
HAL Id: hal-00878938
https://inria.hal.science/hal-00878938

Submitted on 31 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Checkpointing Period: Time vs. Energy
Guillaume Aupy, Anne Benoit, Thomas Herault, Yves Robert, Jack Dongarra

To cite this version:
Guillaume Aupy, Anne Benoit, Thomas Herault, Yves Robert, Jack Dongarra. Optimal Checkpointing
Period: Time vs. Energy. [Research Report] RR-8387, INRIA. 2013, pp.19. �hal-00878938�

https://inria.hal.science/hal-00878938
https://hal.archives-ouvertes.fr

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

8
3

8
7

--
F

R
+

E
N

G

RESEARCH

REPORT

N° 8387
October 31, 2013

Project-Team ROMA

Optimal Checkpointing

Period: Time vs. Energy

Guillaume Aupy, Anne Benoit, Thomas Hérault, Yves Robert, Jack

Dongarra

RESEARCH CENTRE

GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Optimal Checkpointing Period: Time vs.

Energy

Guillaume Aupy∗, Anne Benoit∗†, Thomas Hérault‡, Yves

Robert∗‡†, Jack Dongarra‡

Project-Team ROMA

Research Report n° 8387 — October 31, 2013 — 16 pages

Abstract: This short paper deals with parallel scientific applications using non-blocking and pe-
riodic coordinated checkpointing to enforce resilience. We provide a model and detailed formulas
for total execution time and consumed energy. We characterize the optimal period for both objec-
tives, and we assess the range of time/energy trade-offs to be made by instantiating the model with
a set of realistic scenarios for Exascale systems. We give a particular emphasis to I/O transfers,
because the relative cost of communication is expected to dramatically increase, both in terms of
latency and consumed energy, for future Exascale platforms.

Key-words: Fault-tolerance, checkpoint, energy, algorithm, model, exascale

∗ Ecole Normale Supérieure de Lyon, LIP, CNRS, INRIA, Université de Lyon, France
† Institut Universitaire de France, France
‡ University of Tennessee Knoxville, USA

Périodes optimales de checkpoint : temps vs

énergie

Résumé : Dans ce court papier, nous considérons des applications scien-
tifiques parallèles, utilisant des protocoles de sauvegarde de points de reprise
(checkpoints) coordonnés et périodiques afin de se préserver des fautes. Nous
fournissons un modèle et des formules détaillées pour le temps total d’exécution
et la consommation d’énergie de ces applications. Nous caractérisons pour les
deux objectifs, les périodes optimales, et par de nombreuses simulations réalistes
pour des systèmes exascales, montrons le compromis temps/énergie induit par
ces périodes. Finalement, nous insistons particulièrement dans cette étude sur le
coût des tranferts I/O : il est attendu que le coût relatif des communications aug-
mente drastiquement, à la fois en termes de latence, et en termes énergétiques,
pour les futures plateformes exascales.

Mots-clés : Tolérance aux pannes, checkpoint, énergie, algorithmes, modèle,
exascale

Optimal Checkpointing Period: Time vs. Energy 3

1 Introduction

A significant research effort is focusing on the characteristics, features, and
challenges of High Performance Computing (HPC) systems capable of reach-
ing the Exaflop performance mark [1, 2]. The portrayed Exascale systems will
necessitate billion way parallelism, resulting not only in a massive increase in
the number of processing units (cores), but also in terms of computing nodes.
Considering the relative slopes describing the evolution of the reliability of indi-
vidual components on one side, and the evolution of the number of components
on the other side, the reliability of the entire platform is expected to decrease,
due to probabilistic amplification. Even if each independent component is quite
reliable, the Mean Time Between Failures (MTBF) is expected to drop dras-
tically. Executions of large parallel applications on these systems will have to
tolerate a higher degree of errors and failures than in current systems. The de-
facto general-purpose error recovery technique in high performance computing
is checkpoint and rollback recovery. Such protocols employ checkpoints to pe-
riodically save the state of a parallel application, so that when an error strikes
some process, the application can be restored into one of its former states. The
most widely used protocol is coordinated checkpointing, where all processes
periodically stop computing and synchronize to write critical application data
onto stable storage. Coordinated checkpointing is well understood, at least in its
blocking form (when no computing activity takes place during checkpoints), and
good approximations of the optimal checkpoint interval exist; they are known
as Young’s and Daly’s formula [3, 4].

