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Local Regularity Preserving
Signal Denoising I: H•older Exponents

A. Echelard and J. L�evy V�ehel �

October 10, 2013

Abstract

We propose a denoising method that has the property of preserving
local regularity, in the sense of local H•older exponent. This approach is
�tted to the processing of irregular signals, and gives specially relevant
results for those displaying a local form of scale invariance known as
localisability. A wavelet decomposition is used to measure and control
the local H•older exponent. The main ingredient of the algorithm is
an estimator (which is of independent interest) of the time-dependent
cut-o� scale beyond which wavelet coe�cients are mainly due to noise.
Based on local regularity estimated from information below the cut-o�
scale, these small-scale coe�cients -which govern the texture- are cor-
rected so that the H•older exponent of the denoised signal matches the
one of the original signal. The processing is only slightly more com-
plex than classical wavelet coe�cients thresholding, resulting in fast
computing times. Numerical experiments show the good performance
of this scheme on various localisable signals.

1 Recalls on H•older exponents and notations

We use the following notation throughout:f is a continuous-time signal that
is always assumed to belong to the global H•older spaceC � ((0; 1)) for some

� A. Echelard and J. L�evy V�ehel are with the Regularity Team, INRIA, Ecole Cen-
trale Paris, Grande Voie des Vignes, 92290, Chatenay Malabry, France. e-mail: an-
toine.echelard@gmail.com, jacques.levy-vehel@inria.fr
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� > 0. Recall that, when� 2 (0; 1), f 2 C � ((0; 1)) means that there exists a
constant C such that, for all (x; y) 2 (0; 1)2, jf (x) � f (y)j � Cjx � yj � . More
generally, whenm < � < m +1 with m an integer,f 2 C � ((0; 1)) means that
f is m times continuously di�erentiable andjf (m)(x)� f (m)(y)j � Cjx� yj � � m .
The global H•older exponent off in the interval I , denoted � f (I ) or � f , is
the supremum of the� such that f belongs to C � (I ). The local H•older
exponent of f at x 2 [0; 1], denoted � f (x) or � (x) is de�ned as � (x) =
lim � ! 0+ � f (B (x; � )), where B(x; � ) is the open ball centred atx with radius
� . Thus, � (x) measures the regularity off \around" x. A small value means
an irregular behaviour, andvice-versa.
We assume without loss of generality that our signals are observed on [0; 1].
When we write that f n is an approximation at resolutionn of f , we mean that
f n is a representation off using 2n samples. The letterh will always denote
a non-decreasing function fromN to N tending to in�nity and such that
h(n) � n for all n. The abbreviation wlog means \without loss of generality",
w.r.t. stands for \with respect to", i� is \if and only if", a.s. means \almost
surely", i.i.d. abbreviates \independent and identically distributed", r.v.
stands for \random variables",N (0; 1) is used to denote the centred normal
law with unit variance, and log is base-2 logarithm.

2 Statement of the problem

We consider the following situation: one observesY = X + B where X is
the original signal and B is a white noise. One seeks an estimator̂X of
X that has \good" properties. Obviously, one desirable property is thatX̂
is \close" to X in some sense. Typically, the error is measured by some
risk function, and one wishes that, as the resolutionn tends to in�nity, this
error tends to 0 at a fast rate. Additional properties are often useful. For
instance, the celebrated method based on wavelet coe�cients thresholding
with the so-called universal threshold (see below for details) ensures that,
with probability tending to one when n tends to in�nity, X̂ is at least as
smooth asX . The signi�cance of this feature is that, when presented with
pure noise (i.e. when Y = B), the denoising scheme will indeed detect the
absence of a signal (i.e. X̂ = 0).

The aim of the present work is to go beyond this property by design-
ing a method that will ensure that, a.s., asn tends to in�nity, X̂ has the
same local regularity -as measured by the local H•older exponent- asX for a
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Figure 1: Original multifractional Brownian motion (top left), denoising with
SURE thresholding (top right) and regularity preservation method (bottom
left), and zoom on a superposition of the three signals (bottom right).

large class of (irregular) signals. There are several reasons for enforcing this
constraint. First, it implies that, when presented with a \clean" signal (i.e.
when Y = X ), the denoising scheme will indeed yield̂X ' X . This prop-
erty is not shared by classical wavelet coe�cients thresholding in the case
whereX is everywhere irregular (for instance, fractal). In this situation,X̂
is signi�cantly smoother than X (see Figure 1). Second, denoising is often
only the �rst step in a chain of processings of the signal. While any decent
scheme should guarantee that̂X and X are close, oversmoothing typically
entailed by most methods may reduce the e�ciency of the subsequent steps.
This is the case when further processing is based on the study of irregularity.
Examples include the analysis of biomedical signals (measuring the regular-
ity of ECG allows one to assess the condition of the heart), �nancial records
(where local regularity is related to the behaviour of agents and volatility of
the market) or geophysical signals (e.g., for segmentation).

Of course, denoising everywhere irregular signals with the additional con-
straint of restoring the original regularity is more of a challenge, as it is
di�cult to distinguish the texture of the signal from the one of noise. We
shall however see below that it is possible to ensure convergence of the es-
timated local H•older exponents ofX̂ to the ones ofX with good practical
performance provided resolution is large enough.

The method that we develop in this work relies on a wavelet decompo-
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sition. We therefore briey recall now some basic facts about wavelet-based
denoising. This powerful approach has been very popular since the semi-
nal papers [1, 2]. The essential idea is that, for many signals, only a few
wavelet coe�cients have signi�cant magnitude, whereas the coe�cients ofB
are uniformly distributed provided one uses an orthonormal wavelet basis.
To denoiseY, it thus seems natural to replace its small coe�cients by 0,
and to keep or shrink large ones. This may be done in several ways, and
there is a huge number of variants in this family of methods. In the sequel,
we will denote � and  the father and mother wavelets of a multiresolution
analysis, and we assume that both functions are compactly supported and
that  has su�ciently many vanishing moments. The wavelet coe�cients of
X are denotedx = ( x jk ) j;k , those ofY, y = ( yjk ) j;k , and x̂ = ( x jk ) j;k denotes
the coe�cients of the denoised signalX̂ . In the simplest case, thresholding
is local, i.e. each coe�cient is processed independently. The most well-
known schemes are the hard- and soft-thresholding, where ^x = y 1jyj� � or
x̂ = sign(y) max(0; jyj � � ). Popular choices for� include the minimax

threshold� M = �̂� �
n where � �

n = inf � supx

n
R � (x)

2� n + Roracle (x)

o
and �̂ is the esti-

mated standard deviation ofB , R� (x) = E((x̂ � (y) � x)2, and Roracle (x) is
the ideal risk given by an oracle, such as DLP (diagonal linear projection) or
DLS (diagonal linear shrinker) ones;the universal threshold� U = �̂ 2� n=2

p
2n;

which ensures that, with probability tending to one when resolution tends
to in�nity, the zero signal contaminated with additive white Gaussian noise
will be correctly estimated to zero; and theSURE threshold� S

j , obtained by
considering the quantity

SURE(�; X ) = S � 2] f i; kX i k � � g + min( kX i k; � )2

whereX i = yj;k

�̂ and S = 2 j � 1, and setting

� S
j = argmin

0� � � � U
j

h
SURE

�
�;

yj;k

�̂

�i
with � U

j = �̂
p

2 log(2j ):

Other denoising rules include global thresholding, where all the coe�cients of
a given scale are processed in a single way, see, e.g. [3], and block thresholding
[4]. The article [5] presents many other variants. They all typically perform
well, although they tend to oversmooth the signal and also to introduce
oscillations called \ringing e�ect". Ringing may be reduced signi�cantly
by various means. One is to use translation invariant wavelet coe�cients
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thresholding [6]. This however increases oversmoothing. A class of methods
that re�nes thresholding usinga priori information, which has been and still
is the subject of substantial e�orts, rely on Bayesian approaches. We do not
go into details of these methods and refer instead the reader to [7, 8] and
references therein.
To explain our concern in this work, we illustrate the oversmoothing e�ect
of thresholding on a fractal signal in Figures 4 to 6. The original signalf
is a Weierstrass function with exponent� = 0:5, that was corrupted with
additive Gaussian white noise to obtain the signalf n (f and f n are displayed
in Figure 3), and denoised with hard-thresholding using a universal threshold
(signal gn ) 1. Each �gure corresponds to a speci�c resolution. Althoughgn is
fairly close tof , it is clearly oversmoothed. As mentioned previously, this is a
serious drawback in some applications where recovering the original regularity
in addition to the overall shape is important. To explain in a heuristic way
the phenomenon of oversmoothing in this particular case, recall the following
result:

Proposition 1. [9] Let f 2 C � ((0; 1)) with � > 0. Then

1=2 + � f = lim inf
j !1

min
k2 Z

logjhf;  jk ij
� j

; (1)

wherehf;  jk i is the wavelet coe�cient of f at scalej and location k. Thus,
for the Weierstrass function, the coe�cients at scalej are of the order of 2� j�

or smaller. For largej , they are all are negligible w.r.t. the ones of the noise.
As a consequence, the corresponding coe�cients off n are essentially those
of the noise and they get thresholded. This implies thatgn has vanishing
coe�cients at these scales and thus the original texture is lost. Our �rst
aim will be to make this line of reasoning mathematically precise. This will
allow us to explain another phenomenon observed on Figures 4 to 6: seen
from \far away", a signal denoised by wavelet thresholding typically looks
smoother than the original (Fig. 4), but this impression diminishes as one
zooms in (Fig. 6). A precise understanding of this feature will lead us to
propose our new denoising scheme, which avoids this drawback.
Our approach �ts in the paradigm proposed in [10]: rather than putting
small coe�cients to zero in the noisy signal, one tries to deduce their values
from the ones of the large coe�cients, which are assumed to be reliable. An

