), r2, b)〉/y }

In both cases we have that ϕA 6∼Eenc∪Ebreak
ϕB . In the first case this is witnessed by

the test M = a and N = breakaenc(snd(x)) as

MϕA = a =Eenc∪Ebreak
NϕA but MϕB = a 6=Eenc∪Ebreak

b =Eenc∪Ebreak
NϕB

In the second case non equivalence is witnessed by the test M = id1 and N = fst(x).

Helios without identities As we just saw Heliosnoreplay does not satisfy everlasting
privacy. This is due to the fact that encrypted votes are published together with the
identity of the voter on the bulletin board. A simple variant (used e.g. in Louvain for
student elections) consists in publishing the encrypted vote without the identity of the
voter. We define Heliosnoid as Heliosnoreplay but redefining the process BB′ as

BB′(a1, a2, a3)
def
= νc. a1(x). bb〈snd(x)〉. c〈x〉 | a2(y). bb〈snd(y)〉. c〈y〉 |

a3(z). bb〈snd(z)〉. c〈z〉 | T ′

where T ′ is as defined at Example 6. As we shall see in Section 6, we prove everlasting
privacy of Heliosnoid w.r.t Eenc,Ebreak and everlasting channel bb, using (adaptations of)
ProVerif and AKISS.

5 Modeling commitments

Commitment schemes allow a sender to commit to a value v while keeping this value
hidden until an ‘opening’ phase, where the sender reveals v to the receiver of the com-
mitment commit(v). The receiver should then be able to verify that the revealed value is
indeed the one used to compute commit(v), and in that sense that the sender had indeed
committed to the revealed value. The two main security properties of such schemes
are binding (the sender can’t claim that commit(v) is a commitment to some v′ 6= v),
and hiding (the receiver can’t deduce v from commit(v)). These two properties can
hold ‘perfectly’ or merely ‘computationally’. It is known that there are no commitment
schemes which are both perfectly hiding and perfectly binding, so one has to choose be-
tween perfectly hiding and computationally binding (PHCB) and perfectly binding and
computationally hiding (PBCH). In this section, we characterize in our formal model
what it means for a primitive to be PHCB and PBCH. We also give equational theories
to model such primitives, which we then use for the verification of two voting protocols
that rely on such primitives to ensure everlasting vote privacy.

5.1 Modeling hiding and binding cryptographic primitives

PBCH primitives Informally, an n-ary function f is perfectly binding if the inputs are
totally determined by the output. In other words, f is perfectly binding if it admits no
collisions. It is computationally hiding if it is hard to retrieve the inputs from the output.

To model a PBCH primitive f using the applied pi calculus, we introduce two equa-
tional theories Ef

0 and Ef
1 over the signature Σ = {f, break1f , . . . , break

n
f }, such that no

equation of the form
f(M1, . . . ,Mn) =E f(N1, . . . , Nn)

is derivable, where (M1, . . . ,Mn) 6=E (N1, . . . , Nn) and E ∈ {Ef
0,E

f
1}; and that the

equation
breakif(f(v1, . . . , vn)) =Ef

1
vi.

is derivable. As before, Ef
0 models the capabilities of a computationally bounded at-

tacker interacting with the protocol, while Ef
1 models the capabilities of a computation-

ally unbounded attacker in the future.

Example 7. A trivial example of a perfectly binding function is the identity function id.
However, id is not hiding.

Example 8. An example of a PBCH primitive is the ElGamal public key derivation
function. Given multiplicative cyclic group G of order q with generator g, to generate a
private and public key pair Alice does the following:

1. she chooses at random her private key sk ∈ {1, . . . , q − 1},
2. she computes and publishes her public key pkG,g,q(sk) = gsk.

The secret key sk is totally determined by the public key pkG,g,q(sk) = gsk. It is
however as hard to find sk from pkG,g,q(sk) as it is to compute discrete logarithms.

Thus, to reason about protocols relying on ElGamal encryption we consider the fol-
lowing equational theories over the signature {aencG,g,q, adecG,g,q, pkG,g,q, breakpkG,g,q

}
(we omit the subscripts G, g, q for readability):

EElGamal
0 = {adec(xk, aenc(pk(xk), xr, xm)) = xm}

EElGamal
1 =

{
adec(xk, aenc(pk(xk), xr, xm)) = xm
breakpk(pk(xk)) = xk

}
The function pkG,g,q is PBCH. Note however that the encryption algorithm aencG,g,q
is not PBCH, since it is not perfectly binding. Indeed, given the parameters G, q, and g,
to encrypt the message m with the public key gsk, Alice would

1. pick a random r ∈ {0, . . . , q − 1} and comput c1 = gr;
2. compute the secret shared key s = (gsk)r; and
3. computer c2 = m.s

The computed ciphertext is then aenc(pk(sk), r,m) = (c1, c2) = (gr,m.(gsk)r).
Hence, for any public key pk(sk′) = gsk

′
, there exists a messagem′ = m.(gsk)r/(gsk

′
)r

such that aenc(pk(sk), r,m) = aenc(pk(sk′), r,m′). Thus, ElGamal encryption is not
perfectly binding.

