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Abstract. Annotating data with concepts of an ontology is a common
practice in the biomedical domain. Resulting annotations (data-concept
relationships) are useful for data integration whereas the background on-
tology can guide the analysis of integrated data. Formal Concept Analy-
sis (FCA) allows to build from a binary context a concept lattice that can
be used for data analysis purposes. However annotated biomedical data
are not binary and a binarization procedure is required as a preprocess-
ing, coming with classical problems, e.g. a trade-off between expressivity
and the large number of induced binary attributes. Interestingly, pattern
structures offer a general method for building a concept lattice from any
set of objects associated with partially ordered descriptions. In this pa-
per, we show how to instantiate this general framework when the space
of descriptions is based on an ontology. We illustrate our approach with
the analysis of biomedical annotations and we show its capabilities for
knowledge discovery.

1 Introduction

Annotating data with concepts of an ontology is a common practice in the
biomedical domain. Resulting annotations define links between data and con-
cepts that are a support for data exchange, data integration and data analysis
tasks [17]. Annotations can be obtained in three main ways. In manual annota-
tion, the specification of links between data and concepts is provided by human
domain experts. Automated annotation consists in programs parsing data to pro-
vide such links. Semi-automated annotation is a combination of the two previous
ways, where programs suggest links between data and concepts that are subse-
quently validated by domain experts [16]. Here we are interested in the analysis
of annotations of several data resources w.r.t. a “reference ontology”. This al-
lows a conjoint use of data from different biomedical domains, e.g., molecular

biology and medicine. Consequently, the annotation process plays a major role
in translational bioinformatics whose objective is to analyze molecular biomed-
ical data and to discover correlations with clinical knowledge [6]. In this way,



the search for hypotheses about molecular mechanisms underlying translational
bioinformatics and the discovery of connexions between molecular data and clin-
ical observations can be performed through the analysis of annotations (as links
between biomedical data and ontological concepts).

Formal Concept Analysis (FCA) is a mathematical framework for data analy-
sis and knowledge discovery [8]. As such, it can be used for analyzing annotations
of biomedical data provided that some adaptations are made. Firstly, annota-
tions are considered as pairs < document, set of concepts > and thus cannot be
directly represented within a binary context. Secondly, domain knowledge in
the reference ontology is used for the annotation process and should also be
taken into account as well in the analysis process. Thus annotations appear like
complex data to be analyzed with FCA, requiring at least binarization.

A first solution is given by scaling, which relies on a transformation of non-
binary data into binary data. Several types of scaling are known in the FCA
literature, e.g., nominal, ordinal, interordinal [8]. But it is also known that scaling
leads to several problems such as arbitrary transformation of data, data loss and
a potential binary attribute flooding, forbidding a comprehensive visualization
of the results (see for example experiments and discussion in [10]).

Another solution is to use pattern structures that allows to directly analyze
the complex data [7]. In this setting, objects may have a complex description
(i.e., non-binary) but the set of descriptions must be partially ordered within a
semi-lattice of descriptions. Descriptions can be of many types, i.e., numerical
intervals [11], set of attributes [7] or graphs [14]. Pattern structures allow the
application of standard FCA algorithms, e.g., for building the concept lattice,
to a partially ordered set (a poset) of descriptions. The partial order on descrip-
tions is defined thanks to a so-called similarity operator (also called meet) and
an associated subsumption relation. The formalism of pattern structures was in-
troduced in [7] and gained a lot of interest in the last years due to the need for
data mining and knowledge discovery associated with the availability of large
volumes of web data (i.e., complex data).

In this paper, we present a first approach to analyze annotations based on
a reference ontology using the formalism of pattern structures. The present ap-
proach can be seen as a materialization of what is termed as structured attribute

sets in [7]. A first requirement for using pattern structures is to define descrip-
tions of objects, then a similarity operation with its associated subsumption rela-
tion (thus a partial ordering on descriptions). In the present case, annotations are
based on concepts of a reference ontology, which is itself based on two posets,
a poset of concepts and a poset of relations (here only the poset of concepts
will be taken into account). Accordingly, we propose in this paper an original
adaptation of the formalism of pattern structures to annotations based on set of
concepts from a reference ontology. Here, descriptions of objects are given by sets
of concepts. Then, the ordering of concepts in the reference ontology is used to
define an original similarity operator and the associated subsumption relation on
descriptions. This is –to the best of our knowledge– the first attempt to analyze
data annotations with a pattern structure. Moreover, this shows the potential



of pattern structures as an effective formalism for dealing with real-world data
and providing substantial results. Actually, the resulting concept lattice can be
used for guiding the document annotation process, and especially for completing
annotations that are given by an automatic annotation tool. In this case, anno-
tations may be wrong or incomplete. The work of a domain expert for correcting
and completing annotations can be very time consuming when large data are
considered.