1Most other denoising based on thresholding yield the same kind of results.
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example of implementation of this paradigm is total variation-based denois-
ing, as exposed in [11]. In this variant, coe�cients larger than a threshold
are kept unchanged, while smaller ones are modi�ed so as to minimize total
variation. This permits to reduce ringing e�ects, but does not typically pre-
serve texture. More generally, the formulation of [10] may be described as
follows: let I be the set of indices for which the coe�cients are larger than
the threshold. Then the denoised signal~f n is such that its coe�cients with
indices inI are not modi�ed, whereas the other ones are chosen to be smaller
in absolute value than a constantQ and such that an \energy" �( ~f n ) is min-
imum. While implementations of this paradigm improve on thresholding, in
particular w.r.t. ringing e�ects, most are not satisfactory when it come to
preserving regularity. In particular, they are not �tted to the processing of
strongly textured signals as are fractal or, more generally, localisable signals.
Recall that a processX is called localisable atu if there exists � > 0 and a
non-trivial processX 0

u such that [12]

lim
r ! 0

X (u + rt ) � X (u)
r �

= X 0
u(t): (2)

The limit (2) may be taken either in �nite dimensional distributions or dis-
tribution. Classical examples of localisable processes include multifractional
Brownian motion, multifractional stable motion [13] and multistable mo-
tion [14]. Under general conditions, the local formX 0

u is self-similar with
stationary increments (sssi). Conversely, all sssi processes are localisable.
Thus, localisable signals display a local form of scale invariance, and are typ-
ically everywhere irregular with a regularity that is time-dependent. They
are often encountered in biomedicine, �nance and geophysics. Local regular-
ity is an important feature in such signals, as it bears crucial information on
the state of the system.
Our denoising scheme follows a modi�ed version of the paradigm of [10], with
the di�erence that, rather than minimizing an energy functional, we seek
to restore the regularity of the original signal, understood in a local sense
and measured with the help of the H•older exponent. This strategy is more
relevant than thresholding for signals with non-sparse wavelet decomposition,
as are localisable signals. For such a restoration to be possible, we need to
be able to estimate the original regularity. This is performed by estimating,
for each point, a cut-o� scale beyond which the wavelet coe�cients ofY are
close to the ones ofX . The H•older exponent is then estimated from these
wavelet coe�cients. In contrast with the paradigm, we do not decide to
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keep coe�cients unchanged if they are large enough, but rather when their
scale is larger than the local cut-o�. Coe�cients below the cut-o� scale are
processed as follows: roughly speaking, a signal with exponent� at point
t has wavelet coe�cients abovet that are smaller in absolute value than
2� j (� +1 =2) at scale j . If a coe�cient below the cut-o� scale is larger than
this value, it is thresholded, otherwise it is kept unchanged. This processing
is based on interscale relations between the wavelet coe�cients, and uses
information on \known" coe�cients to deduce the values of unknown ones.
We note here that some works have already used regularity as a guide for
denoising [15]. In contrast to our approach, they do not aim at recovering the
regularity of the original signal. We also mention that interscale correlations
of wavelet coe�cients have already been exploited in a di�erent way e.g.
in [16]. Finally, [17] develops an approach that bears some similarities with
ours in a di�erent context.
The remainder of this article is organized as follows. In Section 3, we de�ne
a notion of \H•older exponent in a range of scales" that is able to account for
the perceived regularity of a signal at �nite resolution. We examine in some
details its properties in Section 4, in particular in relation with sampling
and wavelet coe�cients, and its links with H•older exponents. Section 5
studies the behaviour of the H•older exponent in a range of scales of a signal
corrupted by Gaussian white noise, and Section 6 examines what happens
in terms of regularity when a signal is denoised with hard-thresholding. The
main theoretical result of this work is presented in Section 7: it provides an
estimator of the location-dependent scale below which the wavelet coe�cients
of the original signal become negligible w.r.t. the ones of the noise. We
believe that this result is of independent interest. With the help of this
estimator, we present our denoising scheme in Section 8, and show that it is
able to recover the regularity of the original signal. Finally, Section 9 displays
experiments on localisable signals.
In a sequel to this paper, we extend the results obtained here when regularity
is measured in a 2-microlocal sense rather than with H•older exponents. 2-
microlocal analysis gives a complete description of the local regularity of
signals, and investigating denoising schemes in this frame provides further,
sometimes unexpected, insights. For instance, we will prove that thresholding
must typically introduce oscillations -in a well-de�ned mathematical sense-
which are the source of the ringing e�ect. We will also show how to avoid
this e�ect.
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3 Exponents in a range of scales

Recall that, here as everywhere in the article,f is assumed to belong to
C � ((0; 1)) for some� > 0.

Case of a single function
In applications, one deals with signals sampled at �nite resolution. As a
consequence, Formula (1) cannot be applied directly to estimate� f . This
is a serious problem, as the value of the H•older exponent is independent of
an arbitrarily large but �nite number of wavelet coe�cients. Re-write (1) as
follows:

� f = lim inf
j !1

� f (j );

where� f (j ) is de�ned as:

� f (j ) = min
k2 Z

logjhf;  jk ij
� j

� 1=2:

When the lim inf above is a plain limit, it is not too di�cult to estimate � f .
However, in most cases of interest, only a subsequence� f (� (j )) tends to � f .
A further fact must be recognized, which is related to the visual signi�cance
of H•older exponents: large scale wavelet coe�cients do not inuence the
perceived smoothness. See Figure 2) for an illustration, where functions
having same large scale (resp. small scales) coe�cients are compared. This
is just the obvious observation that large scale coe�cients control the global
aspect, whereas \texture" or roughness is governed by small scales ones.
Similarly, the regularity of signals denoised by thresholding depends on the
scale at which they are observed: the signal on Figure 4 looks signi�cantly
smoother than the original, the one on Figure 6 is more satisfactory; thus,
looking at the denoised signal from far away may yield a satisfactory picture,
whereas a close view reveals oversmoothing. In order to translates these
facts into a mathematical framework, we introduce the notion of \H•older
exponents in a range of scales". Recall that here and everywhere in the article
h denotes a non-decreasing function fromN to N which tends to in�nity and
such that h(n) � n for all n. The \H•older exponent of f between scalesh(n)
and n" is de�ned as:

� f (h(n); n) = min
j 2 h(n):::n;k 2 Z

logjhf;  jk ij
� j

� 1=2: (3)
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Figure 2: Perceived roughness depends on the amplitude of the wavelet coef-
�cients at small scales. Left: both curves have same small scales coe�cients,
but di�ering ones in large scales. They produce the same impression of
roughness. Right: both curves share the same coe�cients at large scales, but
di�ering ones at small scales. Their roughness appear to di�er.

The indicesj 2 f h(n):::ng are thus considered to be \texture scales", whereas
the indices j < h (n) are assumed to have no incidence on the perceived
smoothness of the signal.

The following remarks are straightforward:
� lim inf n!1 � f (h(n); n) = � f .
� If ( � f (h(n); n))n converges, then its limit is� f .
� (� f (h(n); n))n converges i� there exists a sequence (� f (� (k))) k that

tends to � f and such that, for all n, there existsk with � (k) 2 f h(n):::ng.
� (� f (h(n); n))n converges i� there exists a sequence (� f (� (k))) k which

tends to � f such that, for all k, � (k) � h(� (k + 1) � 1).
� If h1 � h2, then convergence of (� f (h2(n); n))n implies convergence of

(� f (h1(n); n))n .
� 8 f; 9 h such that (� f (h(n); n))n converges.
� 8 h; 9 f such that (� f (h(n); n))n diverges.

The last three points mean the following: the functionh has to tend to in�n-
ity, but it may do so arbitrarily slowly. For any given f , it is always possible
to chooseh that tends to in�nity su�ciently slowly so that ( � f (h(n); n))n

converges, but no single functionh is su�ciently slow to �t all f .
Case of a sequence of functions

In practice, one does not deal with a single function, but with a sequence
(f n )n , where eachf n is the approximation at resolutionn of an underlying
continuous-time signalf . Reasoning as above, the perceived roughness of
eachf n will be controlled by the amplitude of the coe�cients hf n ;  jk i be-
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tween some scaleh(n) and n. Then, if the sequence (� f n (h(n); n))n tends to a
limit l , one may expect that, forn su�ciently large, the perceived roughness
will be comparable to the one of a function with exponentl . The situation
here is however more complex than in the case of a single function. Indeed,
(a) a function h0 such that � f n (h0(n); n))n converges does not always exist.
For instance, de�ne g1 by hg1;  jk i = 2 � j and let g2 � 0. Set f 2n = g1

and f 2n+1 = g2. It is easily seen that, for allh, (� f 2n (h(n); n; ))n equals 0:5,
whereas the sequence (� f 2n +1 (h(n); n))n is identically in�nite. As a conse-
quence, the sequence (� f n (h(n); n))n does not converge. Such an extreme
behaviour is however rather rare,
(b) convergence of the sequence� f n (h0(n); n))n does not imply the one of
� f n (h(n); n))n when h � h0. Furthermore, sequences� f n (h(n); n))n may ad-
mit di�erent limits depending on the choice of the sequencesh(n). This has
practical implications, as we shall see in Section 6: letf n denote the signal ob-
tained by denoising using classical wavelet coe�cients shrinkage with univer-
sal threshold at resolutionn a signalf contaminated with additive Gaussian
white noise. Then� f n (h(n); n))n tends to � f when h increases su�ciently
slowly (which amounts to looking at the signal from \far away"). However,
� f n (h(n); n)n tends to +1 wheneverh(n) tends to in�nity su�ciently fast:
looking closely at the signal yields an impression of oversmoothing,
(c) in general, the limit of � f n (h(n); n))n , when it exists, depends on the
analysing wavelet.