While reliability is a major concern for Exascale, another key challenge is
to minimize energy consumption, both for economic and environmental rea-
sons. One of the most power-consuming components of today’s systems is the
processor: even when idle, it dissipates a significant fraction of the total power.
However, for future Exascale systems, the power dissipated to execute I/O trans-
fers is likely to play an even more important role, because the relative cost of
communication is expected to dramatically increase, both in terms of latency
and consumed energy [5].

In this short paper, we investigate trade-offs between execution time and en-
ergy consumption for the execution of parallel applications on future Exascale
systems. The optimal period T opt

Time given by Young’s and Daly’s formula [3, 4]
will minimize (expected) execution time. But will it minimize energy consump-
tion? The answer is negative, mainly because the fraction of power PCal spent
when computing (by the CPUs) is not the same as the fraction of power PI/O

spent when checkpointing. In particular, we revisit the work of Meneses, Sarood
and Kalé [6] for checkpoint/restart, where formulas are given to compute the
time-optimum and energy-optimum periods. However, our model is more pre-
cise: (i) we carefully assess the impact of the power consumption required for
I/O activity, which is likely to play a key role at the Exascale; (ii) we consider
non-blocking checkpointing that can be partially overlapped with computations;
(iii) we give a more accurate analysis of the consumed energy.

Altogether, this short paper provides the following main contributions:

• We provide a refined analytical model to compute both the execution time
and the consumed energy with a given checkpoint period. The model
handles the case where checkpointing activity can be non-blocking, i.e.,

RR n° 8387

Optimal Checkpointing Period: Time vs. Energy 4

partially overlapped with computations.

• We provide analytical formulas to approximate the optimal period for time
T opt
Time as well as the optimal period for energy T opt

Energy, thereby refining
and extending Daly [4] and Meneses, Sarood and Kalé [6] results to non-
blocking checkpoints.

• We assess the range of time/energy trade-offs to be made by instantiating
the model with a set of realistic scenarios for Exascale systems.

2 Model

In this section, we introduce all the model parameters. We start with parameters
related to resilience (checkpointing) before moving to parameters related to
energy consumption.

2.1 Checkpointing

We model coordinated checkpointing [7] where checkpoints are taken at regular
intervals, after some fixed amount of work units have been performed. This cor-
responds to an execution partitioned into periods of duration T . Every period,
a checkpoint of length C is taken.

An important question is whether checkpoints are blocking or not. On some
architectures, we may have to stop executing the application before writing to
the stable storage where the checkpoint data is saved; in that case checkpoint
is fully blocking. On other architectures, checkpoint data can be saved on the
fly into a local memory before the checkpoint is sent to the stable storage,
while computation can resume progress; in that case, checkpoints can be fully
overlapped with computations. To deal with all situations, we introduce a slow-
down factor ω: during a checkpoint of duration C, the work that is performed
is ωC work units. In other words, (1 − ω)C work units are wasted due to
checkpoint jitter disrupting the progress of computation. Here, 0 ≤ ω ≤ 1 is an
arbitrary parameter. The case ω = 0 corresponds to a fully blocking checkpoint,
while ω = 1 corresponds to a checkpoint totally overlapped with computations.
All intermediate situations can be represented.