PHCB primitives Informally, an n-ary function f is perfectly hiding if given the output,
it is impossible to retrieve any of the inputs. So even enumerating all the possible inputs
shouldn’t allow one to retrieve the inputs from the output of the function. But this
implies that f should admit collisions for each possible input. On the other hand, f
is computationally binding if it is computationally not feasible to find such collisions.

Example 9. Any constant function f(x1, . . . , xn) = c is obviously perfectly hiding
but not computationally binding. The ⊕ function is also perfectly hiding since for all
z = x⊕ y

– for all x′, we have that y′ = z ⊕ x′ is such that x⊕ y = x′ ⊕ y′; and
– for all y′′, we have that x′′ = z ⊕ y′′ is such that x⊕ y = x′′ ⊕ y′′.

However, it is not computationally binding since it is easy to compute x′′ and y′.

Example 10. Pedersen commitments are PHCB. The Pedersen commitment over a cyclic
group G of order q and two generators h, g ∈ G such that loggh is not known is the
function PGh,g(x, y) = hx · gy(mod q). Pedersen commitments are perfectly hiding
since for all z = PGh,g(x, y),

– for all x′, we have that y′ = y + (x − x′) · loggh mod q is such that PGh,g(x, y) =
PGh,g(x

′, y′);
– for all y′′, we have that x′′ = x+ (y − y′′) · loghg mod q is such that PGh,g(x, y) =
PGh,g(x

′′, y′′).

but they are computationally binding because finding these x′′ and y′ is as hard as
computing discrete logarithms.

To reason about protocols relying on Pedersen commitments using the applied pi
calculus, we introduce the function symbols forge1Ped, and forge2Ped and the two follow-
ing equational theories

EPed
0 = ∅

EPed
1 =



Ped(forge1Ped(v, y
′), y′) = v

Ped(x′, forge2Ped(v, x
′)) = v

forge1Ped(Ped(x, y), y) = x

forge2Ped(Ped(x, y), x) = y

forge1Ped(v, forge
2
Ped(v, x)) = x

forge2Ped(v, forge
1
Ped(v, y)) = y


For the first equation, suppose v = Ped(x, y), and we have some y′; then forge1Ped
allows us to compute a value x′ = forge1Ped(v, y

′) such that v = Ped(x′, y′). The
second equation is similar. The third and fourth equation allow us to recover one of the
arguments, given that the other argument is known. In other words the third equation
expresses that when forging x′ = forge1Ped(v, y) and v = Ped(x, y) then we must
have that x′ = x, and similarly for the fourth equation. The fifth and sixth equations
are also seen to be mathematically valid, given that forge1Ped(v, y) and forge2Ped(v, x)
respectively model the terms logg(v/h

y) and logh(v/g
x).

5.2 Applications: electronic voting protocols and everlasting privacy

Pedersen commitments have been used in several voting protocols for achieving ever-
lasting privacy. In particular we study the protocol by Moran and Naor [18] and a recent
version of Helios [12] based on Pedersen commitments.

Moran-Naor protocol Moran and Naor [18] designed a protocol to be used with vot-
ing machines in a polling station. The protocol aims to achieve both verifiability and
everlasting privacy. From a high level point of view the protocol works as follows.

1. The voter enters his vote into the voting machine inside the voting booth. The
machine then computes a Pedersen commitment to this vote and provides a zero
knowledge proof to the voter that the computed value commits to the voter’s choice.
The commitment is then published on a bulletin board so that the voter can verify
the presence of his ballot.

2. After all ballots have been cast, the votes are published (in random order) on the
bulletin board together with a zero knowledge proof asserting that the published
votes correspond to the votes of the published commitments.

As we are only interested in privacy and not verifiability we ignore the zero knowledge
proofs in our modeling and simply represent the protocol by the process

MoranNaor(v1, v2)
def
= νpriv1. νpriv2.

