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We use the following notation throughout:f is a continuous-time signal that
is always assumed to belong to the global Helder spa€e ((0; 1)) for some
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Signal Denoising I: Helder Exponents
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Abstract

We propose a denoising method that has the property of preserving
local regularity, in the sense of local Helder exponent. This approach is
tted to the processing of irregular signals, and gives specially relevant
results for those displaying a local form of scale invariance known as
localisability. A wavelet decompaosition is used to measure and control
the local Helder exponent. The main ingredient of the algorithm is
an estimator (which is of independent interest) of the time-dependent
cut-o scale beyond which wavelet coe cients are mainly due to noise.
Based on local regularity estimated from information below the cut-o
scale, these small-scale coe cients -which govern the texture- are cor-
rected so that the Helder exponent of the denoised signal matches the
one of the original signal. The processing is only slightly more com-
plex than classical wavelet coe cients thresholding, resulting in fast
computing times. Numerical experiments show the good performance
of this scheme on various localisable signals.

Recalls on Hdlder exponents and notations
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> 0. Recall that, when 2 (0;1),f 2 C ((0;1)) means that there exists a
constant C such that, for all (x;y) 2 (0;1)%, jf (x) f(y)j Cjx vyj . More
generally, whenm < <m +1 with m aninteger,f 2 C ((0;1)) means that
f ism times continuously di erentiable andjf ™M (x) f™M(y)j Cjx yj ™.
The global Helder exponent off in the interval |, denoted ;(l) or ¢, is
the supremum of the such that f belongs toC (I). The local Helder
exponent off at x 2 [0;1], denoted ¢(x) or (x) is dened as (x) =
lim, o« (B(X; )), whereB(x; ) is the open ball centred atx with radius

. Thus, (x) measures the regularity of \around" x. A small value means
an irregular behaviour, andvice-versa
We assume without loss of generality that our signals are observed onlp
When we write that f,, is an approximation at resolutionn of f , we mean that
f, is a representation of using 2' samples. The letterh will always denote
a non-decreasing function fronN to N tending to in nity and such that
h(n) nforall n. The abbreviation wlog means \without loss of generality",
w.r.t. stands for \with respect to", i is \if and only if", a.s. means \almost
surely”, i.i.d. abbreviates \independent and identically distributed”, r.v.
stands for \random variables”,N (0; 1) is used to denote the centred normal
law with unit variance, and log is base-2 logarithm.

2 Statement of the problem

We consider the following situation: one observeg = X + B where X is
the original signal andB is a white noise. One seeks an estimatd€ of
X that has \good" properties. Obviously, one desirable property is thaX
is \close" to X in some sense. Typically, the error is measured by some
risk function, and one wishes that, as the resolution tends to in nity, this
error tends to O at a fast rate. Additional properties are often useful. For
instance, the celebrated method based on wavelet coe cients thresholding
with the so-called universal threshold (see below for details) ensures that,
with probability tending to one when n tends to in nity, X is at least as
smooth asX . The signi cance of this feature is that, when presented with
pure noise {.e. whenY = B), the denoising scheme will indeed detect the
absence of a signali.e. X =0).

The aim of the present work is to go beyond this property by design-
ing a method that will ensure that, a.s., asn tends to in nity, X has the
same local regularity -as measured by the local Helder exponent- Asfor a



Figure 1. Original multifractional Brownian motion (top left), denoising with
SURE thresholding (top right) and regularity preservation method (bottom
left), and zoom on a superposition of the three signals (bottom right).

large class of (irregular) signals. There are several reasons for enforcing this
constraint. First, it implies that, when presented with a \clean" signal {.e.
whenY = X), the denoising scheme will indeed yiel ' X. This prop-
erty is not shared by classical wavelet coe cients thresholding in the case
where X is everywhere irregular (for instance, fractal). In this situation X

is signi cantly smoother than X (see Figure ). Second, denoising is often
only the rst step in a chain of processings of the signal. While any decent
scheme should guarantee thak and X are close, oversmoothing typically
entailed by most methods may reduce the e ciency of the subsequent steps.
This is the case when further processing is based on the study of irregularity.
Examples include the analysis of biomedical signals (measuring the regular-
ity of ECG allows one to assess the condition of the heart), nancial records
(where local regularity is related to the behaviour of agents and volatility of
the market) or geophysical signals (e.g., for segmentation).

Of course, denoising everywhere irregular signals with the additional con-
straint of restoring the original regularity is more of a challenge, as it is
di cult to distinguish the texture of the signal from the one of noise. We
shall however see below that it is possible to ensure convergence of the es-
timated local Helder exponents ofX to the ones ofX with good practical
performance provided resolution is large enough.

The method that we develop in this work relies on a wavelet decompo-



sition. We therefore brie y recall now some basic facts about wavelet-based
denoising. This powerful approach has been very popular since the semi-
nal papers [1, 2]. The essential idea is that, for many signals, only a few
wavelet coe cients have signi cant magnitude, whereas the coe cients oB

are uniformly distributed provided one uses an orthonormal wavelet basis.
To denoiseY, it thus seems natural to replace its small coe cients by O,
and to keep or shrink large ones. This may be done in several ways, and
there is a huge number of variants in this family of methods. In the sequel,
we will denote and the father and mother wavelets of a multiresolution
analysis, and we assume that both functions are compactly supported and
that has su ciently many vanishing moments. The wavelet coe cients of

X are denotedx = ( Xk )jk , those ofY, y = (Y )ik, and X = ( Xk );x denotes
the coe cients of the denoised signalX . In the simplest case, thresholding
is local, i.e. each coe cient is processed independently. The most well-
known schemes are the hard- and soft-thresholding, whexe="y 1,,; or

R = sign(y) max(0;jyj )- Popular chpices for inglude the minimax

threshold M =~  where , =inf sup, gy and "is the esti-

mated standard deviation ofB, R (x) = E((® (y) x)? and Rgace(X) is
the ideal risk given by an oracle, such as DLP (diagonal linear projecigio_n) or
DLS (diagonal linear shrinker) onesthe universal threshold Y = 22 "=2" 2n;
which ensures that, with probability tending to one when resolution tends
to in nity, the zero signal contaminated with additive white Gaussian noise
will be correctly estimated to zero; and theSURE threshold JS obtained by
considering the quantity

SURE(;X )=S 2Ifi;kXik g+min(kX;k; )2

whereX; = Y% and S =2/ 1, and setting

h ik [
N

with _ AP 2log(2):

j5=argmi51 SURE ; :

0 j
Other denoising rules include global thresholding, where all the coe cients of

a given scale are processed in a single way, see, e.g. [3], and block thresholding
[4]. The article [5] presents many other variants. They all typically perform
well, although they tend to oversmooth the signal and also to introduce
oscillations called \ringing e ect". Ringing may be reduced signi cantly

by various means. One is to use translation invariant wavelet coe cients
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thresholding [6]. This however increases oversmoothing. A class of methods
that re nes thresholding usinga priori information, which has been and still

is the subject of substantial e orts, rely on Bayesian approaches. We do not
go into details of these methods and refer instead the reader {0 |[7, 8] and
references therein.