The paper is organized as follows. Section 2 recalls fundamental definitions
used in the paper. Section 3 presents our adaptation of pattern structures to
ontology-based annotations. It introduces also a concrete example about biomed-
ical data for illustrating the approach. Section 4 details the similarity and sub-
sumption operations on descriptions, while Section 5 provides a discussion about
the analysis of annotations of biomedical data using our approach.

2 Background definitions

2.1 Formal Concept Analysis

We recall here the standard FCA notations and we refer readers to [8] for details
and proofs. A formal context (G,M, I) is defined as a set G of objects, a set
M of attributes, and a binary relation I ⊆ G ×M . (g,m) ∈ I means that “the
object g is related with the attribute m through the relation I”. Two derivation
operators can be defined on sets of objects and sets of attributes as follows,
∀A ⊆ G,B ⊆M :

A′ = {m ∈M ∶ ∀g ∈ A, (g,m) ∈ I}

B′ = {g ∈ G ∶ ∀m ∈ B, (g,m) ∈ I}

The two operators (⋅)′ define a Galois connection between the power set of
objects P(G) and the power set of attributes P(M). A pair (A,B),A ⊆ G,B ⊆
M , is a formal concept iff A′ = B and B′ = A. A is called the extent and B the
intent of the concept. The set of all formal concepts, ordered by inclusion of
extents (or dually by inclusion of intents), i.e., (A1,B1) ≤ (A2,B2) iff A1 ⊆ A2

(or dually B2 ⊆ B1), forms a complete lattice [4], called concept lattice.

2.2 Pattern structures

A pattern structure can be understood as a generalization of a formal context
to describe complex data [7]: An object has a description lying in a semi-lattice
where an “intersection” (or meet) is defined. This intersection allows to charac-
terize the similarity between two descriptions, i.e. what they do have in common.

Formally, let G be a set of objects, let (D,⊓) be a meet-semi-lattice of object
descriptions and let δ ∶ G Ð→ D be a mapping associating each object with its
description. (G, (D,⊓), δ) is called a pattern structure. Elements of D are called
descriptions or patterns and are ordered by a subsumption relation ⊑ such as



∀c, d ∈ D, c ⊑ d⇐⇒ c ⊓ d = c. A pattern structure (G, (D,⊓), δ) gives rise to two
derivation operators denoted by (⋅)◻:

A◻ = ⊓
g∈A

δ(g) for A ⊆ G

d◻ = {g ∈ G∣d ⊑ δ(g)} for d ∈ (D,⊓).
These operators form a Galois connection between the power set of objects P(G)
and (D,⊓). Pattern concepts of (G, (D,⊓), δ) are pairs of the form (A,d), A ⊆ G,
d ∈ (D,⊓), such that A◻ = d and A = d◻. For a pattern concept (A,d), d is the
pattern intent and is the common description to all objects in A, the pattern
extent. When partially ordered by (A1, d1) ≤ (A2, d2) ⇔ A1 ⊆ A2 (⇔ d2 ⊑ d1),
the set of all concepts forms a complete lattice called pattern concept lattice.
The operator (⋅)◻◻ is a closure operator and pattern intents are closed patterns.
Pattern structure have been applied to numerical intervals [11] and to graphs
[14].

2.3 EL ontologies

Ontologies that are considered in this work are DL ontologies, i.e. are based on
a set of concepts and relations represented with a Description Logic (DL) [2].

The EL DL allows for conjunction (∧) and existential restriction (∃r.c) in
definitions of concepts [1]. This simple DL is sufficient for our purpose, together
with transitive roles and general concept inclusion axioms i.e., axioms of the
form C ⩽ D where C,D can be either atomic or defined concepts. Moreover,
the least common subsumer (lcs) of two concepts in EL always exists and can
be computed in polynomial time, provided that their is no cycle in concept
definitions, i.e., the definition of a concept ci does not include ci itself [3].