Next we have to account for failures. During t time units of execution, the
expectation of the number of failures is t

µ , where µ is the MTBF (Mean Time

Between Failures) of the platform. Note that if the platform if made of N
identical resources whose individual mean time between failures is µind, then
µ = µind

N . This relation is agnostic of the granularity of the resources, which can
be anything from a single CPU to a complex multi-core socket. When a failure
strikes, there is a downtime of length D (time to reboot the resource or set up a
spare), and then a recovery of length R (time to read the last stored checkpoint).
The work executed by the application since the last checkpoint and before the
failure needs to be re-executed. Clearly, the shorter the period T , the less
work to re-execute, but also the more overhead due to frequent checkpoints in
a failure-free execution. The best trade-off when ω = 0 (blocking checkpoint) is
achieved for T =

√
2Cµ+C (Young’s formula [3]) or T =

√

2C(µ+D +R)+C
(Daly’s formula [4]). Both formulas are first-order approximations and valid
only if all checkpoint parameters C, D and R are small in front of µ (and these

RR n° 8387

Optimal Checkpointing Period: Time vs. Energy 5

formulas collapse if they become negligible). In Section 3, we show how to
extend these formulas to the case of non-blocking checkpoints (see also [8] for
more details).

2.2 Energy

To compute the energy consumption of the application, we need to consider the
energy consumption of the different phases, and hence the power consumption
at each time-step. To this purpose, we define:

• PStatic: this is the base power consumed when the platform is switched
on.

• PCal: when the platform is active, we have to consider the CPU overhead
in addition to the static power PStatic.

• PI/O: similarly, this is the power overhead due to file I/O. This supple-
mentary power consumption is induced by checkpointing, or when recov-
ering from a failure.

• PDown: for coordinated checkpointing, when one processor fails, the rest
of the machine stays idle. PDown is the power consumption overhead when
one machine is down, that may be incurred for instance by rebooting the
machine. In general, we let PDown = 0.

Meneses, Sarood and Kalé [6] have a simpler model with two parameters,
namely L, the base power (corresponding to PStatic with our notations), and H,
the maximum power (corresponding to PStatic+PCal with our notations). They
use PI/O = PDown = 0.

In Section 3, we show how to compute the optimal period that minimizes
the energy consumption. In Section 4, we instantiate the model with expected
values for power consumption of Exascale platforms.

3 Optimal checkpointing period

We consider a parallel application whose execution time is Tbase without any
overhead due to the resilience method or the occurrence of failures. We com-
pute the expectation Tfinal of the total execution time (accounting both for
checkpointing and for failures) in Section 3.1, and the expectation Efinal of the
total energy consumed during this execution of length Tfinal in Section 3.2. We
will compute the optimal period T that minimizes the objective, either Tfinal or
Efinal.

3.1 Execution time

The total execution time Tfinal of the application depends on two sources of over-
head. We first compute Tff, the time taken by a fault-free execution, thereby
accounting only for the overhead due to periodic checkpointing. Then we com-
pute Tfails, the time lost due to failures. Finally, Tfinal = Tff + Tfails. We detail
here both computations:

RR n° 8387

Optimal Checkpointing Period: Time vs. Energy 6

• The reasoning to derive Tff is simple. We need to execute a total amount of
work equal to Tbase. During each period of length T , there is an amount
of time T − C where only computations take place, and an amount of
time C of checkpointing, where only a work ωC is done. Therefore,
the total number of work units executed during a period of length T is
T − C + ωC = T − (1− ω)C, and

Tff = Tbase
T

T − (1− ω)C
.

• The reasoning to compute Tfails is the following. Since the mean time
between two failures is µ, the average number of failures during execution
is Tfinal

µ . For each failure, the time lost is expressed as:

– D +R for downtime and recovery;

– a time ωC for the work that was done during the previous checkpoint
and that has to be redone because it was not checkpointed (because
of the failure);

– with probability T−C
T , the failure happens while we are not check-

pointing, and the time lost is on average A = T−C
2 ;

– otherwise, with probability C
T , the failure happens while we are check-

pointing, and the time lost is on average B = T − C + C
2 = T − C

2 .

The time lost for each failure is

D +R+ ωC +
T − C

T
A+

C

T
B = D +R+ ωC +

T

2
.