To explain our concern in this work, we illustrate the oversmoothing e ect
of thresholding on a fractal signal in Figure§|4 t§]6. The original signdl

is a Weierstrass function with exponent = 0:5, that was corrupted with
additive Gaussian white noise to obtain the signdl, (f andf, are displayed

in Figure[3), and denoised with hard-thresholding using a universal threshold
(signal g,) H Each gure corresponds to a speci ¢ resolution. Althouglg, is
fairly close tof , it is clearly oversmoothed. As mentioned previously, this is a
serious drawback in some applications where recovering the original regularity
in addition to the overall shape is important. To explain in a heuristic way
the phenomenon of oversmoothing in this particular case, recall the following
result:

Proposition 1. [9] Letf 2 C ((0;1)) with > 0. Then

1=2+ ¢ = liminf min C9M kil (1)
i k2z J

wherehf; i is the wavelet coe cient of f at scalej and locationk. Thus,
for the Weierstrass function, the coe cients at scalg are of the order of 2!
or smaller. For largej, they are all are negligible w.r.t. the ones of the noise.
As a consequence, the corresponding coe cients bf are essentially those
of the noise and they get thresholded. This implies that), has vanishing
coe cients at these scales and thus the original texture is lost. Our rst
aim will be to make this line of reasoning mathematically precise. This will
allow us to explain another phenomenon observed on Figurlgs 4[fo 6: seen
from \far away", a signal denoised by wavelet thresholding typically looks
smoother than the original (Fig. [4), but this impression diminishes as one
zooms in (Fig. [6). A precise understanding of this feature will lead us to
propose our new denoising scheme, which avoids this drawback.
Our approach ts in the paradigm proposed in|[10]: rather than putting
small coe cients to zero in the noisy signal, one tries to deduce their values
from the ones of the large coe cients, which are assumed to be reliable. An

IMost other denoising based on thresholding yield the same kind of results.



example of implementation of this paradigm is total variation-based denois-
ing, as exposed in [11]. In this variant, coe cients larger than a threshold
are kept unchanged, while smaller ones are modi ed so as to minimize total
variation. This permits to reduce ringing e ects, but does not typically pre-
serve texture. More generally, the formulation of [10] may be described as
follows: letl be the set of indices for which the coe cients are larger than
the threshold. Then the denoised signdl;, is such that its coe cients with
indices inl are not modi ed, whereas the other ones are chosen to be smaller
in absolute value than a constantQ and such that an \energy" ( f3,) is min-
imum. While implementations of this paradigm improve on thresholding, in
particular w.r.t. ringing e ects, most are not satisfactory when it come to
preserving regularity. In particular, they are not tted to the processing of
strongly textured signals as are fractal or, more generally, localisable signals.
Recall that a processX is called localisable au if there exists > 0 and a
non-trivial processX 2 such that [12]

X(u+rt) X(u) _
r

lim X 0(t): (2)
The limit (2] may be taken either in nite dimensional distributions or dis-
tribution. Classical examples of localisable processes include multifractional
Brownian motion, multifractional stable motion [13] and multistable mo-
tion [14]. Under general conditions, the local fornX? is self-similar with
stationary increments (sssi). Conversely, all sssi processes are localisable.
Thus, localisable signals display a local form of scale invariance, and are typ-
ically everywhere irregular with a regularity that is time-dependent. They
are often encountered in biomedicine, nance and geophysics. Local regular-
ity is an important feature in such signals, as it bears crucial information on
the state of the system.

Our denoising scheme follows a modi ed version of the paradigm of [10], with
the di erence that, rather than minimizing an energy functional, we seek
to restore the regularity of the original signal, understood in a local sense
and measured with the help of the Helder exponent. This strategy is more
relevant than thresholding for signals with non-sparse wavelet decomposition,
as are localisable signals. For such a restoration to be possible, we need to
be able to estimate the original regularity. This is performed by estimating,
for each point, a cut-o scale beyond which the wavelet coe cients ol are
close to the ones oK. The Helder exponent is then estimated from these
wavelet coe cients. In contrast with the paradigm, we do not decide to

6



keep coe cients unchanged if they are large enough, but rather when their
scale is larger than the local cut-o. Coe cients below the cut-o scale are
processed as follows: roughly speaking, a signal with exponentat point

t has wavelet coe cients abovet that are smaller in absolute value than

2 10+122) at scalej. If a coe cient below the cut-o scale is larger than
this value, it is thresholded, otherwise it is kept unchanged. This processing
is based on interscale relations between the wavelet coe cients, and uses
information on \known" coe cients to deduce the values of unknown ones.
We note here that some works have already used regularity as a guide for
denoising|[15]. In contrast to our approach, they do not aim at recovering the
regularity of the original signal. We also mention that interscale correlations
of wavelet coe cients have already been exploited in a di erent way e.g.
in [16]. Finally, [17] develops an approach that bears some similarities with
ours in a di erent context.

The remainder of this article is organized as follows. In Secti¢h 3, we de ne
a notion of \Helder exponent in a range of scales" that is able to account for
the perceived regularity of a signal at nite resolution. We examine in some
details its properties in Sectior |4, in particular in relation with sampling
and wavelet coe cients, and its links with Helder exponents. Sectior |5
studies the behaviour of the Helder exponent in a range of scales of a signal
corrupted by Gaussian white noise, and Sectidr] 6 examines what happens
in terms of regularity when a signal is denoised with hard-thresholding. The
main theoretical result of this work is presented in Section 7: it provides an
estimator of the location-dependent scale below which the wavelet coe cients
of the original signal become negligible w.r.t. the ones of the noise. We
believe that this result is of independent interest. With the help of this
estimator, we present our denoising scheme in Sectign 8, and show that it is
able to recover the regularity of the original signal. Finally, Section|9 displays
experiments on localisable signals.

In a sequel to this paper, we extend the results obtained here when regularity
is measured in a 2-microlocal sense rather than with Helder exponents. 2-
microlocal analysis gives a complete description of the local regularity of
signals, and investigating denoising schemes in this frame provides further,
sometimes unexpected, insights. For instance, we will prove that thresholding
must typically introduce oscillations -in a well-de ned mathematical sense-
which are the source of the ringing e ect. We will also show how to avoid
this e ect.



3 Exponents in a range of scales

Recall that, here as everywhere in the articlef is assumed to belong to
C ((0; 1)) for some > 0.

Case of a single function
In applications, one deals with signals sampled at nite resolution. As a
consequence, Formulg [1) cannot be applied directly to estimate . This
is a serious problem, as the value of the Helder exponent is independent of
an arbitrarily large but nite number of wavelet coe cients. Re-write (1} as
follows:

¢ =liminf ¢ (j);
j1i
where ¢(j) is de ned as:

_logihf; i
f(J)—nQ;Q—j

1=2:

When the liminf above is a plain limit, it is not too di cult to estimate  ¢.
However, in most cases of interest, only a subsequengg (j)) tendsto ;.

A further fact must be recognized, which is related to the visual signi cance
of Helder exponents: large scale wavelet coe cients do not in uence the
perceived smoothness. See Figur¢ 2) for an illustration, where functions
having same large scale (resp. small scales) coe cients are compared. This
is just the obvious observation that large scale coe cients control the global
aspect, whereas \texture" or roughness is governed by small scales ones.
Similarly, the regularity of signals denoised by thresholding depends on the
scale at which they are observed: the signal on Figuré 4 looks signi cantly
smoother than the original, the one on Figuré¢|6 is more satisfactory; thus,
looking at the denoised signal from far away may yield a satisfactory picture,
whereas a close view reveals oversmoothing. In order to translates these
facts into a mathematical framework, we introduce the notion of \Helder
exponents in a range of scales". Recall that here and everywhere in the article
h denotes a non-decreasing function froMd to N which tends to in nity and
such thath(n) n for all n. The \Helder exponent of f between scalefi(n)
and n" is de ned as:

(h(n:ny=  min 09wl

j2h(n):nk2z ] 1=2: (3)



Figure 2: Perceived roughness depends on the amplitude of the wavelet coef-
cients at small scales. Left: both curves have same small scales coe cients,
but diering ones in large scales. They produce the same impression of
roughness. Right: both curves share the same coe cients at large scales, but
di ering ones at small scales. Their roughness appear to di er.