V (priv1, v1) | V (priv2, v2) | νc.(DRE(priv1, priv2, priv3) | T)

where
V (priv , v)

def
= priv〈v〉

DRE(p1, p2, p3)
def
= p1(x1).νr1.bb〈Ped(x1, r1)〉.c〈x1〉 |
p2(x2).νr2.bb〈Ped(x2, r2)〉.c〈x2〉 |
p3(x3).νr3.bb〈Ped(x3, r3)〉.c〈x3〉

T = c(y1).bb〈y1〉 | c(y2).bb〈y2〉 | c(y3).bb〈y3〉

As the voter enters his vote in a private ballot booth, we have modelled this communi-
cation on a private channel. We have been able to show that MoranNaor verifies ever-
lasting privacy with respect to the channel bb and the equational theories introduced for
Pedersen commitments.

Helios with Pedersen commitments In [12], the authors propose a version of the
Helios voting system that provides everlasting vote privacy w.r.t. the bulletin board.
They rely for this on Pedersen commitments. In this section, we present this new version
of the Helios system.

1. The voter V chooses her candidate v and commits to it by generating a random
number r and computing the Pedersen commitment Ped(r, v). She then separately
encrypts the decommitment values r and v using the public key pk(skE) of the elec-
tion; and casts her commitment together with the encrypted decommitment values
and her identity on a private authenticated channel. Upon reception of the ballot,
the Bulletin Board (BB) publishes on a public web page the commitment Ped(r, v)
(after having checked that V is entitled to vote).

2. Once the voting phase is over, the ballots (i.e. the commitments together with the
encrypted decommitment values) are shuffled and rerandomized through mixnets.
The random permutation of the rerandomized ballots is published on the public
webpage (together with a zero knowledge proof of correct reencryption and mix-
ing).

3. Finally, the authorities decrypt the rerandomized and shuffled decommitment val-
ues and the BB publishes them.

The voter can be modelled by the following process:

V (id , auth, v)
def
= νs.νrv.νrs.

auth〈〈id , 〈Ped(s, v), 〈aenc(pk(skE), rv, v), aenc(pk(skE), rs, s)〉〉〉〉

She sends to the BB on the private authenticated channel authCh, her commitment
Ped(s, v) to vote v, together with her identity and the encrypted decommitment values
aenc(pk(skE), rv, v), aenc(pk(skE), rs, s).

The ballot box publishes her commitment for verifiability purposes. After having
received all votes, the BB publishes the votes in a random order through the process T .

BB(a1, a2, a3)
def
= a1(x). bb〈〈fst(x), fst(snd(x))〉〉. c〈x〉 |
a2(y). bb〈〈fst(x), fst(snd(x))〉〉. c〈x〉 |
a3(z). c〈z〉 | T

T
def
= c(x). c(y). c(z).if fst(snd(snd(x))) 6= fst(snd(snd(z)))

∧ fst(snd(snd(y))) 6= fst(snd(snd(z)))
∧ fst(snd(snd(x))) 6= fst(snd(snd(y))) then

bb〈adec(skE , fst(snd(snd(x))))〉 |
bb〈adec(skE , fst(snd(snd(y))))〉 |
bb〈adec(skE , fst(snd(snd(z)))〉

Finally we can define the voting protocol HeliosPed as

HeliosPed(v1, v2)
def
= νskE . νauth1. νauth2.

bb〈pk(skE)〉. (V (auth1, id1, v1) | V (auth2, id2, v2) | BB(auth1, auth2, auth3))

which verifies everlasting privacy with respect to the channel bb and the previously
introduced equational theories.

6 Tool support for everlasting indistinguishability

In order to verify everlasting indistinguishability on the examples presented in the pre-
vious section we have adapted two tools for automated verification of equivalence prop-
erties, AKISS [6] and ProVerif [5]. The two tools have shown themselves to be comple-
mentary and the results obtained using the tools are summarized in Figure 3.

AKISS. AKISS is a recent tool that has been designed to automatically prove trace
equivalence by translating processes into Horn clauses and using a dedicated resolution
algorithm. More precisely it can both under- and over-approximate trace equivalence in
the case of a bounded number of sessions, i.e. for processes without replication. The
tool has currently two limitations: it does not support private channels, or else branches
in conditionals. However, it is able to deal with a wide range of equational theories,
including the theory for Pedersen commitments introduced in the previous section.

We have adapted the tool in order to check forward indistinguishability and adapted
the syntax to declare everlasting channels and an everlasting equational theory. More
precisely we implemented an algorithm to check an under-approximation of forward
indistinguishability, yielding a proof of forward indistinguishability whenever the tool
responds positively. While false attacks are possible, we did not encounter any in our
case studies.