In order to avoid any confusion and to make a clear distinction between the
DL formalism and the pattern structure formalism, we use the classical logical
notations6 for the EL DL, thus ∧ for conjunction and ⩽ for subsumption, while we
keep ⊓ for the similarity operator and ⊑ for the subsumption relation in pattern
structures.

In the following, we consider a reference ontology denoted by O based on theEL DL. O is composed of:

– C(O) denotes a set of concepts, and R(O) denotes a set of binary relations7,

– concepts ci in C(O) are partially ordered thanks to a subsumption relation
⩽, where c1 ⩽ c2 means that concept c1 is a sub-concept of c2 and that every
instance of c1 is an instance of c2,

– A is a set of axioms involving concepts and relations.

6 But not classical in DL.
7 To avoid confusion, we will use the terms concept for DL ontologies and formal
concepts or pattern concepts for FCA.



3 Problem statement

3.1 The UMLS Semantic Network and semantic types

The UMLS (Unified Medical Language System) is composed of two main compo-
nents: a set of ontologies of various biomedical domains (such as SNOMED CT,
ICD-10, MeSH) and the UMLS Semantic Network [5]. For a sake of simplicity, we
illustrate our study with annotations of a single data resource, DrugBank8 [12],
made with a single ontology of the UMLS, the NCI (National Cancer Institute)
Thesaurus [18].

The UMLS Semantic Network is a set of broad subject categories, or semantic

types, that is used as a high level categorization of concepts of UMLS ontolo-
gies [15]. An overview of the 133 semantic types is available at http://www.nlm.
nih.gov/research/umls/META3_current_semantic_types.html. The Seman-
tic Network organizes semantic types as a simple hierarchy, i.e., a tree denoted
hereafter as ST hierarchy. For example, some semantic types are broader than
others such as “Organism” that is more general than “Human” or “Anatomical
Structure” more general than “Tissue”.

Every concept of a UMLS ontology is mapped with one or more semantic
types. In addition, the hierarchy of the Semantic Network ST hierarchy can be
used to map a concepts c1 with the set of semantic types that are ancestors
of the semantic types of c1. For example, if the concept c1 has for semantic
type “Disease or Syndrome”, it can be mapped with “Pathologic Function” and
“Biologic Function” too (as the laters are ancestors of the former in ST hierarchy).
Accordingly, we are using the hierarchy ST hierarchy to dispose of the full set of
semantic types that can be mapped to each concept. Figure 1 illustrates the
mappings of some concepts of the NCI Thesaurus with their semantic types.

In our approach, a selection of semantic types chosen by the analyst will be
used as upper level categories for concepts annotating biomedical documents.

3.2 Building a pattern structure for biomedical annotations

In this work, we are interested in the discovery of associations between semantic
categories (i.e., semantic types) of concepts annotating biomedical documents.
This knowledge discovery method should take into account domain knowledge,
i.e., the NCI Thesaurus, and semantic types. For example, an expert may be
interested in a drug-disease association, e.g., Antibiotic-Inflammation, check-
ing whether the association is frequent and searching for a potential associated
molecular mechanism.

For analyzing annotations it may be worth to distinguish concepts thanks to
domains of interests (kinds of points of view). For example, a domain expert may
group concepts according to their membership to distinct ontologies to separate
concepts from an ontology on disease and concepts from an ontology on drugs.
Accordingly, we consider in this work that the domain expert defines a “scale”

8 Publicly available at http://www.drugbank.ca/

http://www.nlm.nih.gov/research/umls/META3_current_semantic_types.html
http://www.nlm.nih.gov/research/umls/META3_current_semantic_types.html
http://www.drugbank.ca/


Fig. 1. Detail of the NCI Thesaurus with associated semantic types from the UMLS.
Nodes are concepts of the ontology, arrows represent subsumption relationships (⩽).
Doted lines map each concept with its semantic type as defined in the UMLS Semantic
Network.

ST = {ST1,ST2, ...,STk} supporting the document annotations, where each STi
is a semantic type. Then a biomedical document will be annotated w.r.t. the ST
scale. More precisely, given a biomedical document g, the annotation of g w.r.t.
the reference ontology O and the ST scale is a pair (g, ⟨ST1,ST2, ...,STk⟩) where
STi is the set of concepts annotating g for the dimension i in the scale ST .