4 Estimated regularity of sampled signals

We assume from now on that eachf n is a sampling at resolutionn of an
underlying continuous-time signalf . If we accept (3) as valid de�nition of
roughness in a range of scales, we need to relate� f n (h(n); n), � f (h(n); n; )
and � f . Indeed, one can only compute coe�cientshf n ;  jk i , which are just
approximations ofhf;  jk i and one needs to examine how these approxima-
tions impact measured regularity. This further depends on how sampling
is performed. We show that, provided thath increases slowly enough, the
di�erence between thehf n ;  jk i and the hf;  jk i is su�ciently small so that
� f (h(n); n) is indeed well approximated by� f n (h(n); n), in two typical situ-
ations of sampling.
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4.1 Impulse sampling

We �rst study the case where the samples are the valuesf (k2� n ); and con-
sider two possibilities for de�ning thef n .
Stepwise constant approximation:one possibility (used e.g. by thecwt func-
tion in the Wavelet Toolbox of Matlab) is to set:

f n (t) =
X

i 2 Z

f (i2� n )1t2 [i 2� n ;( i +1)2 � n ) : (4)

In this case, one has

hf n ;  jk i =
2n � 1X

i =0

f n (i2� n )
Z 2� n ( i +1)

2� ni
 jk (t)dt:

The following result, whose easy proof is omitted, allows one to estimate the
error on the wavelet coe�cients.

Proposition 2. Let f n be de�ned by(4). Then there exits a constantC such
that

jhf n ;  jk i � h f;  jk ij � C 2� n� � j= 2:

Wavelet crime: wavelet coe�cients are usually computed with the help of
the fast wavelet transform [18]. One approximatesf (i2� n ) by



f; 2n=2� ni

�

and sets
f n =

X

i 2 Z

f (i2� n )2n=2� ni : (5)

This is the so-called \wavelet crime" [19,20]. The easy proof of the following
result is omitted:

Proposition 3. There existsC > 0 such that for all i 2 Z:

jhf n ; � ni i � h f; � ni ij � C2� n� � n=2:

We use the above result to prove the next statement:

Proposition 4. Let (f n )n be de�ned by(5). There existsC > 0 such that,
for all j � n,

jhf;  jk i � h f n ;  jk ij � C2� n� � j= 2:

11



Proof. For j = n, hf n ;  nk i = 0, while, since f 2 C � (R), there existsC such
that jhf;  nk ij � C2� n� � n=2.

For j � n � 1,  jk 2 Vectf � ni : i 2 Zg and thus:

hf n ;  jk i � h f;  jk i =
X

i 2 Z

hhf n � f; � ni i � ni ;  jk i :

Using Proposition 3, one gets

jhf;  jk i � h f n ;  jk ij � C2� n=2� n�
X

i 2 Z

jh� ni ;  jk ij

� C2� n=2� n�
X

i 2 Z

2n=2
Z + 1

�1
j� (2n t � i ) jk (t)j dt:

Since� has compact support, there existsM such that t !
P

i 2 Z j� (2n t �
i )j < M . Thus:

jhf;  jk i � h f n ;  jk ij � C2� n� M
Z + 1

�1
j jk (t)jdt

� C2� j= 2� n� M
Z + 1

�1
j (t)jdt:

Approximate wavelet coe�cients and H•older regularity: the results above
allow one to give condition on the functionh so that the H•older exponents in
a range of scales estimated on a sequence (f n )n tend to the H•older exponent
of f .

Theorem 1. Let f n be the approximation off at resolution n using (5)
or (4). Assume thath(n) � rn for an r < 1. Then,

� f = lim inf
n!1

� f n (h(n); n) (6)

Proof. Since f 2 C � ((0; 1)) for any � < � f , Proposition 2 implies that
jhf n ;  jk i � h f;  jk ij � C12� n� � j= 2. In addition, jhf;  jk ij � C22� j (� +1 =2). As
a consequence,

jhf n ;  jk ij � (C1 + C2)2� j ( � +1 =2);

12



and 1=2 + � � lim inf
n!1

min
j 2 h(n):::n;k 2 Z

logjhf n ;  jk ij
� j

:

This is true for all � < � f , and we have proved one inequality. Choose now
� small enough so thatr < � f � �

� f + � . Let (j l ; kl ) be a sequence such thatj l tends
to in�nity and

jhf;  j l ;k l ij � 2 2� j l (� f + � +1 =2):

Set nl = dj l
� f + �
� f � � e. Sinceh(nl ) � rn l , there existsL such that for all l � L ,

h(nl ) � j l � nl , and thus

1=2 + � f (h(nl ); nl ) �
logjhf n l ;  j l k l ij

� j l
:

This implies that jhf n l ;  j l k l ij � 2� j l (� f + � +1 =2): However,f 2 C � f � �= 2((0; 1)),
and one may obtain a lower bound onjhf n l � f;  j l k l ij with the help of Propo-
sition 2:

jhf n l ;  j l ;k l ij � jh f;  j l ;k l ij � C2� n l (� f � �= 2)� j l =2:

When C2� n l (� f � �= 2) � 1
22� n l (� f � � ) � 1

22� j l (� f + � ) ; one hasjhf n l ;  j l ;k l ij �
1
22� j l (� f + � +1 =2): This means that � f (h(nl ); nl ) � � f + � . The required in-
equality is obtained by taking the lim inf.

Theorem 1 implies that, if h(n) � rn , and if � f n (h(n); n) converges, then its
limit is � f . In other words, the sequence (� f n (h(n); n))n cannot converge to
a \wrong limit". It however says nothing about the question whether the
sequence converges. This is the topic of the next result. For a givenf , we
have seen that there always exists anh0 such that the sequence� f (h0(n); n)
converges. Theorem 2 shows that it is su�cient to chooseh \slower" than
h0 to ensure that (� f n (h(n); n))n will tend to � f .

Theorem 2. Let h0 : N ! N be a non-decreasing function tending to in�nity
with h0(n) � n such that� f = lim n!1 � f (h0(n); n). Then, for any sequence
un of integers such thatun � rn with r < 1, and for any h satisfying the
usual conditions and such thath(n) � h0(un ),

� f = lim
n!1

� f n (h(n); n):

Proof. A lower bound on � f (h(n); n) is obtained with the help of Proposi-
tion 2 as in the proof of Theorem 1:

8� > 0; jhf n ;  jk ij � (C1 + C2)2� j (� f � � +1 =2)

13



and thus � f � 2� � � f (h(n); n) for large enoughn. The upper bound also
follows the same lines as in Theorem 1: for all� > 0, there exists a sequence
(j l ; kl ) such that

jhf;  j l ;k l ij � 2 2� j l (� f + � +1 =2) and j l � h0(j l+1 � 1):

For n 2 N, consider j l (n) such that un 2 [j l (n) ; j l (n)+1 � 1]. Then h(n) �
h0(un ) � h0(j l (n)+1 � 1) � j l (n) � un , and thus j l (n) 2 [h(n); un ]. As un < n ,
this implies that

1=2 + � f (h(n); n) �
log

�
�
�hf n ;  j l ( n ) k l ( n )

i
�
�
�

� j l (n)
:

Sincef 2 C � f � � (R), one may bound
�
�
�hf n ;  j l ( n ) k l ( n )

i
�
�
� from below with Propo-

sition 2. Using that n � r � 1j l (n) , one gets
�
�
�hf n ;  j l ( n ) k l ( n )

i
�
�
� � 2 2� j l ( n ) (� f + � +1 =2) � C2� r � 1 j l ( n ) (� f � � +1 =2) :

Choose� < 1� r
1+ r (� f + 1=2). Then � f + � + 1=2 < r � 1(� f � � + 1=2) and, for

large enoughn, �
�
�hf n ;  j l ( n ) k l ( n )

i
�
�
� � 2� j l (� f + � +1 =2):

One concludes as before.

We have proved that it is always possible to chooseh tending to in�nity

slowly enough so that� f +1=2 is the limit of both sequences
�

minj 2 h(n):::n;k 2 Z
logjhf n ; jk ij

� j

�

n

and
�

minj 2 h(n):::n;k 2 Z
logjhf; jk ij

� j

�

n

. Furthermore, this is the only possible

limit as soon ash(n) < rn with r < 1.

