Second-Order Approximation for Variance Reduction in Multiple Importance Sampling

Heqi Lu 1, 2, 3 Romain Pacanowski 3, 1 Xavier Granier 1, 2, 3
1 MANAO - Melting the frontiers between Light, Shape and Matter
LaBRI - Laboratoire Bordelais de Recherche en Informatique, Inria Bordeaux - Sud-Ouest, LP2N - Laboratoire Photonique, Numérique et Nanosciences
Abstract : Monte Carlo Techniques are widely used in Computer Graphics to generate realistic images. Multiple Importance Sampling reduces the impact of choosing a dedicated strategy by balancing the number of samples between different strategies. However, an automatic choice of the optimal balancing remains a di cult problem. Without any scene characteristics knowledge, the default choice is to select the same number of samples from di erent strategies and to use them with heuristic techniques (e.g., balance, power or maximum). In this paper, we introduce a second-order approximation of variance for balance heuristic. Based on this approximation, we introduce an automatic distribution of samples for direct lighting without any prior knowledge of the scene characteristics. We demonstrate that for all our test scenes (with di erent types of materials, light sources and visibility complexity), our method actually reduces variance in average.We also propose an implementation with low overhead for o ine and GPU applications. We hope that this approach will help developing new balancing strategies. Multimedia:
Type de document :
Article dans une revue
Computer Graphics Forum, Wiley, 2013, 32 (7), pp.131-136. <10.1111/cgf.12220>
Liste complète des métadonnées



https://hal.inria.fr/hal-00878654
Contributeur : Xavier Granier <>
Soumis le : mercredi 30 octobre 2013 - 14:25:38
Dernière modification le : jeudi 9 février 2017 - 15:24:55
Document(s) archivé(s) le : vendredi 7 avril 2017 - 19:16:17

Fichiers

mis_pacific_2013.pdf
Fichiers produits par l'(les) auteur(s)


Identifiants

Collections

Citation

Heqi Lu, Romain Pacanowski, Xavier Granier. Second-Order Approximation for Variance Reduction in Multiple Importance Sampling. Computer Graphics Forum, Wiley, 2013, 32 (7), pp.131-136. <10.1111/cgf.12220>. <hal-00878654>

Partager

Métriques

Consultations de
la notice

706

Téléchargements du document

990