The indicesj 2 f h(n):::ng are thus considered to be \texture scales”, whereas
the indicesj < h (n) are assumed to have no incidence on the perceived
smoothness of the signal.
The following remarks are straightforward:

liminf,:  ¢(h(n);n)=" .

If ( ¢ (h(n);n)), converges, then its limit is .

( +(h(n);n)), converges i there exists a sequence {( (k)))x that
tends to ¢ and such that, for all n, there existsk with (k) 2 f h(n):::ng.

( +(h(n);n)), converges i there exists a sequence {( (k)))«x which
tends to ¢ such that, forallk, (k) h( (k+1) 1).

If hy hy, then convergence of (s (ho(n);n)), implies convergence of
( t(ha(n);n))n.

8f; 9 h such that ( ; (h(n);n)), converges.

8 h; 9f such that ( ; (h(n);n)), diverges.
The last three points mean the following: the functiorh has to tend to in n-
ity, but it may do so arbitrarily slowly. For any given f , it is always possible
to chooseh that tends to in nity su ciently slowly so that (¢ (h(n);n))n
converges, but no single functiomn is su ciently slow to tall f.

Case of a sequence of functions

In practice, one does not deal with a single function, but with a sequence
(fn)n, where eachf , is the approximation at resolutionn of an underlying
continuous-time signalf . Reasoning as above, the perceived roughness of
eachf, will be controlled by the amplitude of the coe cients f,; i be-
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tween some scala(n) and n. Then, if the sequence (s, (h(n); n)), tends to a
limit I, one may expect that, forn su ciently large, the perceived roughness
will be comparable to the one of a function with exponent . The situation
here is however more complex than in the case of a single function. Indeed,
(a) a function hg such that ;, (ho(n);n)), converges does not always exist.
For instance, dene g; by hgi; i = 2 I and let g, 0. Setf,, = o
and f,,.1 = Q. Itis easily seen that, for allh, ( ¢,, (h(n);n;)), equals 05,
whereas the sequence {,, ., (h(n);n)), is identically in nite. As a conse-
qguence, the sequence {, (h(n);n)), does not converge. Such an extreme
behaviour is however rather rare,
(b) convergence of the sequencsg, (ho(n);n)), does not imply the one of
¢, (h(n);n)), whenh hy. Furthermore, sequences;, (h(n);n)), may ad-
mit di erent limits depending on the choice of the sequencds(n). This has
practical implications, as we shall see in Sectiph 6: [ denote the signal ob-
tained by denoising using classical wavelet coe cients shrinkage with univer-
sal threshold at resolutionn a signalf contaminated with additive Gaussian
white noise. Then ¢, (h(n);n)), tends to ; when h increases su ciently
slowly (which amounts to looking at the signal from \far away"). Howeuver,
¢, (h(n);n), tends to +1 wheneverh(n) tends to in nity su ciently fast:
looking closely at the signal yields an impression of oversmoothing,
(c) in general, the limit of ¢ (h(n);n)),, when it exists, depends on the
analysing wavelet.

4 Estimated regularity of sampled signals

We assume from now on that eacli, is a sampling at resolutionn of an
underlying continuous-time signalf . If we accept [3) as valid de nition of
roughness in a range of scales, we need to relate (h(n); n), ¢(h(n);n;)
and . Indeed, one can only compute coe cientdf,; i, which are just
approximations off; ;i and one needs to examine how these approxima-
tions impact measured regularity. This further depends on how sampling
is performed. We show that, provided thath increases slowly enough, the
di erence between thetf,; i and the lf; i is su ciently small so that

¢ (h(n); n) is indeed well approximated by ¢, (h(n);n), in two typical situ-
ations of sampling.

10



4.1 Impulse sampling

We rst study the case where the samples are the valuégk2 "); and con-
sider two possibilities for de ning thef,.

Stepwise constant approximationone possibility (used e.g. by thewt func-
tion in the Wavelet Toolbox of Matlab) is to set:

X
fn(t) = f(i2 ")1izfiz niisn)2 ) (4)

i2Z
In this case, one has

g{ 1 Z 2 n(i+1)
Mo; i = fn(i2 " i (Ddt:
2

i=0 "

The following result, whose easy proof is omitted, allows one to estimate the
error on the wavelet coe cients.

Proposition 2. Let f, be de ned by(). Then there exits a constanC such
that _
jhfn; jki h f: ik |_| ca2" 1:2:

Wavelet crime: wavelet coe cients are usually computed with the help of
the fast wavelet transform [18]. One approximate$(i2 ") by f; 22
and sets X
fn= f(i2 M)2"? (5)
i22
This is the so-called \wavelet crime"|[19,20]. The easy proof of the following
result is omitted:

Proposition 3. There existsC > 0 such that for alli 2 Z:
jmn; n|i h f; ni IJ CZ n n=2:
We use the above result to prove the next statement:

Proposition 4. Let (f,), be de ned by(5). There existsC > 0 such that,
forallj n, _
jhf; jki h fn; ik Ij ca2" J=2:
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Proof. Forj = n, if,; i =0, while, sincef 2 C (R), there existsC such
that jhf; ij C2" "2,
Forj n 1, x 2 Vectf , :i2 Zgand thus:

- . X . .
o, wi h f,oi = hth, il onis il
i27

Using Proposition[3, one gets

X
jhf; i h oy il cz2 =z ih i il

i2Z

X Zu

c2 =2 n 2n=2 j @t Q) k(@)jdt
i27 1
P
Since has compact support, there existM such thatt ! ixz) (2"t
1)j <M . Thus:

Z.,
jhf; jki h fn; jkij C2 n M j jk(t)jdt
1
Z .,
C2 2 nMm j (b)jdt:

1
[l

Approximate wavelet coe cients and Helder regularity: the results above
allow one to give condition on the functiorh so that the Helder exponents in
a range of scales estimated on a sequené€g)f tend to the Helder exponent
of f.

Theorem 1. Let f,, be the approximation off at resolution n using (5)
or (). Assume thath(n) rn foranr< 1. Then,

¢ =liminf ¢, (h(n);n) (6)

Proof. Sincef 2 C ((0;1)) for any < ¢, Proposition 7 implies that
jnfn; i h f; wij Ci2 " =2 Inaddition, jhf; kij Cy2 (172 As
a consequence,

jhfn; il (Cp+ Cp2 10172,
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and 1=2 + lim inf min w:
n'l j2h(n):nk2z J

This is true for all < ¢, and we have proved one inequality. Choose now
small enough so that < :—+ Let (ji; k) be a sequence such thgt tends
to in nity and
jhf: j|;k|ij 22 i i+ +1=2).
Setn, = dj —e Sinceh(n;) rny, there existsL such that forall| L,
h(n)) j; n;, and thus

i+

|Ogjhfn|; ilklij .

Ji
This implies that jhf,; ki 2 1'C* *172: However,f 2 C * =2((0;1)),
and one may obtain a lower bound offf,, f; 1 with the help of Propo-
sition 2k

1=2+ (h(n|); n|)

jhfm; j|§k|ij jh f, jliklij C2 mCs =2 j':2:
When C2 mCr =2 22 mCe ) 22 Ce* ): one hasjhfn; j ]
z2 e+ #1229 This means that ¢ (h(n);ny) ¢ + . The required in-
equality is obtained by taking the liminf. O

Theorem[] implies that, ifh(n) rn, and if ¢, (h(n);n) converges, then its
limitis . In other words, the sequence ¢, (h(n);n)), cannot converge to
a \wrong limit". It however says nothing about the question whether the
sequence converges. This is the topic of the next result. For a givenwe
have seen that there always exists am, such that the sequence ¢ (ho(n); n)
converges. Theorem|2 shows that it is su cient to choosé \slower" than
ho to ensure that ( ¢, (h(n);n)), will tend to ;.

