Second-Order Approximation for Variance Reduction in Multiple Importance Sampling - Archive ouverte HAL Access content directly
Journal Articles Computer Graphics Forum Year : 2013

Second-Order Approximation for Variance Reduction in Multiple Importance Sampling

(1, 2, 3) , (3, 1) , (1, 2, 3)
1
2
3

Abstract

Monte Carlo Techniques are widely used in Computer Graphics to generate realistic images. Multiple Importance Sampling reduces the impact of choosing a dedicated strategy by balancing the number of samples between different strategies. However, an automatic choice of the optimal balancing remains a difficult problem. Without any scene characteristics knowledge, the default choice is to select the same number of samples from different strategies and to use them with heuristic techniques (e.g., balance, power or maximum). In this paper, we introduce a second-order approximation of variance for balance heuristic. Based on this approximation, we introduce an automatic distribution of samples for direct lighting without any prior knowledge of the scene characteristics. We demonstrate that for all our test scenes (with different types of materials, light sources and visibility complexity), our method actually reduces variance in average.We also propose an implementation with low overhead for online and GPU applications. We hope that this approach will help developing new balancing strategies.
Fichier principal
Vignette du fichier
mis_pacific_2013.pdf (6.21 Mo) Télécharger le fichier
Vignette du fichier
mis_pacific_2013.png (203.55 Ko) Télécharger le fichier
Vignette du fichier
supplemental.pdf (25.15 Mo) Télécharger le fichier
Vignette du fichier
mis_pacific_2013_supp.pdf (25.24 Mo) Télécharger le fichier
Vignette du fichier
PG2013.mp4 (35.01 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Format : Figure, Image
Format : Other
Comment : There was an error in one derivation in the previous supplemental material. The final results do not change.
Origin : Files produced by the author(s)
Format : Video
Loading...

Dates and versions

hal-00878654 , version 1 (30-10-2013)

Identifiers

Cite

Heqi Lu, Romain Pacanowski, Xavier Granier. Second-Order Approximation for Variance Reduction in Multiple Importance Sampling. Computer Graphics Forum, 2013, 32 (7), pp.131-136. ⟨10.1111/cgf.12220⟩. ⟨hal-00878654⟩
810 View
900 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More