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Abstract

Let X := (X1, . . . , Xp) be random objects (the inputs), defined on
some probability space (Ω,F ,P) and valued in some measurable space
E = E1 × . . .× Ep. Further, let Y := Y = f(X1, . . . , Xp) be the output.
Here, f is a measurable function from E to some Hilbert space H (H
could be either of finite or infinite dimension). In this work, we give a
natural generalization of the Sobol indices (that are classically defined
when Y ∈ R ), when the output belongs to H. These indices have very
nice properties. First, they are invariant. under isometry and scaling.
Further they can be, as in dimension 1, easily estimated by using the so-
called Pick and Freeze method. We investigate the asymptotic behaviour
of such estimation scheme.
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1 Introduction

Many mathematical models encountered in applied sciences involve a large num-
ber of poorly-known parameters as inputs. It is important for the practitioner
to assess the impact of this uncertainty on the modeliid output. An aspect of
this assessment is sensitivity analysis, which aims to identify the most sensitive
parameters. In other words, parameters that have the largest influence on the
output. In global stochastic sensitivity analysis, the input variables are assumed
to be independent random variables. Their probability distributions account for
the practitioner’s belief about the input uncertainty. This turns the model out-
put into a random variable. Using the so-called Hoeffding decomposition [14],
the total variance of a scalar output can be split down into different partial vari-
ances. Each of these partial variances measures the uncertainty on the output
induced by the corresponding input variable. By considering the ratio of each
partial variance to the total variance, we obtain a measure of importance for
each input variable called the Sobol index or sensitivity index of the variable
[13]; the most sensitive parameters can then be i.dentified and ranked as the
parameters with the largest Sobol indices. A clever way to estimate the Sobol
indices is to use the so-called Pick and Freeze sampling scheme (see [13] and
more recently [6]). This sampling scheme transforms the complex initial sta-
tistical problem of estimation into a simple linear regression problem. Widely
used by practitioners in many applied fields (see for example [12] and the com-
plete bibliography given therein), the mathematical analysis of the Pick and
Freeze scheme has been recently performed in [6] and [5] (see also [15] where
some mathematical draft ideas are given). In the last decade, many authors
have proposed some generalizations of Soboliid indices for scalar outputs (see
for example [1], [11], [10] and [3]). The aim of the present paper is twofold.
First, we wish to build some extensions of Sobol indices in the case of vectorial
or functional output. Secondly, we aim to construct some Pick and Freeze es-
timators of such extensions and to study their asymptotic and non-asymptotic
properties. Generalization of the Sobol index for multivariate or functional out-
puts has been considered in an empirical way in [2] and [7]. In this paper, we
consider and study a new generalization of Sobol indices for vector or functional
outputs. This generalization was implicitly considered in the pioneering work of
Lamboni et al ( [7]). The starting point of the construction of these new indices
relies on the multidimensional Hoeffding decomposition of the vectorial output.
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Further, due to non-commutativity, many choices for an extension of Sobol in-
dices are possible. To restrict the choice we both require that the indices satisfy
natural invariance properties and remain easy to estimate when using a Pi.ck
and Freeze sampling scheme.
The paper is organized as follows. To begin with, we start in the next section by
developing and discussing two examples. These examples illustrate the difficulty
of extending directly scalar Sobol indices to a multidimensional context. The
generalized Sobol indices and their main properties are given in Section 3. In
a nutshell, these newiid Sobol indices are the same as the classical ones of the
unidimensional context, up to the trace operation taken on both terms of the
ratio. We show that these quantities are well-tailored for sensitivity analysis,
as they are invariant under isometry and scaling of the output. In Section 4,
we introduce another general family of Sobol matricial indices. They are also
compatible with the Hoeffding decomposition and they also satisfy the natural
invariance properties. Each element of this family depends on a probability
measure on the group of signed permutation matrices. The main drawback
of these quantities is that they are not so easy to estimate unlike the indices
introduced in Section 3. In Section 5 we revisit the Pick and Freeze sampling
scheme and study the asymptotic and non-asymptotic properties of the Pick
and Freeze estimators of the new indices. These properties are numerically
illustrated on two relevant examples in Section 5.4. To finish, the extension of
our results, we present in Section 6 the case of functional outputs.

2 Motivation

We begin by considering two examples that enlighten the need for a proper
definition of sensitivity indices for multivariate outputs.