For example, let us consider the document DB01082 (gathering data about
Streptomycin) in the DrugBank database. Figure 2 shows this document and
an annotation with three concepts of the NCI Thesaurus (here the reference
ontology O). Moreover, let us consider the ST scale as ST = {“Disease or Syn-
drome”, “Bacterium”, “Molecular Function”, “Chemical”}. Then the annotation
of DB01082 can be read as:

(DB01082, ⟨{Tuberculosis}, {}, {Protein Synthesis}, {Streptomycin}⟩)
Now we have everything for defining the pattern structure (G, (D,⊓), δ) for

analyzing annotations of biomedical documents:

– G = {g1, g2, ..., gn} is a set of annotated biomedical documents;
– O is the reference ontology, i.e., the NCI Thesaurus, and C(O) is the set of

concepts of O;
– ST = {ST1,ST2, ...,STk} is the set of semantic types of the UMLS Semantic

Network that defines the scale ST and the dimensions of the annotation
vector;



Fig. 2. (a) The left part of the Figure shows the NCI Thesaurus ontology; (b) the right
part is an excerpt of the document DB01082 of DrugBank related to the Streptomycin
drug. Bold arrows connecting (a) and (b) represent the annotation of DB01082.

– D = P(ST1) × P(ST2) × ... × P(STk)) where P(STi)) is the power set of the
set of concepts of semantic type STi. As a product of complete lattices, D is
also a complete lattice (and thus a semi-lattice). Elements of D are named
hereafter ontological patterns ;

– δ ∶ G → D is a mapping associating a document gi ∈ G with a description inD or more precisely a vector in D,
δ(gi) = (gi, ⟨ST1(gi),ST2(gi), ...,STk(gi)⟩)

where STj(gi) is the set of concepts of semantic type STj annoting gi.

Table 1 gives an example of this pattern structure. The fourth line of the
table shows the annotation of the document DB01082 (about Streptomycin).
The different columns are filled with the concepts annotating DB01082 w.r.t.
the semantic type provided in the header of each column.

Now, it remains to define the similarity operation ⊓ between two descriptions
δ(g1) and δ(g2):

δ(g1) = (g1, ⟨ST1(g1),ST2(g1), ...,STk(g1)⟩)
δ(g2) = (g2, ⟨ST1(g2),ST2(g2), ...,STk(g2)⟩)

δ(g1) ⊓ δ(g2) = ⟨ST1(g1) ⊓ ST1(g2),ST1(g1) ⊓ ST1(g2), ...,STk(g1) ⊓ STk(g2)⟩
where ST1(g1)⊓ST1(g2) is the convex hull in O of all concepts in ST1(g1) and

ST2(g2). The definition of the convex hull is made precise in the next section.



Table 1. A context where objects are DrugBank documents and attributes are seman-
tic types. Each document is annotated with a set of concepts of the NCI Thesaurus
(our reference ontology) having distinct semantic types. The document DB01082 of
DrugBank (on the fourth line) is annotated with three concepts, including the concept
Tuberculosis of semantic type “Disease or Syndrome”.

❍
❍
❍❍G
ST Disease or

Bacterium
Molecular

Chemical
Syndrome Function

Drug1
{Tuberculosis,

{} {Protein Synthesis}
{Antibiotic,

Bacterial Infection} Antifungal Agent}

Drug2 {Bacterial Infection} {} {Protein Synthesis} {}

Drug3
{Tuberculosis,

{} {} {Anti-Infective Agent}
Bacterial Infection}

DB01082 {Tuberculosis} {} {Protein Synthesis} {Streptomycin}

Drug5
{Tuberculosis,

{} {}
{Antibiotic,

Bacterial Infection} Antifungal Agent}

3.3 Similarity between descriptions

Given an ontology O, and two concepts c1 and c2, the least common subsumer,
denoted by lcs(c1, c2), is the most specific concept subsuming both c1 and c2
w.r.t. the ontology O. Here O is an EL ontology where no cycle appears in
concepts definitions. Thus the lcs of two concepts of O always exists [3]. More
generally, the lcs operation can be defined (recursively) for a set of concepts
Cn = {c1, c2, ..., cn} as follows:

∀n ∈ N, lcs(Cn) = lcs(lcs(Cn−1), cn)
For example, the lcs of Streptomycin and Antifungal Agent is Anti −

Infective Agent (see Figure 2).
The lcs itself could be used to define a simple similarity operation between

two descriptions. One potential application here is to use the concept lattice
based on ontological patterns to complete annotations associated with biomed-
ical documents. In this way, taking into account the convex hull of a set of
concepts allows to consider available concepts in the ontology which are linked
to the initial set of concepts of the annotation. Moreover, if one concept has
been missed by the annotation process and is available in the ontology, it will be
potentially retrieved through the computation of the convex hull of the initial
set of concepts.