4.2 Integral sampling

A more realistic modelling of the sampling off is to consider that, rather than
measuring the valuesf (k2� n ), one has access to mean values

R
f (t)c(2n t �

i )2ndt where c is a positive function whose integral is equal to 1 that char-
acterizes the sampling device [21]. All the results of Section 4.1 remain valid
in this situation: indeed, by the mean-value theorem, for alln and i , there
existst i

n 2 [i2� n ; (i +1)2 � n ] such that f (t i
n ) =

R
f (t)c(2n t � i )2ndt: Replacing

f (i2� n ) by f (t i
n ) in the proofs yields the result.
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5 Estimating the regularity of a noisy signal

The aim of this section is to evaluate the H•older regularity of a signalf
which has been corrupted with an additive Gaussian white noiseB with
standard deviation� 0. Since dividing a signal by a constant does not change
regularity, one may assume wlog that� 0 = 1. Let g = f + B denote the
observed noisy signal. We are not interested here in the theoretical H•older
exponent ofg, but in the one estimated from a sampling between scalesh(n)
and n. Note that sinceg is a distribution, and thus does not belong toC � (R)
for any � > 0, the results of the previous section do not apply. Furthermore,
the values ofg at the points k2� n are not well de�ned. Following [21], we
assume that the samples read:

gi
n =

Z
f (t)c(2n t � i )2ndt + 2 � n=2bi

n

where c is as in the previous section and thebi
n are i.i.d. N (0; 1) r.v. The

approximate wavelet coe�cients are

hgn ;  jk i = hf n ;  jk i + 2 � n=2bn
jk ; (7)

with the bn
jk i.i.d. N (0; 1) r.v. The next lemmas will be useful.

Lemma 1. Let gn be de�ned by(7). For all � > 0, there exists almost surely
N 2 N such that, for all n � N and all k,

jhgn ;  nk ij � 2� n(� +1 =2):

Lemma 2. Let � > 0 and bn
jk be i.i.d N (0; 1) r.v. Almost surely, there exists

N 2 N such that, for all n � N ,

max
j 2 [1::n ];k2 [0:::2j ]

jbn
jk j � 2n� :

The proof of the �rst lemma is straightforward, while the second one is
well-known. The main result of this section is:

Theorem 3. Let gn be de�ned by(7). Then � gn (h(n); n) tends almost surely
to 0 whenn tends to in�nity.

Proof. Fix � > 0. Lemma 1 implies that, forn large enough, a.s.,logjhgn ; n 0 ij
� n �

� + 1
2 ; and thus � gn (h(n); n) � � . To prove the reverse inequality, we

must show that: 8j; h (n) � j � n implies jhgn ;  jk ij � 2� j ( 1
2 � � ) . By (7),

jhgn ;  jk ij � jh f n ;  jk ij + 2 � n=2jbn
jk j, and Lemma 2 implies the result.
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Applying Theorem 3 with f = 0 yields that the estimated H•older exponent in
a range of scales of sampled Gaussian white noise tends a.s. to 0 whenn tends
to in�nity. It is well known that the H•older exponent of a Gaussian white
noiseb is equal to -1/2. Thus, irrespective ofh, the sequence� bn (h(n); n)
does not tend to � b. This does not contradict Theorem 2 asb does not
belong to C � ((0; 1)). Also, Theorem 3 means that the estimated (as well as
the theoretical) regularity of f + B does not depend on the regularity off .

6 Estimating the regularity of signals obtained
through denoising by thresholding

In the previous section, we have studied the theoretical properties of regu-
larity of a noisy signal. Here, we follow the same approach to obtain the
regularity of signals denoised with hard thresholding. We consider the uni-
versal threshold and a level dependent one. Other thresholds or comparable
schemes, such as the ones presented in Section 2, yield similar results.

Theorem 4. Let gn be de�ned by(7) and ~f n be the signal denoised by hard
thresholdinggn with � n = 2 � n=2

p
2n ln 2. Let � (n) be a non-decreasing integer

sequence such that� f = lim n!1 � f (� (n)) . Assume thath veri�es:

9� 0 > 0; 8n 2 N; 9i 2 N : � (i ) 2
�
h(n);

n
1 + 2� f

(1 � � 0)
�

: (8)

Then � ~f n
(h(n); n) tends in probability to� f .

Assume thath veri�es:

9� 0 > 0 : 8n 2 N; h(n) �
n

1 + 2� f
(1 + � 0): (9)

Then � gn (h(n); n) tends in probability to+ 1 .

In the sequel, we will call the quantity cn := n
1+2 � f

the cut-o� scale, even
though this quantity is not necessarily an integer. The structure of the
proof is as follows: the coe�cientshf;  jk i are smaller in absolute value than
C2� j ( � f +1 =2). Those of the noise are of the order of 2� n=2. Thus, when
j > c n , the coe�cients of f are buried in the noise. Lemma 3 makes this
precise by showing that the coe�cients corresponding to these values ofj are
thresholded. As a consequence,� ~f n

(h(n); n) tends in probability to in�nity
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when (9) is veri�ed. At scalesj smaller than the cut-o� scale, the amplitude
of noise is typically small w.r.t. 2� j (� f +1 =2): Lemma 4 shows that coe�cients
in these scales remain not larger than 2� j ( � f +1 =2). This implies the sequence
� gn (h(n); n) remains larger than� f . Finally, there exists coe�cients of the
order of 2� j (� f +1 =2). For such coe�cients which lie betweenh(n) and the
cut-o� scale, noise will again be small and will not modify their order of
magnitude, as shown in Lemma 5. The intuitive meaning is that there are two
cases where the perceived regularity of the denoised signal can be assessed:
- h(n) < � (i ) < n(1� � 0 )

1+2 � f
: the signal is seen from far away. There exists values

of the sequence� betweenh(n) and n
1+2 � f

. The corresponding coe�cients
of the denoised signal are of the same order of magnitude as the ones of the
original signal, and� ~f n

(h(n); n) remains close to� f .

- n(1+ � 0 )
1+2 � f

< h (n): the signal is seen from a close distance. With large prob-
ability, all the coe�cients of the denoised signal at scalesj � h(n) vanish,
and thus � ~f n

(h(n); n) = + 1 ; in other words, the signal is oversmoothed.
This is exactly what is observed in Figures 4 to 6. Note that Theorem 4 does
not cover all cases: whenh(n) is smaller than cn , but su�ciently close to
it so that no terms in the sequence� belong to [h(n); cn ], knowledge of� f

is insu�cient to predict the behaviour of � ~f n
(h(n); n). In \nice cases", e.g.

when � (i ) = O(i ), this happens only whenh(n) is of the order of n
1+2 � f

for
an in�nity of indices n.
We will need the following fact, a slight generalization of a classical result
given, e.g., in [22], whose proof is omitted:

Fact 1. Let (� n )n be a positive sequence such that� n = o(n). Let (zn )n2 N be
i.i.d. N (0; 1) r.v. Then

P
�

max
i 2 [1:::2n ]

jzi j �
p

2n ln 2 � ln � n

�
! 1:

Lemma 3. For any � > 0,

P
�

8j �
n

1 + 2� f
(1 + � ) : h~f n ;  jk i = 0

�
! 1:

Proof. Choose� small enough so that (1 +� ) � f +1 =2� �
� f +1 =2 > 1. Then, for n large

enough, sayn � N1,

n
1 + 2� f

(1 + � ) ( � f + 1=2 � � ) �
n + ln(8 n ln 2)

2
:
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Theorem 1 implies that there existsN2 such that, for all n � N2, all
j � n

1+2 � f
(1 + � ) and all k,

jhf n ;  jk ij � 2� j (� f +1 =2� � )

� 2
� n

1+2 � f
(1+ � )( � f +1 =2� � )

:

Thus, for n � max(N1; N2), j � n
1+2 � f

(1 + � ) and all k,

jhf n ;  jk ij � 2� n +log(8 n ln 2)
2 �

2� n=2

2
p

2n ln 2

� 2� n=2
p

2n ln 2

 

1 �
�

1 �
1

2n log 2

� 1=2
!

:

� � n � 2� n=2
p

2n ln 2 � 1:

Using Fact 1 with � n = e, one gets

P
�

8j 2 [1::n]; k 2 [1::2j ]; jbn
jk j � 2� n=2

p
2n ln 2 � 1

�
! 1:

This implies

P
�

8j �
n

1 + 2� f
(1 + � ); k 2 [1::2j ]; jhgn ;  jk ij � � n

�
! 1

which is our result.

Lemma 4. For any � > 0, there exists� > 0 such that, for all sequenceh(n)
tending to in�nity, there exists a.s. N 2 N such that for all n � N :

8j 2
�
h(n);

n
1 + 2� f

(1 + � )
�

;
�
�
�h~f n ;  jk i

�
�
� � 2� j (� f +1 =2� � ) :

Proof. Fix � > 0. Choose� such that

1 + �
1 + 2� f

(� f + 1=2 � � ) = 1 =2 � ;

where > 0. Then, for all j � (1+ � )n
1+2 � f

,

2� j (� f +1 =2� � ) � 2� n=2 2n :
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Lemma 2 implies that, a.s., there existsN1 2 N such that

8n � N1; 2� n=2jbn
jk j �

1
2

2� j (� f +1 =2� � ) :

Lemma 1 implies that there existsN2 such that

8n � N2; 8j � h(n); jhf n ;  jk ij �
1
2

2� j (� f +1 =2� � ) :

Thus, by de�nition of gn , for all n � max(N1; N2),

8j 2
�
h(n);

n
1 + 2� f

(1 + � )
�

; jhgn ;  jk ij � 2� j (� f +1 =2� � ) : (10)

One concludes by noting that
�
�
�h~f n ;  jk i

�
�
� � jh gn ;  jk ij .