Example 2.1. Let us consider the following nonlinear model

Y = fa,b(X1, X2) :=

(

fa,b
1 (X1, X2)

fa,b
2 (X1, X2)

)

=

(

X1 +X1X2 +X2

aX1 + bX1X2 +X2

)

where X1 and X2 are assumed to be i.i.d. standard Gaussian random variables
(r.v.s).

First, we compute the one-dimensional Sobol indices Sj(fa,b
i ) of fa,b

i with respect
to Xj ( i, j = 1, 2). We get

(S1(fa,b
1 ), S1(fa,b

2 )) = (1/3, a2/(1 + a2 + b2))

(S2(fa,b
1 ), S2(fa,b

2 )) = (1/3, 1/(1 + a2 + b2)).

So that, the ratios

S1(fa,b
i )

S2(fa,b
i )

, i = 1, 2

do not depend on b. Moreover, for |a| > 1, as this ratio is greater than 1, X1

seems to have more influence on the output.
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Now let us perform a sensitivity analysis on ‖Y ‖2. Straightforward calculus lead
to

S1(‖Y ‖2) ≥ S2(‖Y ‖2) ⇐⇒ (a− 1)(a3 + a2 + 5a+ 5− 4b) ≥ 0.

Figure 1: Plot of (a − 1)(a3 + a2 + 5a+ 5 − 4b) ≥ 0. The blue corresponds to
regions where S1(‖Y ‖2) ≥ S2(‖Y ‖2).

For the quantity ‖Y ‖2, the region where X1 is the most influent variable depends
on the value of b. This region is not very intuitive. We plot in Figure 1 the region
where X1 is the most influent variable.

Example 2.2. Here, we study the following two-dimensional model

Y = f(X1, X2) =

(

X1 cosX2

X1 sinX2

)

with (X1, X2) ∼ Unif([0; 10]) ⊗ Unif([0;π/2]).

We obviously get

S1(fa,b
1 ) = S1(fa,b

2 ) =
10

5π2 − 30
≈ 0.52

S2(fa,b
1 ) = S2(fa,b

2 ) =
3(π2 − 8)

4(π2 − 6)
≈ 0.36.

So that X1 seems to have more influence on the output than X2.

If we consider ‖Y ‖2, we straightforwardly get ‖Y ‖2 = X2
1 that does not depend

on X2.

A last motivation to introduce new Sobol indices is related to the statistical prob-
lem of their estimation. As the dimension increases the statistical estimation
of the whole vector of scalar Sobol indices becomes more and more expensive.
Moreover, the interpretation of such a large vector is not easy. This strengthens
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the fact that one needs to introduce Sobol indices of small dimension, which
condense all the information contained in a large collection of scalars.
In the next section we define new Sobol indices generalizing the scalar ones and
resuming all the information.

3 Generalized Sobol indices

3.1 Definition of the new indices

We denote by X := (X1, . . . , Xp) the random input, defined on some probability
space (Ω,F ,P) and valued in some measurable space E = E1 × . . . × Ep. We
denote also by Y the output

Y = f(X1, . . . , Xp),

where f : E → R
k is an unknown measurable function (p and k are positive

integers). We assume that X1, . . . , Xp are independent and that Y is square
integrable (i.e. E

(

‖Y ‖2
)

< ∞). We also assume, without loss of generality,
that the covariance matrix of Y is positive definite.
Let u be a subset of {1, . . . , p} and denote by ∼u its complementary in {1, . . . , p}.
Further, we set Xu = (Xi, i ∈ u) and Eu =

∏

i∈u Ei.

As the inputs X1, . . . , Xp are independent, f may be decomposed through the
so-called Hoeffding decomposition [14]

f(X) = c+ fu(Xu) + f∼u(X∼u) + fu,∼u(Xu, X∼u), (1)

where c ∈ R
k, fu : Eu → R

k, f∼u : E∼u → R
k and fu,∼u : E → R

k are given
by

c = E(Y ), fu = E(Y |Xu)− c, f∼u = E(Y |X∼u)− c, fu,∼u = Y − fu − f∼u − c.

Thanks to L2-orthogonality, computing the covariance matrix of both sides of
(1) leads to

Σ = Cu + C∼u + Cu,∼u. (2)

Here Σ, Cu, C∼u and Cu,∼u are denoting respectively the covariance matrices
of Y , fu(Xu), f∼u(X∼u) and fu,∼u(Xu, X∼u).