Theorem 2. Lethg:N! N be a non-decreasing function tending to in nity
with ho(n) n suchthat ; =lim,; ¢ (ho(n);n). Then, for any sequence
u, of integers such thatu, rn with r < 1, and for any h satisfying the
usual conditions and such thah(n)  ho(uy,),

f=lm g, (h(n);n):

Proof. A lower bound on ¢ (h(n);n) is obtained with the help of Proposi-
tion P] as in the proof of Theoren [L:

8 > 0; jhfn; ki (Cp+ Cp2itr =2

13



and thus ¢ 2 ¢ (h(n); n) for large enoughn. The upper bound also
follows the same lines as in Theorefr} 1: for alb> 0, there exists a sequence
(j1; k) such that

it i 2200 = andj ho(a 1)

For n 2 N, considerj;n) such that u, 2 [jin);jin+2 1. Then h(n)
ho(Un) ho(j I(n)+1 1) jl(n) Un, and thUSj I(n) 2 [h(n), Un]. Asu, <n,
this implies that

log Hf i

n IIOLI)

1=2+ ¢ (h(n);n)

jl(n)

Sincef 2 C ' (R), one may bound Hfn; j k., from below with Propo-

sition [2. Using thatn r ), one gets

- i himC et +1=2) rtim (s +1=2).
Hn; 1 (myKigm ! 22 C2 1) :

Choose < 1.L( ;+1=2). Then ¢+ +1=2<r I( g +1=2) and, for

large enoughn,

H i 2 I+ +1=2).

N dimkion)
One concludes as before. O

We have proved that it is always possible to choodetending to in nity
logjhfn; i ij

slowly enough so that ¢ +1=2 is the limit of both sequences min; zn(n):nk 2z ]

logjhf; i ]
]
n

limit as soon ash(n) <rn with r< 1.

and  miNj2nm):nk 2z Furthermore, this is the only possible

4.2 Integral sampling

A more realistic modelling of the sampling of is to consider thas, rather than
measuring the valued (k2 "), one has access to mean valuesf (t)c(2"t
i)2"dt wherec is a positive function whose integral is equal to 1 that char-
acterizes the sampling deviceé [21]. All the results of Sectipn 4.1 remain valid
in this situation: indeed, by the mean-valuegheorem, for alh and i, there
existst, 2 [i2 ";(i+1)2 "]suchthatf (t;) = f(t)c(2"t i)2"dt: Replacing
f(i2 ") by f (t|) in the proofs yields the result.
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5 Estimating the regularity of a noisy signal

The aim of this section is to evaluate the Helder regularity of a signaf
which has been corrupted with an additive Gaussian white nois® with
standard deviation . Since dividing a signal by a constant does not change
regularity, one may assume wlog that, = 1. Let g = f + B denote the
observed noisy signal. We are not interested here in the theoretical Helder
exponent ofg, but in the one estimated from a sampling between scalbgn)
and n. Note that sinceg is a distribution, and thus does not belong ta&C (R)
for any > 0, the results of the previous section do not apply. Furthermore,
the values ofg at the points k2 " are not well de ned. Following [21], we

assume that the samples read:
z

g, = f()c@"t i)2"dt+2 "4,

wherec is as in the previous section and thdj, are i.i.d. N (0;1) r.v. The
approximate wavelet coe cients are

hohn ; jki:Hn; jki"'2 n=2q1k; (7)
with the bfj i.i.d. N(0;1) r.v. The next lemmas will be useful.

Lemma 1. Let g, be de ned by(7). For all > 0, there exists almost surely
N 2 N such that, for alln N and all k,

jhgn; nkij 2 n( +l=2):

Lemma 2. Let > OandHj beiidN(0;1) rv. Almost surely, there exists
N 2 N such that, for alln N,

max by 2":
j2[l::n];k2[0:::2i]Jtfkj

The proof of the rst lemma is straightforward, while the second one is
well-known. The main result of this section is:

Theorem 3. Let g, be de ned by(7). Then 4, (h(n);n) tends almost surely
to 0 whenn tends to in nity.

Proof. Fix > O. Lemmz{‘iimpliesthat, fom large enough, a.s. ;24" noll

+ %; and thus g (h(n);n) . To prove the reverse inequality, we
must show that: 8j;h(n) j  n impliesjhg,; wij 2 G ). By (.
g ki jh for i +2 "% ], and Lemma[:]z implies the result. O
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Applying Theorem[3 with f = 0 yields that the estimated Helder exponent in
a range of scales of sampled Gaussian white noise tends a.s. to 0 whiamds
to in nity. It is well known that the Helder exponent of a Gaussian white
noiseb is equal to -1/2. Thus, irrespective ofh, the sequence , (h(n);n)
does not tend to ,. This does not contradict Theorem P ash does not
belong toC ((0;1)). Also, Theorem[3 means that the estimated (as well as
the theoretical) regularity of f + B does not depend on the regularity of .

6 Estimating the regularity of signals obtained
through denoising by thresholding

In the previous section, we have studied the theoretical properties of regu-
larity of a noisy signal. Here, we follow the same approach to obtain the

regularity of signals denoised with hard thresholding. We consider the uni-

versal threshold and a level dependent one. Other thresholds or comparable
schemes, such as the ones presented in Secfipn 2, yield similar results.

Theorem 4. Let g, be de necbby and f, be the signal denoised by hard

thresholdingg, with , =2 "2 2nIn2. Let (n) be a non-decreasing integer
sequence such that; =lim,;  {( (n)). Assume thath veries:

90> 0,812 N;9i 2 N: ()2 h(n); —

1 o: (8)

1+2
Then ¢ (h(n);n) tends in probability to .
Assume thath veri es:
90>0:8n2N; h(n) 1+nzf(1+ 0): 9)
Then g, (h(n);n) tends in probability to+1 .
In the sequel, we will call the quantityc, = 5 f the cut-o scale, even

though this quantity is not necessarily an integer. The structure of the
proof is as follows: the coe cientshf; ;i are smaller in absolute value than
C2 it %122 Those of the noise are of the order of 2°2. Thus, when

j > cn, the coe cients of f are buried in the noise. Lemma|3 makes this
precise by showing that the coe cients corresponding to these values johre
thresholded. As a consequencey- (h(n); n) tends in probability to in nity

16



when (9) is veri ed. At scalesj smaller than the cut-o scale, the amplitude
of noise is typically small w.r.t. 21 *1=2: | emma [4 shows that coe cients
in these scales remain not larger than 2( 1*172 This implies the sequence

o (N(n); n) remains larger than ;. Finally, there exists coe cients of the
order of 210 +*1=2 " For such coe cients which lie betweenh(n) and the
cut-o scale, noise will again be small and will not modify their order of
magnitude, as shown in Lemmpg]5. The intuitive meaning is that there are two
cases where the perceived regularity of the denoised signal can be assessed:
-h(n) < (i) < ”l(+12 f): the signal is seen from far away. There exists values
of the sequence betweenh(n) and ﬁ The corresponding coe cients
of the denoised signal are of the same order of magnitude as the ones of the
original signal, and ¢ (h(n);n) remains close to .