Finally,

Tfails =
Tfinal
µ

(

D +R+ ωC +
T

2

)

.

We are now ready to express the total execution time:

Tfinal = Tff + Tfails

= Tbase
T

T − (1− ω)C
+

Tfinal
µ

(

D +R+ ωC +
T

2

)

=
T

(T − (1− ω)C)
(

1− D+R+ωC+T/2
µ

)Tbase

=
T

(T − a)
(

b− T
2µ

)Tbase,

where a = (1− ω)C and b = 1− D+R+ωC
µ .

This equation is minimized for

T opt
Time =

√

2(1− ω)C(µ− (D +R+ ωC)). (1)

When ω = 0, we obtain an expression close to that of Young and Daly,
but slightly different because they have less accurately approximated the total
execution time. In the following, we let AlgoT be the checkpointing strategy
that checkpoints with period T opt

Time.

RR n° 8387

Optimal Checkpointing Period: Time vs. Energy 7

3.2 Energy consumption

In order to compute the total energy consumption of the execution, we consider
the different phases during which the different powers introduced in Section 2.2
are used:

• First, we consume PStatic during each time-step of the execution. Indeed,
even when a node fails and is shutdown, we still pay for the power of all
the other nodes, for the cooling system, etc. The corresponding energy
cost is TfinalPStatic.

• Next, let TCal be the time during which the CPU is used, inducing a power
overhead PCal. TCal includes the base work Tbase, and Tre-exec, the work
that must be re-executed after each failure (which we multiply by the
number of failures Tfinal/µ):

– with probability T−C
T , the failure does not happen during a check-

point, and the work to re-execute is A = ωC + T−C
2 ;

– with probability C
T , the failure happens during the execution of a

checkpoint, and the work to re-execute is B = ωC + T − C + ωC
2 .

We derive Tre-exec = T−C
T A+ C

T B, hence

Tre-exec = ωC +
T 2 − C2

2T
+

ωC2

2T
.

Finally, we have:

TCal = Tbase +
Tfinal
µ

(

ωC +
T 2 − C2

2T
+

ωC2

2T

)

.

The corresponding energy consumption is TCalPCal.

• Let TI/O be the time during which the I/O system is used, inducing a power
overhead PI/O. This time corresponds to checkpointing and recovery from
failures.

– The total number of checkpoints that are taken in a fault-free execu-
tion is equal to the number of periods, Tbase

T−(1−ω)C , and the time taken

by checkpoints is therefore TbaseC
T−(1−ω)C .

– For each failure, there is an additional overhead:

1. the system needs to recover, which lasts R time-steps;

2. with probability T−C
T , the failure does not happen during a

checkpoint, and there is no additional I/O overhead;

3. however, with probability C
T , the failure happens during a check-

point, and the I/O time wasted is (in average) C
2 .

Altogether, we obtain

TI/O =
TbaseC

T − (1− ω)C
+

Tfinal
µ

(

R+
C2

2T

)

.

The corresponding energy consumption is TI/OPI/O.

RR n° 8387

Optimal Checkpointing Period: Time vs. Energy 8

• Finally, let TDown be the total down time, incurring a power overhead
PDown. We have

TDown =
Tfinal
µ

D,

and the corresponding energy cost is TDownPDown. This term is only in-
cluded for full generality, as we expect to have PDown = 0 in most scenar-
ios.

The final expression for the total energy consumed is

Efinal = TCalPCal + TI/OPI/O + TDownPDown + TfinalPStatic

=

(

Tbase +
Tfinal
µ

(

ωC +
T 2 − C2

2T
+

ωC2

2T

))

PCal

+

(

Tfinal
µ

(

R+
C2

2T

)

+ C
Tbase

T − (1− ω)C

)

PI/O

+
Tfinal
µ

DPDown + TfinalPStatic.