Lemma 5. Assume(8). Then, for all � > 0, a.s., there existsN 2 N such

that for all n � N , there existsj n 2
h
hn ; n

1+2 � f
(1 � � 0)

i
and kn 2 [0; 2j n ] such

that �
�
�h~f n ;  j n kn i

�
�
� � 2� j n (1=2+ � f + � ) :

Proof. Let (j n ; kn ) be a sequence such that� f = lim n!1
logj<f; j n k n > j

j n
+ 1=2

and j n 2
h
hn ; n

1+2 � f
(1 � � 0)

i
. Choose� > 0 small enough so that (1� � 0)(1+

�
1=2+ � f

) = 1 � 2 , where > 0. Then, for n large enough,

jhf;  j n kn ij � 3 2� j n (� f +1 =2+ � ) � 3 2� n=2+ n :

By Proposition 4, there existsC > 0 such that, for all n,

jhf;  j n kn i � h f n ;  j n kn ij � C2� n� 0=2� j n =2:

For n large enough,C2� n� 0=2 � 2n , and this implies that jhf;  j n kn i �
hf n ;  j n kn ij � 2� n=2+ n : As a consequence,

jhf n ;  j n kn ij � 2 2� n=2+ n :

Lemma 2 then implies that, a.s., there existsN 2 N such that, for all n � N ,
2� n=2

�
�bn

j n kn

�
� � 1

2 jhf n ;  j n kn ij , so that

jhgn ;  j n kn ij � 2� j n (� f +1 =2+ � ) ; a.s.

For n large enough, 2� j n (� f + 1
2 + � ) � 2� n=2+ n > � n . Thus, a.s., the coe�cients

hgn ;  j n kn i are not thresholded and
�
�
�h~f n ;  j n kn >

�
�
� � 2� j n (� f +1 =2+ � ) .
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Proof. of Theorem 4
� Case whereh veri�es (8): �x � > 0. Lemma 4 implies that there exists

� such that

P

0

@8j 2
�
h(n);

n(1 + � )
1 + 2� f

�
;

log
�
�
�h~f n ;  jk i

�
�
�

� j
� � f +

1
2

� �

1

A ! 1:

Lemma 3 yields

P

0

@8j 2
�

n(1 + � )
1 + 2� f

; n
�

;
log

�
�
�h~f n ;  jk i

�
�
�

� j
� � f +

1
2

� �

1

A ! 1:

One deduces that

P (� gn (h(n); n) � � f + 1=2 � � ) ! 1:

Finally, Lemma 5 implies that

P
�
� ~f n

(h(n); n) � � f + 1=2 + �
�

! 1:

� Case whereh veri�es (9): Lemma 3 yields that

P
�

8j �
n

1 + 2� f
(1 + � ); < ~f n ;  jk > = 0

�
! 1:

As a consequence,P(8j 2 [h(n); n]; < ~f n ;  jk > = 0) ! 1 and thusP(� ~f n
(h(n); n) =

+ 1 ) ! 1:

Figures 4 to 6 display the behaviour of denoised signals as the number of
samples increases. They illustrate Lemmas 3 to 5 in the case of a par-
ticularly simple signal, namely the Weierstrass function, which possesses a
global scaling behaviour. The original signal and the noisy one (which will
be used in all experiments involving this function) are displayed on Figure
3. Beyond the cut-o� scale n

1+2 � f
, shown as a dotted horizontal blue line

on the �gures, all coe�cients are thresholded (Lemma 3). At smaller scales,
noise is smaller than 2� j (� f +1 =2) and the coe�cients remain smaller than
2� j (� f +1 =2) (Lemma 4). Furthermore, \large" coe�cients, those of the order
of 2� j (� f +1 =2), remain of the same order of magnitude (Lemma 5). When
resolution tends to in�nity, this sequence will converge to the original signal,
but each denoised signal looks more regular than the original one.
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Figure 3: Original Weierstrass function sampled on 219 points with exponent
� f = 0:5 (left) and noisy version (right).

Figure 4: Denoised Weierstrass function sampled on 211 points (left) and
wavelet coe�cients of the original, noisy and denoised versions (right)

Figure 5: Denoised Weierstrass function sampled on 215 points (left) and
wavelet coe�cients of the original, noisy and denoised versions (right)
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Figure 6: Denoised Weierstrass function sampled on 219 points (left) and
wavelet coe�cients of the original, noisy and denoised versions (right)

The case of a level dependent threshold, where, at scalej , � j = 2 � j� ,
is treated in the following proposition, whose proof is similar to the ones of
results above and is omitted.

Proposition 5. Let gn be de�ned by(7) and ~f n be the signal denoised with
hard-thresholding and threshold� j = 2 � j� .

1. If � > 1=2 then � ~f n
(h(n); n) tends a.s. to0.

2. If � < 1=2 then � ~f n
(h(n); n) tends a.s. to+ 1 .

In other words, a level-dependent threshold 2� j� will either oversmooth the
signal when� < 1=2 or yield a result with same estimated regularity as white
noise when� > 1=2. One can show that a threshold of the form 2� j� � n=2 yields
results analogous to the ones of the threshold 2� n=2

p
2n ln 2.

7 Estimating the cut-o� scale

In Section 8, we describe a denoising scheme that improves on thresholding
in terms of regularity preservation. The feasibility of this scheme relies on the
possibility of estimating the cut-o� scale from the noisy signal. This section
presents a way to do so in Corollary 6. This corollary follows Theorem 6, the
main theoretical contribution of the present work. We will need following
result (see,e.g., [23], Theorem 2.7, p. 55).

Theorem 5. Let X 1; : : : ; X n be independent r.v. Assume there exists positive
constantsg1; : : : ; gn , and T such that:

8t 2 [� T; T]; IE(etX k ) � egk
t 2

2 ; k = 1 : : : n:
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Then, with Sn =
nX

k=1

X k and Gn =
nX

k=1

gk ,

P(Sn � x) � e� x 2

2G n for 0 � x � GnT;
P(Sn � x) � e� Tx

2 for x � GnT;

P(Sn � � x) � e� x 2

2G n for 0 � x � GnT;
P(Sn � � x) � e� Tx

2 for x � GnT;

The following general result may be of independent interest. Its proof is
given in the appendix.

Theorem 6. Let (x i ) i 2 N; (� i ) i 2 N be two real sequences, with� i > 0 for all i .
Assume that:

1. � = lim inf i !1
� log jx i j

i > 0;

2. there exists a decreasing sequence("n ) such that"n = o
�

1
n

�
whenn !

1 and � log jx i j
i � � � " i for all i ;

3. 0 < � 0 := lim inf
i !1

� log � i
i � � := lim sup

i !1

� log � i
i < �:

For n 2 N� , let Y denote the random vector(y1; : : : ; yn ) where the(yi ) i

are independent and, where, for eachi , yi is a Gaussian r.v. with meanx i

and variance� 2
n . Set

L n (p) =
1

(n � p + 1) 2

nX

i = p

y2
i :

Denote p� = p� (n) an integer such that

L n (p� ) = min
1� p� n� blog(n)

L n (p)

whereb > 1 is a �xed real number. Let �nally q(n) = � log � n

� � 1
n

. Then, for all
a > 1, almost surely, for all n large enough,

p� (n) � q(n) + a log(n): (11)

Furthermore, if the sequence(x i ) i satis�es the condition:
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4. there exists a sequence of positive integers(� n ) such that, for all su�-
ciently large n and all � � � n ,

1
�

q� 1X

i = q� �

x2
i > b� 2

n

1 � � �
�

(1 � � �

� )2
;

where� � 2 (0; � 0) and � � 2 (�; � ),

then, for all a > 1, almost surely, for all n large enough,

p� (n) � q(n) � max(a log(n); � n ): (12)

Remark 1. Assumption (3) and the de�nition of q imply that there exist
0 < � 0 � � < 1 such that � 0n � q(n) � �n for all su�ciently large n. One
may take � 0 = � �

� , � = � �

� . This fact and the assumption"n = o
�

1
n

�
imply

that "q < 1
n for su�ciently large n (in fact, "n = o

�
1
n

�
can be replaced by the

less restrictive condition"n < � 0

n ).

Remark 2. No assumption other than positivity is made on the sequence
(� n ). In particular, it does not have to tend to in�nity. In the case where
x i = 2 � i� , one can take� n = 2.

Remark 3. Condition 4 may be awkward to verify in practice. In many
cases of interest, it can be replaced by the stronger but simpler condition
� 2

n = o( 1
�

P q� 1
i = q� � x2

i ).