Now, we define the convex hull of two concepts c1 and c2, denoted by CVX(c1, c2),
as the set of concepts {x1, x2, ..., xn} verifying:
– xi ⩽ lcs(c1, c2), and
– either {xi ⩾ c1 and xi ∧ c1 ≡ c1 or

xi ⩾ c2 and xi ∧ c2 ≡ c2
– xi ≢ ⊺



For example, CVX(Streptomycin,Antifungal Agent) = {Anti−Infective Agent,

Antibiotic, Antifungal Agent, Streptomycin}.
As for the lcs operation, the convex hull operation can be generalized (re-

cursively) to a set of concepts Cp = {c1, c2, ..., cp}:
∀p ∈ N, CVX(Cp) = CVX(CVX(Cp−1), cp)

The meet operation on descriptions applies on two vectors with the same
dimensions and returns a vector where the components are filled with the convex
hull of the two initial sets of concepts. Formally we have:

δ(g1) = (g1, ⟨ST1(g1),ST2(g1), ...,STk(g1)⟩)
δ(g2) = (g2, ⟨ST1(g2),ST2(g2), ...,STk(g2)⟩)

δ(g1) ⊓ δ(g2) = ⟨ST1(g1) ⊓ ST1(g2),ST2(g1) ⊓ ST2(g2), ...,STk(g1) ⊓ STk(g2)⟩
where

STi(g1) ⊓ STi(g2) = CVX(STi(g1) ∪ STi(g2)).
The convex hull on the union of two sets of concepts is similar to the convex hull
on a set of concepts as defined above.

It can be noticed that the definition of the meet operator on concepts can
be likened to the the definition of the meet operator for numerical intervals as
the convex hull of two intervals (see for example [11]). Moreover, similarly as for
intervals we have the following property:

δ(g1) ⊓ δ(g2) = δ(g1) iff δ(g1) ⊑ δ(g2)
As an illustration let us consider the two objects “Drug1” and “DB01082”

and their descriptions δ(Drug1) and δ(DB01082) given in the Table 1. Their
meet is

δ(Drug1) ⊓ δ(DB01082) =⟨{Bacterial Infection,Mycobacterial Infection, Tuberculosis},{},{Protein Synthesis},{Anti − Infective Agent,Antibiotic,Antifungal Agent, Streptomycin}⟩.
The meet semi-lattice of pattern elements (indeed of convex hulls) defined by

the meet operation is given in Figure 3. This semi-lattice is associated with the
context of Table 1 and the order defined by the NCI Thesaurus given in Figure
2.

Dually, it is also possible to define a join operation on descriptions, making(D,⊓,⊔) a complete lattice. This operation is not necessary for the definition
of pattern structures but exists in our case because of the property of D, the
space of descriptions. The join of two descriptions δ(g1) and δ(g2) is defined as
follows:

δ(g1) ⊔ δ(g2) = ⟨ST1(g1) ⊔ ST1(g2),ST2(g1) ⊔ ST2(g2), ...,STk(g1) ⊔ STk(g2)⟩



Fig. 3. The meet semi-lattice of convex hulls associated with the context represented
in Table 1 and the NCI Thesaurus



where
STi(g1) ⊔ STi(g2) = CVX(STi(g1)) ∩ CVX(STi(g2)).

Actually, the result of the join operation is the set of common concepts in the
two convex hulls of STi(g1) and STi(g1).

For example, the join of the descriptions of “Drug1” and “DB01082” is:

δ(Drug1) ⊔ δ(DB01082) = ⟨{Tuberculosis},{},{Protein Synthesis},{}⟩.
The intersection of two convex hulls may be empty as shown in the above

example. However, it can be noticed that even if δ(g1) and δ(g2) may have
no element in common, they can still have a join as illustrates the following
example. Suppose that we have only one dimension and let us consider the
reference ontology in Figure 2:

δ(g1) = ⟨{Bacterial Infection, Tuberculosis}⟩
δ(g2) = ⟨{Mycobacterial Infection}⟩.