Absence of support for private channels and else branches required us to adapt some
of the examples. In particular we rewrote the processes by directly inlining private com-
munications, which in the examples maintained the same set of traces, hence preserving
everlasting indistinguishability. The weeding operation in Heliosnoreplay, Heliosnoid and
Heliosped requires the use of an else branch. We encoded a different weeding proce-
dure using cryptographic proofs of knowledge. While the vote replay attack on the
simple Helios protocol is found in less than 10 seconds, the verification of other exam-
ples ranged from a few minutes to several hours. While attempting to verify Heliosped

the tool ran out of memory and we were only able to verify a version of Heliosped

with two honest voters and no dishonest voter. As the tool is still in a prototype status

we are confident that future optimizations will allow the tool to scale up to this kind
of protocols. The tool and example files are available at https://github.com/
ciobaca/akiss.

ProVerif. The ProVerif tool [4] is an automatic cryptographic protocol verifier. It is
based on the representation of protocols by Horn clauses and relies on several approx-
imations. ProVerif can handle several types of properties and in particular equivalence
based properties [5] like the privacy-type ones which we are interested in this work.
Moreover, ProVerif can handle many different cryptographic primitives, including Ped-
ersen commitments as our case studies show.

The ProVerif tool works by translating biprocesses into Horn clauses built over
the two predicates attacker2 and message2. For equivalence checking, biprocess is
used to represent the pair of processes for which ProVerif is called to check equiv-
alence. The fact attacker2(M,M ′) means that the attacker can learn the value M
(resp. M ′) from the first (resp. second) process encoded by the biprocess. The fact
message2(M,N,M ′, N ′) means that the message N (resp. N ′) has appeared on the
channel M (resp. M ′) while executing the first (resp. second) process encoded by the
biprocess.

As for the AKISS tool, our extension of ProVerif consists in the addition of con-
structs for declaring everlasting channels and a future equational theory (different from
the present one). We introduce the extra binary predicate attacker2 ev for the gener-
ation of Horn clauses from biprocesses of our extended ProVerif language. The fact
attacker2 ev(M,M ′) means that in the future, the attacker will either remember or be
able to compute from messages he remembers, the valueM (resp.M ′). The declaration
of an everlasting channel c generates the following inheritance Horn clause:

message2 : c[], xm, c[], ym → attacker2 ev : xm, ym

This clause transports messages sent on the everlasting channel to the “future”. The
declaration of future equations generates the same equations as present ones but using
our new attacker2 ev predicate. For example, the everlasting equation

break(aenc(pk(xk), xr, xm)) = xk

will generate the two following clauses

attacker2 ev : x, aenc(pk(xk), xr, xm) → attacker2 ev : break(x), xk
attacker2 ev : aenc(pk(xk), xr, xm), x → attacker2 ev : xk, break(x)

These clauses model the “future” ability of the attacker to recover the decryption key of
ciphertexts he remembers.

Using our extension of the ProVerif tool, we managed to find the attack on Heliosnoreplay

presented in section 4.2, but also to prove that Heliosnoid, Heliospedersen and that Moran−
Naor satisfy everlasting vote privacy. However, because of the abstractions made by
ProVerif, we had to adapt our models of Heliosnoid and Heliospedersen in order for ProVerif
to succeed in proving that satisfy everlasting privacy. Indeed, these two protocols do
not satisfy uniformity under reductions, and ProVerif reported false attacks on these

two protocols. To overcome this limitation of ProVerif, we fixed the order in which the
three voters cast their votes.

The tool and example files are available at http://markryan.eu/research/
EverlastingPrivacy/.

AKISS ProVerif
Helios attack on privacy attack on privacy

Heliosnoreplay
proof of privacy

attack on everlasting privacy
proof of privacy

attack on everlasting privacy

Heliosnoid proof of everlasting privacy
proof of everlasting privacy

(voters casting their votes in fixed order)

Heliosped
proof of everlasting privacy

(2 honest voters only)
proof of everlasting privacy

(voters casting their votes in fixed order)
Moran-Naor proof of everlasting privacy proof of everlasting privacy

Fig. 3. Automated verification using AKISS and ProVerif.

7 Conclusion

The key idea of “practical” everlasting privacy is that in the future, an attacker will be
more powerful in terms of computation (he may be able to break the cryptography) but
less powerful in terms of the data he can operate on (transactions between a vote client
and the vote server may not have been stored). We realized this idea in the “symbolic”
model by allowing different equational theories in different phases, and restricting the
information flow from the earlier phase to the later one. We modified ProVerif and
AKISS to verify our examples automatically.