”1(+12+ f) < h(n): the signal is seen from a close distance. With large prob-
ability, all the coe cients of the denoised signal at scaleg  h(n) vanish,
and thus - (h(n);n) =+ 1 ; in other words, the signal is oversmoothed.
This is exactly what is observed in Figuref|4 tp|6. Note that Theorefr} 4 does
not cover all cases: whein(n) is smaller than c,, but su ciently close to

it so that no terms in the sequence belong to h(n);c,], knowledge of

is insu cient to predict the behaviour of . (h(n);n). In \nice cases", e.g.
when (i) = O(i), this happens only whenh(n) is of the order of -7— for
an in nity of indices n.

We will need the following fact, a slight generalization of a classical result
given, e.g., in|[22], whose proof is omitted:

Fact 1. Let ( ,)n be a positive sequence such that= o(n). Let (z,)non be
ii.d. N(0;1) r.v. Then

p
P max jzj nin2 In, ! L
i2[1::2]

Lemma 3. Forany > 0,

. n ~. L .
P 8 1+2f(l+ ) » Wy wi=0 1 L
Proof. Choose small enough so that (1+) ff”f:z > 1. Then, forn large
enough, sayn Ny,
n n+InBnin2)

A1+ )(¢+1=2 )

1+2 ¢ 2

17



Theorem[1 implies that there existsN, such that, for all n N,, all
J I—(1+ )and allk,

1+2 ¢

thn, Jklj 2j(f+l:2 )
2 ﬁ(l*' oe+l=2 ),

Thus, forn  max(Ny; Ny), | ﬁ(1+ ) and all k,

th . |J 2 n+Iog(82nIn2) 2 n=2
ok Foninz |
N O 1 =2
2™ 2nn2 1 1 ———
nin 2nlog 2

N 2”=2p2n|n2 1

Using Fact[1 with , = e, one gets

P 8 2 [Lin];k 2 [1:2']; b ] 2”:2p2nln2 11 1

This implies
. n L .
P g 142 f(1+ )ik 2 [1:2];jhgn; il n 1
which is our result. ]

Lemma 4. Forany > 0, there exists > 0 such that, for all sequencé(n)
tending to in nity, there exists a.s. N 2 N such that for alln  N:

8 2 h(n); oo+ ) e ki 200012 0.

2 g

Proof. Fix > 0. Choose such that

LY (i+1=2 =122

1+2 (70T IR
where > 0. Then, forallj &2,
f

2j(f+1=2 ) 2n=22n:
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Lemma[2 implies that, a.s., there exist®N; 2 N such that

8n Nl;znzjq]kj é2](f 1=2 )

Lemma[1 implies that there existdN, such that
: . .. 1_. _
8n Ny 8  h(n); jhfn; ki 5 2 1C+1=2 ).
Thus, by de nition of g,, for all n. max(Ni; Ny),

. n . .. i =
8 2 h(n); o —(+ ) idhon; jij 270770 (10)

2 4
One concludes by noting that ify,; i jh On; j«ij. O

Lemma 5. Assume (@). Then, foriall > 0, a.s., there existsN 2 N such
that foralln N, there existsj, 2 h,; ——(1 ) andk, 2 [0;2"] such

1+2 ¢
that
Wy okl 2 1n@=2 e

Iogj<f;- jnkn>j +1=0

Jn

Proof. Lq% (Jn; kn) be a selquence such thats =lim ;1
andj, 2 h,;=0—( ) . Choose > 0 small enough sothat (1 o)(1+

Ny 142 ¢

=+—)=1 2 ,where > 0. Then, forn large enough,
jhf; o Qj  32inCr#t=2+r) g pn=2en,

By Proposition[4, there existsC > 0 such that, for all n,
jhf; ki h fop i) C2 Mo in=2:

For n large enough,C2 " 02 2", and this implies that jhf; ; i,
Mo, jakel]l 2 n=2+n. As a consequence,

jhfn; jnknij 22n:2+n:

Lemma[2 then implies that, a.s., there existdl 2 N such that, foralln N,
2 n=2 o, %jhfn; inkall , SO that

jhgn; jnknij 2 in( §+1=2+ ); as.
For n large enough, 2in( 1+2* ) 2 n=2+n 5 Thys, a.s., the coe cients

hOn; j.k.0 are not thresholded and Hy,; .« > 2 In(+1=20 ), O
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Proof. of Theorem[4
Case wheren veries (8): x > 0. Lemma[4 implies that there exists
such that
0 1

log Hh; ikl
, nl+ ) ns o jk 1
P @8 2 h(n)i T 5 j 5

Lemmal3 yields
0 1

log Hh; ki

_ n(l+ ) 109 Mn, 1

P @gj 2 117 n j 5

One deduces that
P( g(h(n);n) +1=2 )! L
Finally, Lemma[5 implies that
P+ (h(n);n) f+l=2+ 1 1
Case whereh veries (9): Lemma[3 yields that

n
1+2 ;

P 8 1+ ), <fh, «>=0 ! 1L

As a consequencd (8) 2 [h(n);n];< f5; x >=0)! landthusP( . (h(n);n)=
+1)! 1L O

Figures[4 to[6 display the behaviour of denoised signals as the number of
samples increases. They illustrate Lemmdg 3 {d 5 in the case of a par-
ticularly simple signal, namely the Weierstrass function, which possesses a
global scaling behaviour. The original signal and the noisy one (which will
be used in all experiments involving this function) are displayed on Figure
. Beyond the cut-o scale ﬁ shown as a dotted horizontal blue line
on the gures, all coe cients are thresholded (Lemmgd B). At smaller scales,
noise is smaller than 2/( 1*172 and the coe cients remain smaller than

2 101+1=2) (Lemmal[4). Furthermore, \large" coe cients, those of the order

of 2 10 1+1=2) remain of the same order of magnitude (Lemmig| 5). When
resolution tends to in nity, this sequence will converge to the original signal,
but each denoised signal looks more regular than the original one.
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Figure 3: Original Weierstrass function sampled on'2 points with exponent
¢ = 0:5 (left) and noisy version (right).

Figure 4: Denoised Weierstrass function sampled ort'2points (left) and
wavelet coe cients of the original, noisy and denoised versions (right)

Figure 5: Denoised Weierstrass function sampled ort®*2points (left) and
wavelet coe cients of the original, noisy and denoised versions (right)
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Figure 6: Denoised Weierstrass function sampled ort®2points (left) and
wavelet coe cients of the original, noisy and denoised versions (right)

The case of a level dependent threshold, where, at scale | =2 1,
is treated in the following proposition, whose proof is similar to the ones of
results above and is omitted.

Proposition 5. Let g, be de ned by (7) and f7, be the signal denoised with
hard-thresholding and threshold; =2 / .

1. 1f > 1=2then ¢ (h(n);n) tends a.s. to0.
2. If < 1=2then ¢ (h(n);n) tends a.s. to+1 .

In other words, a level-dependent threshold 2 will either oversmooth the
signal when < 1=2 or yield a result with same estimated regularity as white
noise when > 1=2. One can show that a threshold of the form 2 "2 yields
results analogous to the ones of the threshold 72" 2nin 2.

7 Estimating the cut-o scale

In Section[8, we describe a denoising scheme that improves on thresholding
in terms of regularity preservation. The feasibility of this scheme relies on the
possibility of estimating the cut-o scale from the noisy signal. This section
presents a way to do so in Corollary]6. This corollary follows Theorelm 6, the
main theoretical contribution of the present work. We will need following
result (see,e.g, [23], Theorem 2.7, p. 55).

812 TiT; EE) % k=1lin:
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X X

Then, with S, = Xy and G, = Ok
k=1 k=1
x 2
P(S, Xx) ezxn for 0 x GuT;
P(S, X) e? for x G,T;
x2
P(S, X) e for 0 x GyT;
P(S,  X) e r for x G,T;

The following general result may be of independent interest. Its proof is
given in the appendix.