The meaning of the assumptions is as follows: (1) and (2) state that the
x i are bounded byC2� i� +1 . (3) essentially says that the variance� 2

n of the
noise added to eachx i tends to 0 at a rate not faster thanxn , i.e. there
is \enough noise". Under these conditions, the \normed energy" statistics
L n (p) has a minimum not larger than the cut-o� level q(n) where noise
becomes predominant w.r.t. the signal. (4) means that we can group the
x i below q(n) in blocks of a certain size� in such a way that the energy
of the block dominates the noise: this is a way of ensuring that there is a
su�cient number of x i which are large w.r.t. noise,i.e., there is \enough
signal". Then the minimum of L n (p) is equal to the cut-o� level within a
logarithmic correction. We apply Theorem 6 to the following situation: the
(x i ) i are the wavelet coe�cients \above" a given point of a functionX . One
observesY = X + B, with wavelet coe�cients ( yi ) i where B is a centred
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Gaussian white noise. The problem is to estimate the value of the local
H•older exponent. In this setting, one has� n = 2 � n=2. Without noise and if
the (x i ) i were all of the order ofC2� i� , then a simple linear regression on
their logarithms would yield an estimate of� . In the presence of noise, one
would observe, in logarithmic coordinates, the sum of points along a line with
slope � � (the log jx i j) and points on a horizontal line with ordinate � n=2
(the noise). Again, estimating� would be easy: it would amount to �nding
the level i � where the line with slope� � falls below the horizontal line. In
general, however, thex i are all smaller thanC2� i� , and only a subsequence
is of this order of magnitude. Perhaps surprisingly, Theorem 6 and Corollary
6 say that, even in this situation, it is possible to estimate the cut-o�i � by
using the statistics L n (p) which is minimum close toi � provided there are
enough largex i , i.e. (4) holds.

Corollary 6. Let X be a function in C � ((0; 1)); � > 0. Denote (x i ) i the
wavelet coe�cients of X \above" t 2 (0; 1). Assume that� n de�ned in The-
orem 6 is not larger thanblog(n) for someb > 1 and all su�ciently large n.
Let Y = X + B, with B a centred Gaussian white noise with unit variance.
Set:

�̂ =
n

2p�
+

1
n

;

wherep� is de�ned in Theorem 6. Then the following inequality holds almost
surely for all su�ciently large n:

j�̂ � � j � 2b� 2 log(n)
n

:

Proof. From � n = 2 � n=2, one getsq = n
2� � 1

n
, or � = n

2q + 1
n . Besides,�̂ =

n
2p� + 1

n . In addition, the assumptions imply thatp� 2 [q� blog(n); q+ blog(n)]
a.s. forn large enough. Thus,

j�̂ � � j = n
q � p�

2p� q

� n
blog(n)

q2 � bqlog(n)
=

nblog(n)
2n2

4(� �
1
n

)2

� 2b
log(n)

n
(� �

1
n

)2 � 2b� 2 log(n)
n

:
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8 Local regularity preserving denoising

We assume that we have at our disposal a sequence (sn )n that tends to � f

either in probability or a.s. Such a sequence is for instance provided bŷ�
de�ned in Corollary 6. This allows in turn to estimate the cut-o� scale n

1+2 � f

which is instrumental for our method. The idea is to keep coe�cients at
scales larger than n

1+2 � f
and to diminish the ones at smaller scales so that

they remain not larger in absolute value than 2� j (� f +1 =2). This allows one
to recover the original regularity. More precisely, denoising is performed as
follows:

Proposition 7. Let gn be de�ned by (7). Let (sn )n be a sequence that tend
a.s. (resp. in probability) to � f . Let ~c(n) = n

1+2 sn
. De�ne the denoised

version ~f n by
D

~f n ;  jk

E
=

�
hgn ;  jk i if j � ~c(n)
min

�
jhgn ;  jk ij ; 2� j (sn +1 =2)

�
sgn(hgn ;  jk i )) if j > ~c(n):

(13)

Then � ~f n
(h(n); n) tends a.s. (resp. in probability) to� f .

Proof. Fix 0 < � < � f . Inequality (10) always holds: there existsn 2 N and
� > 0 such that a.s., forn large enough,

8j 2
�
h(n);

n
1 + 2� f

(1 + � )
�

; jhgn ;  jk ij � 2 2� j (� f +1 =2� � ) :

Since ~c(n) is a.s. equivalent to n
1+2 � f

, ~c(n) � n
1+2 � f

(1 + � ) for n large enough.
As a consequence,

8j 2 [h(n); c(n)];
�
�
�
D

~f n ;  jk

E�
�
� � 2 2� j (� f +1 =2� � ) :

Furthermore, for j > ~c(n),
�
�
�
D

~f n ;  jk

E�
�
� � 2� j (sn +1 =2) and thus a.s. forn large

enough,
8j > ~c(n);

�
�
�
D

~f n ;  jk

E�
�
� � 2� j (� f +1 =2� � ) :

We have thus obtained that, for allj 2 [h(n); n];
�
�
�
D

~f n ;  jk

E�
�
� � 2 2� j ( � f +1 =2� � ) .

This implies that � ~f n
(h(n); n) � � f � � .

As shown in the proof of Theorem 3, there exits a.s.N 2 N such that
for all n � N , jhgn ;  n0ij � 2� n(� +1 =2); which implies that

�
�
�
D

~f n ;  n0

E�
�
� =
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2� j (sn +1 =2). Sincesn tends a.s. to� f ,
�
�
�
D

~f n ;  n0

E�
�
� tends a.s. to 2� j (� f +1 =2)

and thus � ~f n
(h(n); n) � � f + � a.s. whenn ! 1 .

The proof when (sn )n converges in probability is similar.

The procedure above may introduce jumps between coe�cients at scales
j � ~c(n) and j > ~c(n). To avoid this, we replace 2� j (sn +1 =2) by 2K n � j (sn +1 =2),
where (K n )n is a bounded random sequence. Before explaining how to choose
(K n )n , we prove that this modi�cation does not impact regularity.

Corollary 8. With the same notations as in Proposition 7, let(K n )n be a
sequence such that there existsA; B > 0 verifying: a.s., there existsN 2 N
such that, for all n � N , K n 2 [A; B ] (resp. P(A � K n � B ) ! 1 ). De�ne
~f n by

D
~f n ;  jk

E
=

�
hgn ;  jk i if j � ~c(n)
min

�
jhgn ;  jk ij ; 2K n � j (sn +1 =2)

�
sgn(hgn ;  jk i )) if j > ~c(n):

Then � ~f n
(h(n); n) tends a.s. (resp. in probability) to� f .

Proof. Let f̂ n denote the function de�ned by (13).
Almost sure situation: assume thatK n 2 [A; B ] is veri�ed. We apply Propo-
sition 7 to 2A f and 2B f . Noting that � 2A f = � 2B f = � f , one sees that the
same sequencesn may be used. Thus both� \2A f n

(h(n); n) and � \2B f n
(h(n); n)

tends a.s. to� f . The result then follows from the inequalities

� d2A f n
(h(n); n) � � ~f (h(n); n) � � d2B f n

(h(n); n):

Situation in probability: Applying Proposition 7 to 2A f and 2B f , one gets
that � \2A f n

(h(n); n) and � \2B f n
(h(n); n) tend in probability to � f . Since

� d2A f n
(h(n); n) � � ~f (h(n); n) � � d2B f n

(h(n); n), the result follows.

Experiments suggest that takingK n equal to the o�set in the regression line
of the logarithm of the absolute values of the wavelet coe�cients w.r.t. scale
is a reasonable choice.

9 Numerical Experiments

As said in the �rst section, our approach is specially �tted to the case of lo-
calisable functions, which are irregular signals that ful�l a weak form of local
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scale invariance. We present in this section some results of denoising on such
signals, and compare them with classical wavelet coe�cients thresholding. It
is well-known that the minimax and universal threshold are not well adapted
when the wavelet coe�cients are not sparse enough [16], and that the SURE
threshold is better �tted for signals with small scale details, as are localisable
processes. In order to make fair comparisons, we thus use soft-thresholding
using the SURE threshold for classical thresholding.
Let us �rst recall that, contrarily to classical thresholding, our scheme will
not, in principle, modify a locally scaling signal which is not contaminated
by white noise, since, in this case, the wavelet coe�cients are aligned, and
the cut-o� scale will be the maximal one. In practice, because of estimation
issues, some minor changes will occur, which are much less visible than what
is produced by classical thresholding. See Figure 1.

We begin with a signal with global scale invariance, namely the Weier-
strass function, in Figures 7 to 9. One sees that regularity is recovered after
denoising except on Figure 7, where the resolution is too low for the cut-o�
scale to be estimated with su�cient precision. It is interesting to contrast
these results with the ones in Figures 4 to 6).

The subsequent experiments are on localisable signals. These signals
are random, and we always choose the added Gaussian white noise to be
independent of the signal. Our �rst example is multifractional Brownian
motion (mBm) [14]. This is an extension of well-known fractional Brownian
motion where the Hurst exponent is allowed to vary with time. This process
has become a popular model in �nance [24], geophysics [25], internet tra�c
modelling [26]and biomedicine [27]. We consider an mBm with local H•older
exponent � (t) = 0 :6 + 25 sin(4�t ) sampled on 214 points. We display the
original and noisy versions on Figure 10, along with regularity preservation
denoisings but where the cut-o� levels are �xed to 7 and 11, and �nally the
denoisings with regularity preservation and SURE thresholding. This signal
was also used in Figure 1.
Let us �nally consider a multifractional multistable process (mfmsp). This
is a localisable process whose local form at each time is a well-balanced
linear fractional stable motion [13]. An mfmsp depends on two functional
parameters: the �rst one, denoted , controls the intensity of jumps, and
ranges in (0; 2) (a small  means a larger intensity of jumps). The second
one,� , ranges in (0; 1), and controls roughness. Figure 11 displays an mfmsp
with � (t) = 0 :5 + 0:3 sin(4�t ) and  (t) = 0 :9 + t, a noised version, and
denoisings using regularity preservation and SURE thresholding.
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Figure 7: Denoised Weierstrass function sampled on 211 points (left) and
wavelet coe�cients of original, noisy and denoised signals (right).