Remark 3.1. Notice that for scalar outputs (i.e. when k = 1), the covariance
matrices are scalar (variances). So that (2) may be interpreted as the decompo-
sition of the total variance of Y . The summands traduce the fluctuation induced
by the input factors Xu and X∼u, and the interactions between them. The (uni-
variate) Sobol index Su(f) = Var(E(Y |Xu))/Var(Y ) is then interpreted as the
sensibility of Y with respect to Xu. Due to non-commutativity of the matrix
product, a direct generalization of this index is not straightforward.

In the general case (k ≥ 2), for any square matrix M of size k, the equation (2)
can be scalarized in the following way

Tr(MΣ) = Tr(MCu) + Tr(MC∼u) + Tr(MCu,∼u).
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This suggests to define as soon as Tr(MΣ) 6= 0 the M -sensitivity measure of Y
with respect to Xu as

Su(M ; f) =
Tr(MCu)

Tr(MΣ)
.

Of course we can analogously define

S∼u(M ; f) =
Tr(MC∼u)

Tr(MΣ)
, Su,∼u(M ; f) =

Tr(MCu,∼u)

Tr(MΣ)
.

The following lemma is obvious.

Lemma 3.1.

1. The generalized sensitivity measures sum up to 1

Su(M ; f) + S∼u(M ; f) + Su,∼u(M ; f) = 1. (3)

2. 0 ≤ Su(M ; f) ≤ 1.

3. Left-composing f by a linear operator O of R
k changes the sensitivity

measure accordingly to

Su(M ;Of) =
Tr(MOCuO

t)

Tr(MOΣOt)
=

Tr(OtMOCu)

Tr(OtMOΣ)
= Su(OtMO; f). (4)

4. For k = 1 and for any M 6= 0, we have Su(M ; f) = Su(f).

3.2 The important identity case

We now consider the special case M = Idk (the identity matrix of dimension k).
Notice that in this case the sensitivity indices are the same as the ones considered
through principal component analysis in [7]. We set Su(f) = Su(Idk; f). The
index Su(f) has the following obvious properties

Proposition 3.1. 1. Su(f) is invariant by left-composition of f by any isom-
etry of Rk i.e.

for any square matrix O of size k s.t. OtO = Idk, Su(Of) = Su(f);

2. Su(f) is invariant by left-composition of f by any nonzero scaling of i.e.

for any λ ∈ R, Su(λf) = Su(f);

Remark 3.2. The properties in this proposition are natural requirements for a
sensitivity measure. In the next section, we will show that these requirements can
be fulfilled by Su(M ; f) only when M = λIdk ( λ ∈ R

∗). Hence, the canonical
choice among indices of the form Su(M ; f) is the sensitivity index Su(f).
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3.3 Identity is the only good choice

The following proposition can be seen as a kind of reciprocal of Proposition 3.1.

Proposition 3.2. Let M be a square matrix of size k such that

1. M does not depend neither on f nor u;

2. M has full rank;

3. Su(M ; f) is invariant by left-composition of f by any isometry of Rk.

Then Su(M ; ·) = Su(·).
Proof. We can write M = MSym + MAntisym where M t

Sym = MSym and

M t
Antisym = −MAntisym. Since, for any symmetric matrix V , we haveTr(MAntisymV ) =

0, we deduce that Su(M ; f) = Su(MSym; f) (Cu and Σ being symmetric matri-
ces). Thus we assume, without loss of generality, that M is symmetric.

We diagonalize M in an orthonormal basis: M = PDP t, where P tP = Idk and
D diagonal. We have

Su(M ; f) =
Tr(PDP tCu)

Tr(PDP tΣ)
=

Tr(DP tCuP )

Tr(DP tΣP )
= Su(D;P tf).

By assumption 1. and 3., M can be assumed to be diagonal.

Now we want to show that M = λIdk for some λ ∈ R
∗. Suppose, by contradic-

tion, that M has two different diagonal coefficients λ1 6= λ2. It is clearly suffi-
cient to consider the case k = 2. Choose f = Id2 (hence, p = 2), and u = {1}.
We have Σ = Id2 and Cu = ( 1 0

0 0 ). Hence on one hand Su(M ; f) = λ1

λ1+λ2

. On
the other hand, let O be the isometry which exchanges the two vectors of the
canonical basis of R2. We have Su(M ;Of) = λ2

λ1+λ2

. Thus 3. is contradicted if
λ1 6= λ2. The case λ = 0 is forbidden by 2. Finally, it is easy to check that, for
any λ ∈ R

∗, Su(λIdk; ·) = Su(Idk; ·) = Su(·).
Remark 3.3. (Variational formulation) We assume here that E(Y ) = 0, if
it is not the case, one has to consider the centered variable Y − E(Y ). As in
dimension 1, one can see that this new index can also be seen as the solution of
the following least-squares problem (see [6])

Argmin
a

E‖Y u − aY ‖2.