Theorem 6. Let (Xj)i2n; ( i)i2n be two real sequences, with > 0 for all i.
Assume that:

1. =lminf;,; —%Xi>q;
2. there exists a decreasing sequeng) such that", = o % whenn !
1 and 29l ", for all i;
3.0< 0= Iirplinf % = limsup % <
1!

i

are independent and, where, for each y; is a Gaussian r.v. with meanx;
and variance 2. Set

1 xXn
(n p+1)? |

2

Ln(p) = Vi

Denotep = p (n) an integer such that

Lo(p)= | min La(p)

whereb > 1 is a xed real number. Let nally q(n) = ﬂl— Then, for all
a > 1, almost surely, for all n large enough,

p(n) q(n)+ alog(n): (11)
Furthermore, if the sequenc€x;); satis es the condition:
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4. there exists a sequence of positive integdrs) such that, for all su -
ciently largen and all ny

1 X? 1 -
A Y ) P
i=q (1 _)

where 2 (0; 9and 2 (; ),

then, for all a > 1, almost surely, for all n large enough,

p(n) a(n) max(alog(n); n): (12)

Remark 1. Assumption (3) and the de nition of q imply that there exist
0< © < 1suchthat h q(n) n for all suciently large n. One
may take °= —, = —. This fact and the assumptior’, = o 3 imply

that "y < % for su ciently large n (in fact, ", = 0 % can be replaced by the
less restrictive condition”,, < FO).

Remark 2. No assumption other than positivity is made on the sequence
( n). In particular, it does not have to tend to innity. In the case where
Xj=2 ', one can take , = 2.

Remark 3. Condition 4 may be awkward to verify in practice. In many
cases ofanterest, it can be replaced by the stronger but simpler condition
2=o Ly xD).

The meaning of the assumptions is as followd:| (1) anf] (2) state that the
x; are bounded byC2 ' *1. (3) essentially says that the variance 2 of the
noise added to eaclx; tends to O at a rate not faster thanx,, i.e. there
is \enough noise". Under these conditions, the \normed energy" statistics
L,(p) has a minimum not larger than the cut-o level q(n) where noise
becomes predominant w.r.t. the signal. [{4) means that we can group the
Xi below q(n) in blocks of a certain size in such a way that the energy
of the block dominates the noise: this is a way of ensuring that there is a
su cient number of x; which are large w.r.t. noise,i.e., there is \enough
signal". Then the minimum of L,(p) is equal to the cut-o level within a
logarithmic correction. We apply Theoreni b to the following situation: the
(xi)i are the wavelet coe cients \above" a given point of a functionX . One
observesY = X + B, with wavelet coe cients (y;); where B is a centred
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Gaussian white noise. The problem is to estimate the value of the local
Helder exponent. In this setting, one has , =2 "2, Without noise and if
the (x;); were all of the order ofC2 ' , then a simple linear regression on
their logarithms would yield an estimate of . In the presence of noise, one
would observe, in logarithmic coordinates, the sum of points along a line with
slope (the logjxij) and points on a horizontal line with ordinate n=2
(the noise). Again, estimating would be easy: it would amount to nding
the leveli where the line with slope  falls below the horizontal line. In
general, however, thex; are all smaller thanC2 ' , and only a subsequence
is of this order of magnitude. Perhaps surprisingly, Theorefr) 6 and Corollary
say that, even in this situation, it is possible to estimate the cut-oi by
using the statisticsL,(p) which is minimum close toi provided there are
enough largex;, i.e. (@) holds.

Corollary 6. Let X be a function in C ((0;1)); > 0. Denote (x;); the
wavelet coe cients of X \above"t 2 (0;1). Assume that , de ned in The-
orem(§ is not larger thanblog(n) for someb > 1 and all su ciently large n.
Let Y = X + B, with B a centred Gaussian white noise with unit variance.

Set: 0 1
N _ + .

3w
wherep is de ned in Theorem[6. Then the following inequality holds almost
surely for all su ciently large n:

AN

j J 2b 2|Og(n) .

n

— =2 — — 1 H N _
Proof. From , =2 "™, one getsq= ;"r, or = 2”—q+ ~. Besides, =

%+ % In addition, the assumptions imply thatp 2 [q blog(n); g+ blog(n)]
a.s. forn large enough. Thus,

A : qa p
= N——
J J 20 q
blog(n) _ nblog(n)4( E)Z
o bglog(n) = 2n2 n
ZM( })2 2b ZM;
n n n
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8 Local regularity preserving denoising

We assume that we have at our disposal a sequen®g)(, that tends to ¢
either in probability or a.s. Such a sequence is for instance provided By
de ned in Corollaryl This allows in turn to estimate the cut-o scale ;7 —
which is instrumental for our method. The idea is to keep coe cients at
scales larger than;7— and to diminish the ones at smaller scales so that
they remain not larger in absolute value than 2( 1*1=2 This allows one
to recover the original regularity. More precisely, denoising is performed as
follows:

Proposition 7. Let g, be de ned by (7). Let (s,)n be a sequence that tend

a.s. (resp. in probability) to (. Let &n) = 75-. Dene the denoised
version f}, by
O B b g | ey
oK min jhgn; jcij ;2 1= sgn(tgn; i) if j > e(n):

Then ¢ (h(n);n) tends a.s. (resp. in probability) to ;.

Proof. Fix0< < ¢. Inequality (LO) always holds: there exist® 2 N and
> 0 such that a.s., forn large enough,

8j 2 h(n); 1+ ) ;jhgn; wij 2271C*1=2 0
1+2 ¢
Sincectn) is a.s. equivalent to5— f 6N o f (1+ ) for n large enough.
As a consequence,
D E _
8] 2 [h(n);c(m)];  fo: j« 221071=2 ),
D E _

Furthermore, forj > &n), fh; i 2 1(0*172) and thus a.s. forn large
enough, D E

8> ¢n), fn i« 2 1Ci+1=2 ),

D E

We have thus obtained that, for allj 2 [h(n);n]; 7 i« 22 1C+1=2 ),

This implies that - (h(n); n) f
As shown in the proof of Theoren[]s there exits a.sN 2pN suchgthat

for all n , ihgn: nolj 2 "(+1=2): which implies that f}; .o =
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D E
2 1(0+1=2)  Ginces, tends a.s. to ¢, f5; no tends a.s. to 2i( 112
and thus - (h(n); n) ¢+ as.whenn!1l
The proof when §,), converges in probability is similar. ]

The procedure above may introduce jumps between coe cients at scales
j e&n)andj> e&n). To avoid this, we replace 2i(sn*1=2) py 2Kn j(sn+1=2)
where K ), is a bounded random sequence. Before explaining how to choose
(Kn)n, we prove that this modi cation does not impact regularity.

Corollary 8. With the same notations as in Propositior [7, le(K ), be a
sequence such that there exists B > 0 verifying: a.s., there existsN 2 N
such that, for alln N, K, 2 [A;B] (resp. P(A K, B)! 1). Dene
fn by

O Bl e g | it en)

oK min jhgn; jcij ;20 1122 sgrhgn; ki) i j> e(n):

Then ¢ (h(n);n) tends a.s. (resp. in probability) to ;.
Proof. Let f, denote the function de ned by [13).
Almost sure situation assume thatK,, 2 [A;B] is veri ed. We apply Propo-
sition m to 2*f and 2f. Noting that ,; = = = ¢, one sees that the
same sequencs, may be used. Thus both ,,. (h(n);n) and .. (h(n);n)
tends a.s. to ¢. The result then follows from the inequalities

e (N(N);n)  (h(n);n) s¢ (N(n);n):

Situation in probability: Applying Proposition [ to 2°f and 2f, one gets
that wn(h(n);n) and iBfn(h(n);n) tend in probability to . Since
sy (h(n);n) ~(h(n); n) s6; (h(n);n), the result follows. O

Experiments suggest that takingK ,, equal to the o set in the regression line
of the logarithm of the absolute values of the wavelet coe cients w.r.t. scale
is a reasonable choice.