It is important to understand that Tfinal 6= TCal + TI/O + TDown, unless
ω = 0. Indeed, CPU and I/O activities are overlapped (and both consumed)
when checkpointing. To ease the derivation of the optimal period that minimizes
Efinal, we introduce some notations and let PCal = αPStatic, PI/O = βPStatic,

and PDown = γPStatic. Re-using parameters a = (1−ω)C and b = 1− D+R+ωC
µ

from Section 3.1, we obtain:

T ′
final

Tbase
=

−ab+ T 2

2µ

(T − a)
2
(

b− T
2µ

)2 , and

E ′
final

PStatic
=

T ′
final

µ

(

αωC+βR+γD+
αT

2
−α(1− ω)C2

2T
+
βC2

2T
+µ

)

+
Tfinal
2µ

(

α+
α(1− ω)C2

T 2
− βC2

T 2

)

− βCTbase
(T−(1−ω)C)

2 .

Then, letting K =
(T−a)2(b− T

2µ)
2

PStaticTbase
, we have:

RR n° 8387

Optimal Checkpointing Period: Time vs. Energy 9

KE ′
final =

−ab+ T 2

2µ

µ

(

(αωC+βR+γD+µ)+
αT

2
+
α(1− ω)C2

2T
+
βC2

2T

)

+
(T−a)(b− T

2µ)

2µ

(

α+
α(1− ω)C2−βC2

T

)

−βC

(

b− T

2µ

)2

= T 3

(

1

4µ
− 1

4µ

)

+T 2

(

αωC+βR+γD

2µ2
+
b+ a

2µ

2µ
− βC

4µ2
+

1

2µ

)

+ T

(

−ab

2µ
− ab

2µ
+
βCb

µ
−2

(α(1− ω)−β)C2

4µ2

)

−βCb2

− ab (αωC+βR+γD+µ)

µ
−
(

b

2µ
− a

4µ2

)

(α(1− ω)−β)C2

+
1

T

(

(α(1− ω)−β)
C

2µ
−(α(1− ω)−β)

C

2µ

)

= T 2

(

αωC+βR+γD

2µ2
+

b

2µ
+
a−βC

4µ2
+

1

2µ

)

+ T

(

(βC−a)b

µ
−2

(α(1− ω)−β)C2

4µ2

)

− ab (αωC+βR+γD+µ)

µ
−βCb2

+

(

b

2µ
+

a

4µ2

)

(α(1− ω)−β)C2 .

Let T opt
Energy be the only positive root of this quadratic polynomial in T :

T opt
Energy is the value that minimizes Efinal. In the following, we let AlgoE be

the checkpointing strategy that checkpoints with period T opt
Energy.

As a side note, let us emphasize the differences with the approach of Meneses,
Sarood and Kalé [6] when restricting to the case ω = 0 (because they only
consider the blocking variant). For each failure, they consider that:

• energy lost due to re-execution is T−2C
2 PCal, while we have

(

T − C

T

(

T − C

2

)

+
C

T
(T − C)

)

PCal =
T 2 − C2

2T
PCal

• energy lost due to I/O is CPI/O, while we have C2

2T PI/O.

Theses differences come from our more detailed analysis of the impact of the
failure location, which can strike either during the computation phase, or during
the checkpointing phase, of the whole period.

4 Experiments

In this section, we instantiate the previous model with scenarios taken from
current projections for Exascale platforms [1, 2, 5, 9]. We choose realistic values

RR n° 8387

Optimal Checkpointing Period: Time vs. Energy 10

for all model parameters: this includes all types of power consumption (PStatic,
PCal, PI/O and PDown), all checkpoint parameters (C, R, D and ω), and the
platform MTBF µ. We start with a word of caution: our choices for these
parameters may be somewhat arbitrary, and do not cover the whole range of
scenarios that can be investigated. However, a key feature of our model is its
robustness: as long as µ is reasonably large in front of checkpoint times, the
model is able to accurately predict the best period for execution time and for
energy consumption.