We foresee to apply our results to more evolved case studies, e.g. taking into ac-
count the zero knowledge proofs that we omitted here for simplicity. Our case studies
also show the limitations of the tools for checking equivalence properties which moti-
vates further work to increase their efficiency and scope. Finally, the ability to model
different equational theories with restricted information passing between them opens up
possibilities for modeling breakable cryptography and other kinds of forward security.
In particular it would be interesting to apply the notion of everlasting security to other
flavors of anonymity and untraceability.

Acknowledgements. The research leading to these results has received funding from
the European Research Council under the European Unions Seventh Framework Pro-
gramme (FP7/2007-2013) / ERC grant agreement no 258865, project ProSecure, the
ANR projects ProSe (decision ANR 2010-VERS-004) and JCJC VIP (decision ANR-
11-JS02-006). We also acknowledge funding from EPSRC projects EP/G02684X/1
“Trustworthy Voting Systems” and EP/H005501/1 “Analysing Security and Privacy
Properties”.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In 28th
Symposium on Principles of Programming Languages (POPL’01). ACM Press, 2001.

2. B. Adida. Helios: web-based open-audit voting. In 17th conference on Security symposium
(SS’08). USENIX Association, 2008.

3. M. Backes, C. Hritcu, and M. Maffei. Automated verification of remote electronic voting
protocols in the applied pi-calculus. In 21st IEEE Computer Security Foundations Sympo-
sium (CSF’08). IEEE, 2008.

4. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In 14th
Computer Security Foundations Workshop (CSFW’01). IEEE Comp. Soc. Press, 2001.

5. B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equivalences for
security protocols. Journal of Logic and Algebraic Programming, 75(1), 2008.

6. R. Chadha, Ş. Ciobâcă, and S. Kremer. Automated verification of equivalence properties of
cryptographic protocols. In 21th European Symposium on Programming (ESOP’12), volume
7211 of LNCS. Springer, 2012.

7. D. Chaum, P. Ryan, and S. Schneider. A practical, voter-verifiable election scheme. In 10th
European Symposium On Research In Computer Security (ESORICS’05), volume 3679 of
LNCS. Springer, 2005.

8. M. Clarkson, S. Chong, and A. Myers. Civitas: Toward a secure voting system. In 29th IEEE
Symposium on Security and Privacy (S&P’08), 2008.

9. V. Cortier and B. Smyth. Attacking and fixing helios: An analysis of ballot secrecy. In 24th
IEEE Computer Security Foundations Symposium (CSF’11), June 2011.

10. E. Cuvelier, T. Peters, and O. Pereira. Election verifiabilty or ballot privacy: Do
we need to choose? SecVote, Dagstuhl, 2012. secvote.uni.lu/slides/
opereira-verif-or-priv.pdf.

11. Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-type properties of
electronic voting protocols. Journal of Computer Security, 17(4):435–487, July 2009.

12. D. Demirel, J. Van De Graaf, and R. Araújo. Improving helios with everlasting privacy
towards the public. In International conference on Electronic Voting Technology/Workshop
on Trustworthy Elections (EVT/WOTE’12). USENIX Association, 2012.

13. J. Dreier, P. Lafourcade, and Y. Lakhnech. Defining privacy for weighted votes, single and
multi-voter coercion. In 17th European Symposium on Research in Computer Security (ES-
ORICS 2012), volume 7459 of LNCS. Springer, 2012.

14. A. Juels, D. Catalano, and M. Jakobsson. Coercion-resistant electronic elections. In ACM
workshop on Privacy in the electronic society (WPES’05). ACM, 2005.

15. S. Kremer and M. D. Ryan. Analysis of an electronic voting protocol in the applied pi-
calculus. In 14th European Symposium on Programming (ESOP’05), volume 3444 of LNCS.
Springer, 2005.

16. S. Kremer, M. D. Ryan, and B. Smyth. Election verifiability in electronic voting protocols. In
15th European Symposium on Research in Computer Security (ESORICS’10), volume 6345
of LNCS. Springer, 2010.

17. R. Küsters, T. Truderung, and A. Vogt. Accountability: definition and relationship to verifi-
ability. In ACM Conference on Computer and Communications Security (CCS 2010), 2010.

18. T. Moran and M. Naor. Receipt-free universally-verifiable voting with everlasting privacy.
In Advances in Cryptology - CRYPTO 2006, volume 4117 of LNCS. Springer, 2006.

19. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
Advances in Cryptology - CRYPTO ’91, volume 576 of LNCS. Springer, 1991.