Actually, the results of the meet and join operations on these two descriptions
are:

δ(g1)⊓δ(g2) = ⟨{Bacterial Infection,Mycobacterial Infection, Tuberculosis}⟩
and

δ(g1) ⊔ δ(g2) = ⟨{Mycobacterial Infection}⟩.
In addition, we remark that we do not have δ(g1) ⊓ δ(g2) = δ(g1) as δ(g1) is

not a convex hull and thus we do not have either δ(g1) ⊑ δ(g2).
3.4 Computing Pattern Structures with CloseByOne

In FCA, an efficient way of computing closed formal concepts that are the basic
bricks of concept lattices is the algorithm CloseByOne [13]. To adapt Close-
ByOne to the general case of pattern structures, one has to replace the original
Galois connexion, usually denoted (⋅)′, with the derivation operator denoted (⋅)◻.
Below, we give the basic pseudo-code of the algorithm CloseByOne (Algorithms
1 and 2) for computing ontological patterns. In addition to the new derivation
operator, one must replace the intersection operation on descriptions (∩) with
the meet operation on patterns (⊓, line 5 of Algorithm 2) that is adapted to the
nature of the patterns.

A simple implementation of Algorithms 1 and 2 is proposed at github.com/
coulet/OntologyPatternIcfca/.

4 Analyzing annotations of biomedical data

We illustrate our approach with the analysis of annotations of DrugBank doc-
uments with the ontology named the NCI Thesaurus. These annotations are
provided by the NCBO (National Center for Biomedical Ontology) Resource
Index presented hereafter.

github.com/coulet/OntologyPatternIcfca/
github.com/coulet/OntologyPatternIcfca/


Alg. 1 CloseByOne.
1: L = ∅
2: for each g ∈ G
3: process({g}, g, (g◻◻, g◻))
4: L is the concept set.

Alg. 2 process(A, g, (C,D)) with C = A◻◻ and D = A◻ and < the lexical order
on object names.

if {h∣h ∈ C/A and h < g} = ∅ then

2: L = L ∪ {(C,D)}
for each f ∈ {h∣h ∈ G/C and g < h}

4: Z = C ∪ {f}
Y =D ⊓ {f◻}

6: X = Y ◻

process(Z, f, (X,Y ))
8: end if

4.1 A repository of annotations: The NCBO Resource Index

The NCBO Resource Index is a repository of annotations automatically popu-
lated by a Natural Language Processing tool [9]. This tool parses the textual con-
tent of several biomedical databases (e.g., DrugBank, OMIM, ClinicalTrial.gov)
searching for occurrences of terms refering to concepts of ontologies. When a con-
cept ci is found in a document gi, an annotation i.e., a pair (gi, ci), is created
and stored. On December 18th, 2012, the NCBO Resource Index was containing
annotations for 34 databases with concepts of 280 ontologies of the BioPortal
[19]. The Resource Index can be queried either by a Web user interface9 or by a
REST Web service10. We used the second to build sets of annotations.

4.2 DrugBank annotations with the NCI Thesaurus

DrugBank is a publicly available database that contains data about drugs, their
indications and their molecular targets. The database is organized into doc-
uments, or entries, every document gathering data about one drug. Data in
DrugBank are for the main part made of texts is natural language. Figure 2 (b)
presents the document of DrugBank that concerns Streptomycin.

As described above, the annotations we used to illustrate our approach are
annotations of the DrugBank documents using concepts of the NCI Thesaurus.
The NCI Thesaurus is a broad domain ontology and consequently its annotations
may concern either clinics and molecular biology data that can be conjointly
explored in translational bioinformatics. Moreover, the NCI Thesaurus is an EL
ontology that does not contain cyclic concept definition. Thus a lcs always exists

9 Available at http://bioportal.bioontology.org/resource_index
10 Documented at http://www.bioontology.org/wiki/index.php/Resource_Index_

REST_Web_Service_User_Guide

http://bioportal.bioontology.org/resource_index
http://www.bioontology.org/wiki/index.php/Resource_Index_REST_Web_Service_User_Guide
http://www.bioontology.org/wiki/index.php/Resource_Index_REST_Web_Service_User_Guide


Fig. 4. The concept lattice corresponding to the pattern structure based on the con-
text in Table 1 and on the NCI Thesaurus. The top concept has the intent with the
larger descriptions and consequently its extent includes all the documents (objects).
Traversing the lattice downward, the concepts present more specialized extents (with
less objects) and more general intents w.r.t. the subsumption relation on ontological
patterns. “Ch”, “DoS” and “MF” are respectively abbreviations for the semantic types
“Chemical”, “Disease or Syndrome” and “Molecular Function”).

and its processing is tractable. We used the version 12.04 of the NCI Thesaurus
encoded in OWL and available on the NCBO Bioportal11.