Figure 8: Denoised Weierstrass function sampled on 215 points (left) and
wavelet coe�cients of original, noisy and denoised signals (right).

Figure 9: Denoised Weierstrass function sampled on 219 points (left) and
wavelet coe�cients of original, noisy and denoised signals (right).
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Figure 10: mBm sampled on 214 points (top left), superimposed with noisy
version (top right), denoising based on regularity preservation with �xed
level equal to 7 (middle left) and 11 (middle right), denoised versions with
regularity preservation (bottom left) and SURE thresholding (bottom right).
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Figure 11: mfmsp sampled on 212 points (top left), superimposed with noisy
version (top right), denoised version based on regularity preservation (middle
left) and SURE thresholding (middle right), zooms on denoised versions with
regularity preservation (bottom left) and SURE thresholding (bottom right).
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Appendix: proof of Theorem 6

We will need the following elementary lemma:
Lemma
Let z = N (0; 1) and 
 = z2 + 2�z � 1, where� 2 R.
Then

IE(et 
 ) � e
gt 2

2 (14)

for t 2
�
� 1

4 ; 1
4

�
and g = 16 log 2 � 8 + 8� 2

=: C + 8� 2
.

Proof. of the lemma. Simple computations yieldIE(et 
 ) = e
t
�

� 2
1� 2t � (1+ � 2 )

�

p
1� 2t

,
from which (14) follows at once.

Proof. of Theorem 6.

Set � i = x i
� n

; 
 i = z2
i + 2� i zi � 1, wherezi = yi � x i

� n
.

Proof of (11)
We want to show that, under assumptions 1) - 3), almost surely,L n (q(n)) �

L n (p(n)) � 0 for large enoughn, for any sequencep(n) such that q(n) +
a log(n) < p(n) � n � blog(n) for any �xed a > 1; b > 1. Take such a se-
quencep(n). Note that, in particular, p(n) > q(n). For simplicity, we shall
write L , p, q in place ofL n , p(n), q(n).

L (q) � L (p) > 0 is equivalent to:

X := ( n � p + 1) 2
p� 1X

i = q

y2
i + ( q � p)(2n � p � q+ 2)

nX

i = p

y2
i > 0:

De�ne:

X i = � 2
n (n � p + 1) 2
 i for i = q : : : p� 1;

X i = � 2
n (q � p)(2n � p � q+ 2)
 i for i = p : : : n;

X i = 0 for i = 0 : : : q � 1:
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On the one hand, one has:

Sn :=
nX

i =1

X i

= X � (n � p + 1) 2
p� 1X

i = q

x2
i + ( p � q)(2n � p � q+ 2)

nX

i = p

x2
i

+ � 2
n (p � q)(n � p + 1)( n � q+ 1)

=: X + x

Thus X > 0 i� Sn > x .
On the other hand:

� for i = q : : : p� 1:

IE(etX i ) � egi
t 2

2 for t 2
�
�

1
4� 2

n (n � p + 1) 2
;

1
4� 2

n (n � p + 1) 2

�
=: [ � T1; T1]

and gi = C� 4
n (n � p + 1) 4 + 8� 2

nx2
i (n � p + 1) 4:

� for i = p : : : n:

IE(etX i ) � egi
t 2

2

for t 2
�

1
4� 2

n (q � p)(2n � p � q+ 2)
; �

1
4� 2

n (q � p)(2n � p � q+ 2)

�
=: [ � T2; T2]

and gi = C� 4
n (p� q)2(2n � p� q+ 2) 2 + 8� 2

nx2
i (p� q)2(2n � p� q+ 2) 2.

We shall apply Theorem 5. In that view, we compute

Gn :=
nX

i =1

gi = C� 4
n (p � q)(n � p + 1)[( n � p + 1) 3 + ( p � q)(2n � p � q+ 2) 2]

+ 8� 2
n [(n � p + 1) 4

p� 1X

q

x2
i + ( p � q)2(2n � p � q+ 2) 2

nX

i = p

x2
i ]

We also need to compute the minimum ofT1 and T2, so as to setT =
min(T1; T2).
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Now T2 < T 1 i� f (n; p; q) := ( p � q)(2n � p � q + 2) � (n � p + 1) 2 > 0.
f is an increasing function ofp, and one �nds that:

T = T1 if n � p �
p

2
2 q+

�
1 �

p
2

2

�
(n + 1) =: ep

= T2 if q < p �
p

2
2 q+

�
1 �

p
2

2

�
(n + 1) :

The next step is to comparex and GnT

� if p � ep:
GnT � x = GnT2 � x =: A + B + C;

where:

A = ( n � p + 1) � 2
n (p � q)

�
n

�
C
2

� 1
�

� p
C
4

+ q
�

1 �
C
4

�
+

C
2

� 1
�

+
C
4

(n � p + 1) 4

(2n � p � q+ 2)
� 2

n :

B = 2
(n � p + 1) 4

(p � q)(2n � p � q+ 2)

p� 1X

q

x2
i + ( n � p + 1) 2

p� 1X

q

x2
i :

C = 2( p � q)(2n � p � q+ 2)
nX

p

x2
i � (p � q)(2n � p � q+ 2)

nX

p

x2
i :

Clearly, B � 0; C � 0.

Sincep � ep, one has� pC
4 � � C

p
2

8 q � C
4

�
1 �

p
2

2

�
(n + 1).

Thus,

n
�

C
2 � 1

�
� pC

4 + q
�
1 � C

4

�
+ C

2 � 1 � n
�

C 2+
p

2
8 � 1

�
+ q

�
1 � C 2+

p
2

8

�
+ C

h
2+

p
2

8

i
� 1

�
�

C 2+
p

2
8 � 1

�
(n � q+ 1) � 0;

(recall that C = 16 log 2 � 8). As a consequence,A � 0 and �nally
x � GnT2.

� if p > ep:
GnT � x = GnT1 � x =: A + B + C
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where

A := � 2
n (p � q)[(n � p + 1) 2 + ( p � q)

(2n � p � q+ 2) 2

(n � p + 1)
� (n � p + 1)( n � q+ 1)]

= � 2
n

(p � q)2

n � p + 1
(n � q+ 1)(3 n � 2p � q+ 3) � 0

B := 2( n � p + 1) 2
p� 1X

q

x2
i + ( n � p + 1) 2

p� 1X

q

x2
1 � 0

C = [2( p � q)(2n � p � q+ 2) � (p � q)(2n � p � q+ 2)]
nX

p

x2
i � 0:

Thus, we �nd again x � GnT.

Finally, we need to check thatx � 0.
Clearly, x � � 2

n (p � q)(n � p + 1)( n � q + 1) � (n � p + 1) 2
P p� 1

q x2
i , so

that a su�cient condition for x � 0 is:

(p � q)� 2
n �

p� 1X

q

x2
i :

Assumption 2) entails that jxqj � e� q(� � " q ) . Since the sequence ("n ) is non-
increasing, we get thatjx i j � e� q(� � " q ) as well for i � q and large enoughn.
Thus :

p� 1X

q

x2
i � (p � q)e� 2q(� � " q ) � (p � q)� 2

n ,

becausee� q(� � " q ) = �
� � " q

� � 1=n
n � � n (recall that "q < 1

n - see remark 2).
Theorem 5 applies, and we need an estimate ofx

2

2Gn
.

In that view, we shall obtain a �ner estimate of
p� 1X

q

x2
i than the one above.

For j � 0, one has, by assumption 2):

jxq+ j j � e� (q+ j )( � � " q+ j )

� e� q(� � " q )e� q(" q � " q+ j )e� j (� � " q+ j )

Since ("n ) is non-increasing,"q � "q+ j � 0. In addition, since ("n )���!n!1 0, for
su�ciently large n, "q+ j < �

2 .
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Thus:
jxq+ j j � e� q(� � " q )e� j �

2 = � ne� j �
2 ;

and:
p� q� 1X

j =0

x2
q+ j � K� 2

n ;

whereK is a positive �nite constant. As a consequence:

x � � 2
n (p � q)(n � p + 1)( n � q+ 1) � K (n � p + 1) 2� 2

n

� � 2(n � p + 1)[( p � q)(n � q+ 1) � K (n � p + 1)]

� � 2
n (n � p + 1)( n � q+ 1)( p � q � K ):

Write Gn =: A + B + C, with

A := C� 4
n (p � q)(n � p + 1)[( n � p + 1) 3 + ( p � q)(2n � p � q+ 2) 2]:

B := 8� 2
n (n � p + 1) 4

p� 1X

q

x2
i :

C := 8� 2
n (p � q)2(2n � p � q+ 2) 2

nX

p

x2
i :

If p � ep, one has (p � q)(2n � p � q+ 2) � (n � p + 1) 2, and:

A � C� 4
n (p � q)(n � p + 1)[( n � p + 1) 3 + ( n � p + 1) 2(n � p + 1 + n � q+ 1)]

� 3C� 4
n (p � q)(n � p + 1) 3(n � q+ 1) :

With K 0 denoting again a positive �nite constant that may change from line
to line, we have:
B � K� 4

n (n � p + 1) 4 � K 0A, and
C � 8� 2

n (p � q)2(2n � p � q+ 2) 2(n � p + 1) � 2
n � K 0A;

Finally, Gn � K 0� 4
n (p � q)(n � p + 1) 3(n � q+ 1), and:

x2

2Gn
�

� 4
n (n � p + 1) 2(n � q+ 1) 2(p � q � K )2

K 0� 4
n (n � p + 1) 3(n � q+ 1)( p � q)

�
1

K 0

n � q+ 1
n � p + 1

(p � q � K )2

p � q

� K 0(p � q � K )2

p � q
:
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Thus, whenever (p � q) > a log(n) for some a > 1, the Borel-Cantelli
lemma implies that, for n large enough,L (q) < L (p) almost surely.