9 Numerical Experiments

As said in the rst section, our approach is specially tted to the case of lo-
calisable functions, which are irregular signals that ful | a weak form of local

27



scale invariance. We present in this section some results of denoising on such
signals, and compare them with classical wavelet coe cients thresholding. It
is well-known that the minimax and universal threshold are not well adapted
when the wavelet coe cients are not sparse enougn [16], and that the SURE
threshold is better tted for signals with small scale details, as are localisable
processes. In order to make fair comparisons, we thus use soft-thresholding
using the SURE threshold for classical thresholding.

Let us rst recall that, contrarily to classical thresholding, our scheme will
not, in principle, modify a locally scaling signal which is not contaminated
by white noise, since, in this case, the wavelet coe cients are aligned, and
the cut-o scale will be the maximal one. In practice, because of estimation
issues, some minor changes will occur, which are much less visible than what
is produced by classical thresholding. See Figdrg 1.

We begin with a signal with global scale invariance, namely the Weier-
strass function, in Figureg 7 td B. One sees that regularity is recovered after
denoising except on Figuré|7, where the resolution is too low for the cut-o
scale to be estimated with su cient precision. It is interesting to contrast
these results with the ones in Figurels| 4 10| 6).

The subsequent experiments are on localisable signals. These signals
are random, and we always choose the added Gaussian white noise to be
independent of the signal. Our rst example is multifractional Brownian
motion (mBm) [14]. This is an extension of well-known fractional Brownian
motion where the Hurst exponent is allowed to vary with time. This process
has become a popular model in nance [24], geophysics|[25], internet tra c
modelling [26]and biomedicing [27]. We consider an mBm with local Helder
exponent (t) = 0:6 + 25sin(4t ) sampled on 2% points. We display the
original and noisy versions on Figuré 10, along with regularity preservation
denoisings but where the cut-o levels are xed to 7 and 11, and nally the
denoisings with regularity preservation and SURE thresholding. This signal
was also used in Figurg]1.

Let us nally consider a multifractional multistable process (mfmsp). This

is a localisable process whose local form at each time is a well-balanced
linear fractional stable motion [13]. An mfmsp depends on two functional
parameters: the rst one, denoted , controls the intensity of jumps, and
ranges in (Q2) (a small means a larger intensity of jumps). The second
one, , ranges in (Q1), and controls roughness. Figure 11 displays an mfmsp
with (t) = 0:5+ 0:3sin(4t) and (t) = 0:9 + t, a noised version, and
denoisings using regularity preservation and SURE thresholding.
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Figure 7: Denoised Weierstrass function sampled ort!2points (left) and
wavelet coe cients of original, noisy and denoised signals (right).

Figure 8: Denoised Weierstrass function sampled ort®*2points (left) and
wavelet coe cients of original, noisy and denoised signals (right).

Figure 9: Denoised Weierstrass function sampled ort®2points (left) and
wavelet coe cients of original, noisy and denoised signals (right).
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Figure 10: mBm sampled on ¥ points (top left), superimposed with noisy
version (top right), denoising based on regularity preservation with xed
level equal to 7 (middle left) and 11 (middle right), denoised versions with
regularity preservation (bottom left) and SURE thresholding (bottom right).
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Figure 11: mfmsp sampled on*2 points (top left), superimposed with noisy
version (top right), denoised version based on regularity preservation (middle
left) and SURE thresholding (middle right), zooms on denoised versions with
regularity preservation (bottom left) and SURE thresholding (bottom right).
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Appendix: proof of Theorem 6 [ |

We will need the following elementary lemma:

Lemma

Letz= N(0;1)and = z?+2z 1,where 2 R.

Then ,

EeE ) e7 (14)
fort2 1;2 and g = 16log2 8+8 2.
= C+8 ?
t 1—% a2

Proof. of the lemma. Simple computations yieldlE(e' ) = e,
from which (14) follows at once. O
Proof. of Theorem[6.

Set ; = X—i; P = Zi2+2 i Zi 1, Wherezi = XX nxi.

Proof of )

We want to show that, under assumptiong |1)[-|3), almost surely, , (q(n))
Ln(p(n)) O for large enoughn, for any sequencey(n) such that g(n) +
alog(n) < p(n) n blog(n) for any xed a > 1;b > 1. Take such a se-
qguencep(n). Note that, in particular, p(n) > q(n). For simplicity, we shall
write L, p, qin place ofL,, p(n), q(n).

L(g L (p)> Ois equivalent to:

ZXl 2 )@ 2
X :=(n p+1l) yr+(q p@n p gq+2) y >0
i=q i=p
De ne:
Xi = 2(n p+1)? for i=q:::ip 1
X = ﬁ(q p2n p g+2) ; for i=p::iin;
X; =0 for i=0:::q 1L
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On the one hand, one has:

N
i=1
X NG
= X (n p+D?* xZ+(p A@n p g+2) x?
i=qg i=p
+ 2P a(n p+1l)(n qg+1)
= X +X

Thus X > 01 S, >x.
On the other hand:

fori=q:::p 1
1 1

X i% . —- .
E(e") €%z fort2 120 prD2a%n pri)? [ Ti T4
andg =C p(n p+1)*+8 ixf(n p+1)*
fori=p:::n:

Ee*) %
1 1
= [ Ty T

fort 2 :
429 p@n p g+2)" 42q p@2n p gq+2)
andg =C *p 0?2n p g+2)2+8 2x¥p ?@2n p q+2)2

We shall apply Theoreni b. In that view, we compute

Ghi= g = Cap o(n p+i(n p+1)%+(p g@n p q+2)7

1 N
+ 8 2[(n p+1)* xP+(p 9*2n p q+2)? X7
q i=p

We also need to compute the minimum off; and T,, so as to setT
min(Ty; Ty).
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Now T <Tii f(mp;@:=(p a@n p g+2) (n p+1)?>0.
f is an increasing function ofp, and one nds that:

. P

T =T ifn p g+ 1
p_

= T, if a<p  Fag+ 1

The next step is to comparex and G, T

ifp P
G, T x=G, T, x=A+B+C;
where:
C C C C
A = (n p+1) 2(p q)nil pz+qlz+§1
+E (n p+1)* 2.
4(2n p g+2) "
4 X1 X1
B = (n_p+l) x2+(n p+1)? x%
(P A@n p q+2) q
X 2 X 2
C=2p 9@ p q+2) xi (p 9@n p q+2) X
P P
Clearlyy B 0;C 0.
; h c 3 C 3
Sincep p, one has p3 Cgq 7 1 =5 (n+1)
Thus,
P P h p
n$ 1 pS+qgl & + 1 nC%2 1 +q1l CZ2 +C &2

c
o 4 2
C&2 1 (n q+1) O

(recall that C = 16log2 8). As a consequenceA 0 and nally
X GnTz.

if p> g
G, T x=G,T;, x=A+B+C
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@n_p _9*2° ( penn gr1)

A= Z2p 9n p+D*+(p 9 n p+D)
2
= ﬁ%(n q+1)(3n 2p g+3) O
Xl 1
B = 2(n p+1)? x?+(n p+1? xZ 0
q q
xXo
C = [2p 9@n p g+2) (p 9@ p g+2)] x O
p

Thus, we nd againx G,T.