The power consumption of an Exascale machine is capped to 20 Mega-watts.
With 106 nodes, this represents a nominal power of 20 milli-watts per node. Let
us express all power values in milli-watts. A reasonable scenario is to assume
that half this power is used for operating the platform, hence to let PStatic =
10. The overhead due to computing would represent the other half, hence
PCal = 10. As for communications and I/Os, which are expected to cost an
order of magnitude more than computing [5], we take an overhead of 100, hence
PI/O = 100. A key parameter for the experimental study is the ratio

ρ =
PStatic + PI/O

PStatic + PCal
=

1 + β

1 + α
. (2)

With our values, we get ρ = 5.5. Note that if we used PStatic = 5 and
kept the same overheads 10 and 100 for computing and I/O respectively, we
would get PCal = 10, PI/O = 100, and ρ = 7. These two representative values
of ρ (ρ = 5.5 and ρ = 7) are emphasized by vertical arrows in the plots below
on Figure 1. As for PDown, the power during downtime, we use PDown = 0,
meaning that during downtime we only account for the static power PStatic of
the processors that are idle.

The Jaguar platform, with N = 45, 208 processors, is reported to have ex-
perienced about one fault per day [10], which leads to an individual (processor)
MTBF µind equal to 45,208

365 ≈ 125 years. Therefore, we set the individual (pro-
cessor) MTBF to µind = 125 years. Letting the total number of processors
N vary from N = 219, 150 to N = 2, 191, 500 (future exascale platforms), the
platform MTBF µ varies from µ = 300 min (5 hours) down to µ = 30 min.
The experiments use resilience parameters that are representative of current
and forthcoming large-scale platforms [9, 11]. We take C = R = 10 min, D = 1
min, and ω = 1/2.

On Figures 1 and 2, we evaluate the impact of the ratio ρ (see Equation (2))
on the gain in energy and loss in time of AlgoE with respect to AlgoT. The
general trend is that using AlgoE can lead to significant gains in energy at the
price of a small increase in execution time.

We then study in Figure 3 the scalability of the approach on forthcoming
platforms. We set the duration of the complete checkpoint and rollback (C and
R, respectively) to 1 minute, independently of the number of processors, and we
let the downtime D equal to 0.1 minutes. It is reasonable to consider that check-
point storage time will not increase with the number of nodes in the future, but
on the contrary will remain constant. Indeed, system designers are studying a
couple of alternative approaches. One consists in featuring each computing node
with local storage capability, ensuring through the hardware that this storage
will remain available during a failure of the node. Another approach consists
in using the memory of the other processors to store the checkpoint, pairing
nodes as “buddies”, thus allowing to take advantage of the high bandwidth

RR n° 8387

Optimal Checkpointing Period: Time vs. Energy 11

capability of the high speed network to design a scalable checkpoint storage
mechanism [12, 13, 14, 15].

The MTBF for 106 nodes is set to 2 hours, and this value scales linearly
with the number of components. Given these parameters, Figures 3a and 3b
shows (i) the execution time ratio of AlgoE over AlgoT, and (ii) the energy
consumption ratio of AlgoT over AlgoE, both as a function of the number
of nodes. Figures 3a and 3b confirm the important gain in energy that can be
achieved, namely up to 30% for a time overhead of only 12%. When the number
of nodes gets very high (up to 108), then we observe that both energy and time
ratios converge to 1. Indeed, when C becomes of the order of magnitude of the
MTBF, then both periods T opt

Time and T opt
Energy become close to C to account for

the higher failure rate.

5 Conclusion

In this short paper, we have provided a detailed analysis to compute the op-
timal checkpointing period, when the checkpointing activity can be partially
overlapped with computations. We have considered two distinct objectives: ei-
ther the goal is to minimize the total execution time, or it is to minimize the total
energy consumption. Because of the different power consumption overheads due
to computations and I/Os, we obtain different optimal periods.

We have instantiated the formulas with values derived from current and
future Exascale platforms, and we have studied the impact of the power overhead
due to I/O activity on the gains in time and energy. With current values, we
can save more than 20% of energy with an MTBF of 300 min, at the price of
an increase of 10% in the execution time. The maximum gains are expected for
a platform with between 106 and 107 processors (up to 30% energy savings).