If p > ep,

A � 5C� 4
n (p � q)2(n � p + 1)( n � q+ 1) 2;

B � A;

C � A;

and thus
x2

2Gn
� K 0(n � p + 1)

(p � q � K )2

(p � q)2
:

Since, by assumption onp, n � p + 1 > b log(n) with b > 1, the results
follows again by the Borel-Cantelli lemma.

Proof of (12)
We want to show that, under assumptions 1) - 4), almost surely,L n (q(n)) �

L n (p(n)) � 0 for large enoughn, for any sequencep(n) such that 1 � p(n) <
q(n) � max(a log(n); � n ). Take such a sequencep(n). Note that, in particular,
p(n) < q(n). Again, we shall write L , p, q in place ofL n , p(n), q(n).

L (q) � L (p) > 0 is equivalent to:

X := ( n � q+ 1) 2
q� 1X

i = p

y2
i + ( p � q)(2n � p � q+ 2)

nX

i = q

y2
i < 0:

De�ne:

X i = � 2
n (n � q+ 1) 2
 i for i = p : : : q� 1;

X i = � 2
n (p � q)(2n � p � q+ 2)
 i for i = q : : : n;

X i = 0 for i = 0 : : : p � 1:

with 
 i as above. Set:

Sn :=
nX

i =1

X i

= X � (n � q+ 1) 2
q� 1X

i = p

x2
i + ( q � p)(2n � p � q+ 2)

nX

i = q

x2
i

+ � 2
n (q � p)(n � p + 1)( n � q+ 1)

=: X � x

37



Thus X < 0 i� Sn < � x.
In view of applying Theorem 5, we need to check thatx � 0. We can

easily bound the term
P n

i = q x2
i :

nX

i = q

x2
i �

nX

i = q

e� 2i (� � " i )

=
n� qX

j =0

e� 2(j + q)( � � " j + q )

=
n� qX

j =0

e� 2q(� � " j + q )e� 2j (� � " j + q )

= e� 2q(� � " q )
n� qX

j =0

e� 2q(" q � " j + q )e� 2j (� � " j + q )

� � 2
n

n� qX

j =0

e� 2j (� � " j + q )

� � 2
n

where we have used the fact that the sequence ("n ) is non increasing.
Then:

x � (n � q+ 1) 2
q� 1X

i = p

x2
i � � 2

n (q � p)[2n � p � q+ 2 + ( n � p + 1)( n � q+ 1)]

Note that:

n � q+ 1 > n � q � n(1 � � );

where� is de�ned in Remark 1. Also

2n � p � q+ 2 + ( n � p + 1)( n � q+ 1) � 2n + 1 � � 0n + n(n � � 0n + 1)

= n2(1 � � 0) + n(3 � � 0) + 1

� n2(1 � �̂ 0);

for any �xed �̂ 0 < � 0 provided n is su�ciently large, where � 0 is de�ned in
Remark 1.
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As a consequence,

x � n2

"

(1 � � )2
q� 1X

i = p

x2
i � (1 � �̂ 0)(q � p)� 2

n

#

:

Condition 4 then entails:

x � n2(q � p)� 2
n (1 � � 0)(b�

1 � �̂ 0

1 � � 0
):

For a �xed b > 1, one may choose ^� 0 so that � := ( b� 1� �̂ 0

1� � 0) > 0, and thus

x � � (1 � �̂ 0)n2(q � p)� 2
n > 0: (15)

Let us now computeT and G.

� for i = p : : : q� 1:

IE(etX i ) � egi
t 2

2 for t 2
�
�

1
4� 2

n (n � q+ 1) 2
;

1
4� 2

n (n � q+ 1) 2

�
=: [ � T1; T1]

and gi = C� 4
n (n � q+ 1) 4 + 8� 2

nx2
i (n � q+ 1) 4:

� for i = q : : : n:

IE(etX i ) � egi
t 2

2

for t 2
�

1
4� 2

n (p � q)(2n � p � q+ 2)
; �

1
4� 2

n (p � q)(2n � p � q+ 2)

�
=: [ � T2; T2]

and gi = C� 4
n (q� p)2(2n � p� q+ 2) 2 + 8� 2

nx2
i (q� p)2(2n � p� q+ 2) 2.

Gn :=
nX

i =1

gi = C� 4
n (q � p)(n � q+ 1)[( n � q+ 1) 3 + ( q � p)(2n � p � q+ 2) 2]

+ 8� 2
n [(n � q+ 1) 4

q� 1X

p

x2
i + ( q � p)2(2n � p � q+ 2) 2

nX

i = q

x2
i ]
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Let us compute the minimum ofT1 and T2.
T2 < T 1 i� ( q� p)(2n � p� q+ 2) � (n � q+ 1) 2 > 0. Reasoning as above,

one �nds:

T = T2 if 1 � p < ep :=
p

2q �
� p

2 � 1
�

(n + 1)
= T1 if ep � p < q:

Note that the caseT = T2 may or may not occur, depending on the value of
q: Indeed, ep � 1 implies that q � (1 �

p
2

2 )n + 1. For instance, if � n = 2 � n=2,
this requires� � 1

2�
p

2
� 1:7.

The next step is to comparex and GnT.

� if p � ep:

GnT1 � x =
C
4

� 2
n (q � p)[(n � q+ 1) 2 + ( q � p)

(2n � p � q+ 2) 2

n � q+ 1
]

+ 2( n � q+ 1) 2
q� 1X

p

x2
i + 2

(q � p)2(2n � p � q+ 2) 2

(n � q+ 1) 2

nX

q

x2
i

� (n � q+ 1) 2
q� 1X

p

x2
i + ( q � p)(2n � p � q+ 2)

nX

q

x2
i

+ � 2
n (q � p)(n � p + 1)( n � q+ 1)

� (n � q+ 1) 2
q� 1X

p

x2
i

� 0:

� when p < ep, the comparison betweenx and GnT is more complex, and
requires to distinguish further subcases. In view of applying theorem 5,
it is simpler to estimate directly both x2

2Gn
and T2x

2 .

At this point, it thus remains to show that x2

2Gn
tends \su�ciently fast"

to in�nity (which is needed in both casesp < ep and p � ep), and that the
same is true forT2x

2 (this is needed onlyp < ep).
We begin with T2x

2 . In view of (15):

T2x
2

�
� (1 � �̂ 0)n2(q � p)� 2

n

8� 2
n (q � p)(2n � p � q+ 2)

�
� (1 � �̂ 0)n

16
;

40



which is su�cient for the Borel-Cantelli lemma to apply.
Let us now consider x2

2Gn
. We �rst compute a crude upper bound toGn .

Using that
P n

i = q x2
i � � 2

n , one gets:

Gn � K

 

n4(q � p)� 4
n + n4� 2

n

q� 1X

i = p

x2
i + n3(q � p)� 4

n

!

:

Using again (15):

Gn � Kn 4� 2
n

q� 1X

i = p

x2
i :

As a consequence:

x2

2Gn
�

h
(1 � � )2

P q� 1
i = p x2

i � (1 � �̂ 0)(q � p)� 2
n

i 2

K� 2
n

P q� 1
i = p x2

i

:

The function Fz(y) = (z� y)2

zy is decreasing. Thus:

h
(1 � � )2

P q� 1
i = p x2

i � (1 � �̂ 0)(q � p)� 2
n

i 2

K� 2
n

P q� 1
i = p x2

i

= ( q � p)
(1 � � )2(1 � �̂ 0)

K
F(1� � )2

P q� 1
i = p x2

i

�
(1 � �̂ 0)(q � p)� 2

n

�

� (q � p)
(1 � � )2(1 � �̂ 0)

K
F(1� � )2

P q� 1
i = p x2

i

 
(1 � �̂ 0)(1 � � )2

b(1 � � 0)

q� 1X

i = p

x2
i

!

= ( q � p)
(1 � � )2(1 � �̂ 0)

K
b(1 � � 0)

(1 � 1� �̂ 0

b(1� � 0) )
2

1 � �̂ 0
:

Recall that (1 � 1� �̂ 0

b(1� � 0) ) > 0. We �nally get:

x2

2Gn
� K (q � p):

Sinceq� p > a log(n), the result follows by the Borel-Cantelli lemma.
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