Finally, we need to check thatx 0. =)
Clearly, x ~ 2(p d(n p+1)}(n qg+1) (n p+1)? ! 'x? so
that a su cient condition for x 0 is:

Xl
2

P o ; X

q

Assumption @) entails thatjxqj e % 9. Since the sequence'{) is non-
increasing, we get thatix;j e % "o as well fori g and large enough.

Thus :
Xl
X (p ge® @ (p g 2

|
q "

q

becausee A o) = n (recall that "q < & - see remark 2).
Theorem@ applies, and we need an estimate gf-.

X 1

In that view, we shall obtain a ner estimate of ~ x? than the one above.

q

Forj 0, one has, by assumptiof2):
jXq+jj e (a+j)( IIQ*‘])
e A "ag d'a "aridg iC "a+i)

Since (') is non-increasing,"q "g+j 0. In addition, since ('n)h; O, for

su ciently large n, "gj < 3.
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Thus: . _
jXq+jj e q( "q)e Iz = n€ Jf;

and:
pxu 1
X2 ) K 2.

atj ns
j=0

whereK is a positive nite constant. As a consequence:

X 2p o(n p+1)(n q+1) K(n p+1)* 7
(n p+D[(p o(n g+1) K(n p+1)
n p+1)(n g+1)(p g K):

Write G,, =: A+ B + C, with
A

Calp a(n p+1(n p+1)°+(p @ p q+2)%:
Xl
B := 8 2(n p+1)* x&
q
X
C :=82p 9°n p q+2)* xf
p
Ifp ponehasp ¢@2n p q+2) (n p+1)? and:

A CHp o(n p+1[(n p+1)3+(n p+1)3n p+1+n q+1)]
3C 7(p o(n p+1)3n qg+1):

With K °denoting again a positive nite constant that may change from line
to line, we have:

B K #n p+1)* KU, and
C 82 9%2n p q+2)%n p+1) 7 KA
Finally, G, K%}p q(n p+1)3n g+1),and:

x? a(n p+1An qgq+D*(p q K)?
2Gn, KOAn p+1)3(n q+1)(p 0
1n g+l(p gq K)?

KOn p+1 p g
Ko(p q K)Z:
P q
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Thus, whenever p ) > alog(n) for somea > 1, the Borel-Cantelli
lemma implies that, forn large enough (g) < L(p) almost surely.

If p>p,
A 5C a(p 9*n p+1)(n g+1)%

B A;
C A;
and thus X ( K)?
X P q
K"n +1)——M—:
2, K PO

Since, by assumption orp, n  p+1 > blog(n) with b > 1, the results
follows again by the Borel-Cantelli lemma.

Proof of (12)

We want to show that, under assumptiong |1)[-]4), almost surely, ,(q(n))
Ln(p(n)) O for large enougm, for any sequence(n) suchthat 1  p(n) <
g(n) max(alog(n); »). Take such a sequencg(n). Note that, in particular,
p(n) < g(n). Again, we shall writeL, p, g in place ofL,, p(n), g(n).

L(g L (p)> Ois equivalent to:

X1 X

X:=(n g+1)? y+(p g@n p q+2) y'<O
i=p i=q
De ne:
Xi = 2(n q+1)? ; for i=p:i:q 1
Xi = 2(p 9@n p q+2) ; for i=q::in;
Xi =0 for i=0:::p 1L
with ; as above. Set:
X
S, = X
=1
X1 xXn
= X (n g+1)? x}+(g p@n p g+2) X}
i=p i=q
+ g p(n p+l)(n g+1)
= X X
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Thus X< 0i S,< X.
In view of applyianTheorem@S, we need to check that 0. We can

easily bound the term [ x?:

- e 20+a( g

_ e 2C|( IIj+q)e 2]( llj‘*q)

q
= e 2( " e 20("q "j+adg 24( "j+q)

where we have used the fact that the sequencg, is non increasing.
Then:

Xl

X (n g+1)> x g p2n p gq+2+(n p+1)}(n q+1)]
i=p

Note that:
n gq+l>n g n@@ );

where is de ned in Remark 1. Also

2n p q+2+(n p+l)(n qg+1) 2n+1  h+nin Hh+1)
= n*1 9%+n@B 9+1
n(1  "9;

for any xed ~°< ©provided n is su ciently large, where Cis de ned in
Remark 1.
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As a consequence,
n Xl #
x n” @1 ) x @ Y p;i:
i=p
Condition [ then entails:
1 N0

x nq P 9b

A\

For a xed b > 1, one may choose%so that := (b 1—3) > 0, and thus
x (1 ™n*(q p >0 (15)
Let us now computeT and G.
fori=p:::q 1

1 1

2 7(n Q+1)2;4%(n 4 1) =[ Ty, T4

E(e™ 1) 9% fort 2

andg = C f(n gq+1)*+8 2x¥(n g+1)*
fori=q:::n
E(eX) eo%

1 _ 1
42(p 9@n p g+2)" 4zp 9@n p g+2)

andg = C (g p?2n p q+2)2+8 2x3(q p?@2n p q+2)2

fort 2 = Ty T,

Ghi= g = C g p(n g+(n g+1)°+(q p@n p g+2)7
1

X
+ 8 2[(n g+1)* xZ+(gq pPi2n p gq+2)2 X7
p i=q
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Let us compute the minimum ofT, and T».

T.<T:i(q p@n p g+2) (n g+1)2> 0. Reasoning as above,
one nds:

T, if 1 p<p::p§q pé 1 (n+1)
Tl if & p<q:
Note that the caseT = T, may or may,not occur, depending on the value of

g: Indeed,p 1 impliesthatg (1 2)n+1 For instance, if , =2 "2,
this requires 5 17

T

The next stepzis t20 comparex and G, T.
ifp P
C 2n p g+2)?
GiTi X = 7@ Pl a+D+(a P 5]
X1 ( 2 2 X0
q p°@n p qgq+2)
+ 2(n g+1)? Xiz"'2 (n q+1)2 Xi2
p q
X1 X
(n g+1)? x¥+(q p@n p g+2) X
p q
+ 2 p(n p+1)(n g+1l)

1
(n g+1)? x?

(0}

whenp < p, the comparison betweenx and G, T is more complex, and
requires to distinguish further subcases In view of applying theorgm 5,
it is simpler to estimate directly both - and 2.

At this point, it thus remains to show that 5z tends \su ciently fast"
to in nity (which is needed in both casesp < p and p p), and that the
same is true forT2X (this is needed onlyp < p).

We begin W|th sz In view of .)

Tox 1 ™n?(q p)r%
2 82 p@n p g+2)
@ n “‘bn
16
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which is su cient for the Borel-Cantelli lemma to apply.

Let us now consider%. We rst compute a crude upper bound toG,,.

Using that [L x? 7, one gets:

|
1

. !
Gn K n(g pp+n*2 xt+n’q p ; :
i=p

Using again [15):
G, Kn* 2 xZ

As a consequence:
h 2 P ql,2 N 2i 2
NG (1 ) i=pXi o (1 (b(q p) n
2G; K 2 Lix?

n

The function F,(y) = % is decreasing. Thus:

@ )2 L)x2 1 g p 2 2(1 A
}z N = (¢ |0)(1 )K(l %F(l pPane @ A p)oa
n I=p 7l
@ )L " @ Ma )X’
@P=% Fa e T o9
201 A (1 2202
Recall that (1 53 AOO)) > 0. We nally get:
X2 _
s, K@ oy

Sinceq p > alog(n), the result follows by the Borel-Cantelli lemma. [
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