Our analytical model is quite flexible and can easily be instantiated to in-
vestigate scenarios that involve a variety of resilience and power consumption
parameters.

Acknowledgements

This work was supported in part by the ANR RESCUE project. A. Benoit and
Y. Robert are with the Institut Universitaire de France.

RR n° 8387

Optimal Checkpointing Period: Time vs. Energy 12

 1
 1.05

 1.1
 1.15

 1.2
 1.25

 1.3
 1.35

 1.4
 1.45

 1 2 3 4 5 6 7 8 9 10

E
fi
n

a
l(
T

ti
m

e
)/

E
fi
n

a
l(
T

e
n

e
rg

y
)

ρ

(µ=300)
(µ=120)

(µ=30)

 1
 1.02
 1.04
 1.06
 1.08

 1.1
 1.12
 1.14
 1.16
 1.18

 1 2 3 4 5 6 7 8 9 10

T
fi
n

a
l(
T

e
n

e
rg

y
)/

T
fi
n

a
l(
T

ti
m

e
)

ρ

Figure 1 – Time and energy ratios as a function of ρ, with C = R = 10 min,
D = 1 min, γ = 0, ω = 1/2, and various values for µ.

RR n° 8387

Optimal Checkpointing Period: Time vs. Energy 13

 50 100 150 200 250 300

µ

 1

 10

ρ

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

(a) Energy ratio of AlgoT over AlgoE

 50 100 150 200 250 300

µ

 1

 10

ρ

 1

 1.05

 1.1

 1.15

 1.2

 1.25

(b) Execution time ratio of AlgoE over AlgoT

Figure 2 – Ratios of the different strategies with C = R = 10 min, D = 1 min,
γ = 0, ω = 1/2 as a function of µ and ρ.

RR n° 8387

Optimal Checkpointing Period: Time vs. Energy 14

 1
 1.05

 1.1
 1.15

 1.2
 1.25

 1.3
 1.35

10
5

10
6

10
7

E
fi
n

a
l(
T

ti
m

e
)/

E
fi
n

a
l(
T

e
n

e
rg

y
)

Number of nodes

(ρ=5.5)

 1
 1.02
 1.04
 1.06
 1.08

 1.1
 1.12
 1.14

10
5

10
6

10
7

T
fi
n

a
l(
T

e
n

e
rg

y
)/

T
fi
n

a
l(
T

ti
m

e
)

Number of nodes

(ρ=5.5)

(a) Time and energy ratios, as a function of the number of nodes, when ρ = 5.5

 1
 1.05

 1.1
 1.15

 1.2
 1.25

 1.3
 1.35

10
5

10
6

10
7

E
fi
n

a
l(
T

ti
m

e
)/

E
fi
n

a
l(
T

e
n

e
rg

y
)

Number of nodes

(ρ=7)

 1
 1.02
 1.04
 1.06
 1.08

 1.1
 1.12
 1.14

10
5

10
6

10
7

T
fi
n

a
l(
T

e
n

e
rg

y
)/

T
fi
n

a
l(
T

ti
m

e
)

Number of nodes

(ρ=7)

(b) Time and energy ratios, as a function of the number of nodes, when ρ = 7

Figure 3 – Ratios of total energy and time for the two period strategies, as a
function of the number of nodes, with µ = 120 min for 106 nodes, C = R = 1
min, D = 0.1 min, γ = 0, ω = 1/2.

RR n° 8387

Optimal Checkpointing Period: Time vs. Energy 15

References

[1] J. Dongarra, P. Beckman, P. Aerts, F. Cappello, T. Lippert, S. Matsuoka,
P. Messina, T. Moore, R. Stevens, A. Trefethen, and M. Valero, “The
international exascale software project: a call to cooperative action by the
global high-performance community,” Int. Journal of High Performance
Computing Applications, vol. 23, no. 4, pp. 309–322, 2009.