4.3 Interpretation

We propose in Table 1 a context including annotations of five DrugBank doc-
uments based on concepts to the NCI Thesaurus. Concepts may have four dis-
tinct semantic types (the cardinality of ST is four): “Disease or Syndrome”,
“Bacterium”, “Molecular Function” and “Chemical”. The meet-semi-lattice of

11 NCI Thesaurus 12.04: bioportal.bioontology.org/ontologies/1032

bioportal.bioontology.org/ontologies/1032


patterns associated with such annotations is depicted in Figure 3 and the cor-
responding concept lattice is given in Figure 4. Both sets of formal concepts
in the semi-lattice and in the concept lattice have been obtained thanks to the
implementation of CloseByOne that we adapted to ontological patterns (see
subsection 3.4).

Now we propose an analysis of the resulting concept lattice shown in Figure 4.
Consider that one of our objectives is to repair and complete the annotations
associated with biomedical documents. The top formal concept in the lattice has
the “largest extent”, i.e., the set of all the objects, and the “smallest intent”,
actually the largest convex hull for the annotations.

Let us consider the two formal concepts in the upper left part of the con-
cept lattice, the first called c#15 has an extent containing “drug1” and “drug5”
and the second called c#5 has an extent containing only “drug5”. The “Chemi-
cal” semantic type (abbreviated “Ch” in Figure 4) of both concepts is {Anti −
Infective Agent, Antibiotic, Antifungal Agent}. The “Disease or Syndrome”
dimension (“DoS”) in both concepts is {Bacterial Infection, Mycobacterial

Infection, Tuberculosis} as in the top concept. However, the “Molecular Func-
tion” dimension (“MF”) is the same for the top concept and c#15; i.e., {Protein

Synthesis}, while it is redefined and empty in c#5. We propose the following
interpretation:

– The value of “Chemical” in both c#15 and c#5 is completed (as a convex
hull) and is the correct annotation to be associated to document “drug1”
and “drug5” for the “Chemical” dimension. This shows how the final concept
lattice based on the ontological pattern structure can effectively complete the
original annotation process (especially when this process is automated).

– The same remark applies to the “Disease or Syndrome” dimension, which is
also completed (as a convex hull). The concept lattice provides once again
the complete annotation for both concepts c#15 and c#5.

Thus, even on this small and toy example, it is possible to understand and
verify the usefulness and potential of the approach: the resulting concept lattice
yielded by the ontological pattern structure provides the means for completing
the initial annotations in a way that respects the reference ontology.

Finally, we experimented the pattern approach on a larger real-world context.
We selected 25 drugs of DrugBank out of 173 drugs returned by the query
“antibiotic” and we retain the annotations provided by the NCBO Resource
Index associated with 4 distinct semantic types. After 4.4 hours, we obtained
204,801 closed concepts on a computer with two Intel Core 2 Extreme X7900
CPUs and 4GiB of memory. The resulting concept lattice is rather large and the
analysis of formal concepts with a domain expert is in progress. We think that
the results of the analysis will be in accordance with the analysis presented just
above for the toy example.



5 Conclusion and Perspectives

Pattern structures provide an original and efficient approach within FCA to
analyze complex data such as ontology-based annotations of biomedical docu-
ments. In this paper, we propose a framework based on pattern structures for
dealing with conceptual annotations which are made of sets of concepts repre-
sented within an EL ontology. Then we propose a pattern structure providing
a classification of biomedical documents according to their annotations and the
semantic types of the concepts within the annotations. The resulting concept
lattice can be used for analyzing and completing the original annotations.

This work shows that pattern structures are an efficient means for dealing
with real-world and complex data. In the present case, more experiments remain
to be done as well as a thorough study of the various pattern structures that can
be associated to an annotation process depending on one or several ontologies.
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[3] Franz Baader, Ralf Küsters, and Ralf Molitor. Computing least common sub-
sumers in description logics with existential restrictions. In IJCAI, pages 96–103,
1999.

[4] M. Barbut and B. Monjardet, editors. Ordres et classification: Algèbre et combi-
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