[2] V. Sarkar et al., “Exascale software study: Software chal-
lenges in extreme scale systems,” 2009, white paper available at:
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/
ECSS%20report%20101909.pdf.

[3] J. W. Young, “A first order approximation to the optimum checkpoint
interval,” Comm. of the ACM, vol. 17, no. 9, pp. 530–531, 1974.

[4] J. T. Daly, “A higher order estimate of the optimum checkpoint interval
for restart dumps,” FGCS, vol. 22, no. 3, pp. 303–312, 2004.

[5] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale computing technology
challenges,” in VECPAR’10, the 9th Int. Conf. High Performance Com-
puting for Computational Science, ser. LNCS 6449. Springer-Verlag, 2011,
pp. 1–25.

[6] E. Meneses, O. Sarood, and L. V. Kalé, “Assessing Energy Efficiency of
Fault Tolerance Protocols for HPC Systems,” in Proceedings of the 2012
IEEE 24th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD 2012), New York, USA, October
2012.

[7] K. M. Chandy and L. Lamport, “Distributed snapshots: Determining
global states of distributed systems,” in Transactions on Computer Sys-
tems, vol. 3(1). ACM, February 1985, pp. 63–75.

[8] G. Bosilca, A. Bouteiller, E. Brunet, F. Cappello, J. Dongarra, A. Guer-
mouche, T. Hérault, Y. Robert, F. Vivien, and D. Zaidouni, “Unified model
for assessing checkpointing protocols at extreme-scale,” Concurrency and
Computation: Practice and Experience, October 2013, to be published. Also
available as INRIA research report 7950 at graal.ens-lyon.fr/∼yrobert.

[9] K. Ferreira, J. Stearley, J. H. I. Laros, R. Oldfield, K. Pedretti,
R. Brightwell, R. Riesen, P. G. Bridges, and D. Arnold, “Evaluating the
Viability of Process Replication Reliability for Exascale Systems,” in Proc.
of the ACM/IEEE SC Conf., 2011.

[10] G. Zheng, X. Ni, and L. V. Kalé, “A scalable double in-memory checkpoint
and restart scheme towards exascale,” in Dependable Systems and Networks
Workshops (DSN-W), 2012.

[11] F. Cappello, H. Casanova, and Y. Robert, “Preventive migration vs. pre-
ventive checkpointing for extreme scale supercomputers,” Parallel Process-
ing Letters, vol. 21, no. 2, pp. 111–132, 2011.

RR n° 8387

http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
graal.ens-lyon.fr/~yrobert

Optimal Checkpointing Period: Time vs. Energy 16

[12] G. Zheng, L. Shi, and L. V. Kalé, “FTC-Charm++: an in-memory
checkpoint-based fault tolerant runtime for Charm++ and MPI,” in Proc.
2004 IEEE Int. Conf. Cluster Computing. IEEE Computer Society, 2004.

[13] X. Ni, E. Meneses, and L. V. Kalé, “Hiding checkpoint overhead in HPC ap-
plications with a semi-blocking algorithm,” in Proc. 2012 IEEE Int. Conf.
Cluster Computing. IEEE Computer Society, 2012.

[14] J. Dongarra, T. Hérault, and Y. Robert, “Revisiting the double checkpoint-
ing algorithm,” in 15th Workshop on Advances in Parallel and Distributed
Computational Models APDCM 2013. IEEE Computer Society Press,
2013.

[15] R. Rajachandrasekar, A. Moody, K. Mohror, and D. K. D. Panda, “A 1
PB/s file system to checkpoint three million MPI tasks,” in Proceedings of
the 22nd international symposium on High-performance parallel and dis-
tributed computing, ser. HPDC ’13. New York, NY, USA: ACM, 2013, pp.
143–154.

RR n° 8387

RESEARCH CENTRE

GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399

	Introduction
	Model
	Checkpointing
	Energy

	Optimal checkpointing period
	Execution time
	Energy consumption

	Experiments
	Conclusion