As a consequence, Su(f)Y can be seen as the projection of Y u on {aY, a ∈ R}.
Remark 3.4. Notice that the condition Tr(Σ) 6= 0 (necessary for the indices to
be well-defined) is fulfilled as soon as Y is not constant.

We now give two toy examples to illustrate our definition.

Example 3.1. We consider as first example

Y = fa(X1, X2) =

(

aX1

X2

)

,

with X1 and X2 i.i.d. standard Gaussian random variables. We easily get

S1(f) =
a

a2 + 1
and S2(f) =

1

a2 + 1
= 1− S1(f).
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Example 3.2. We consider Example 2.1

Y = fa,b(X1, X2) =

(

X1 +X1X2 +X2

aX1 + bX1X2 +X2

)

.

We have

S1(f) =
1 + a2

4 + a2 + b2
and S2(f) =

2

4 + a2 + b2

and obviously
S1(f) ≥ S2(f) ⇐⇒ a2 ≥ 1.

This result has the natural interpretation that, as X1 is scaled by a, it has more
influence if and only if this scaling enlarges X1’s support i.e. |a| > 1.

4 About uniqueness

In this section, we show that it is possible to build other indices having the same
invariance properties as Su(f).

4.1 Another index

Here we use (2) in a different way to get a natural definition of a Sobol matricial
index with respect to the variable Xu. Indeed, we may choose as Sobol matricial
index

BCuA (5)

for any matrices A and B such that AB = Σ−1. First, note that this index is
a square matrix of size k. Second, any convex combination of Sobol matricial
indices of the form (5) is still a good candidate for the Sobol matricial index
with respect to Xu.

Remark 4.1. (Another variational formulation) In the spirit of Remark 3.3
(with the same assumption E(Y ) = 0), consider the following minimization
problem

Argmin
M∈Mk

E‖P tY u −MP tY ‖2, (6)

where P is a matrix such that P tΣP is diagonal and Mk is the set of all square
matrices of size k. The solution of this minimization problem

P tCuΣ
−1P

is a good candidate to be a Sobol matricial index (with A = Σ−1P and B = P t).
Note now that the symmetric version of this Sobol matricial index

P tΣ−1CuP

is also a good candidate (here A = P and B = P tΣ−1).
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In order to warrant that a Sobol matricial index fulfills a consistent definition,
we should require a little bit more. First, a reasonable condition should be that
the Sobol matricial index is a symmetric matrix: the influence of the input Xi

on the coordinates k and l of the output Y should be the same as the influence
of the input Xi on the coordinates l and k of Y .
Secondly, the Sobol matricial index should share the properties of the scalar
index Su(f). That is, it should be invariant by any isometry, scaling and trans-
lation. This leads to the definition of a family of matricial indices.

For the sake of simplicity, we assume that the eigenvalues of Σ are simple. Let
0 < λ1 < . . . < λk be the ordered eigenvalues and let (Oi)i=1,...,k be such that
Oi is the unit eigenvector associated to λi whose first non-zero coordinate is
positive. Let O be the (orthogonal) matrix whose column i is Oi.
Let Hk be the group of signed permutations matrix of size k. That is, P ∈ Hk

if and only if each row and each column of P has exactly one non zero element,
which belongs to {−1, 1}.
Notice that any orthogonal matrix that diagonalizes Σ can be written as OP ,
where P ∈ Hk. Suppose that µ is a probability measure on Hk. We define

Tu,µ =
1

2

(∫

Hk

(OP )t
(

Σ−1Cu + CuΣ
−1
)

OPµ(dP )

)

. (7)

We then have the following Proposition.

Proposition 4.1. Tu,µ is invariant by any isometry, scaling and translation.

Proof. Let U be an isometry of Rk and set

W = UY, Wu = UY u.

It is clear that ΣW = UΣU t and Cu,W = Cov(W,Wu) = UCuU
t. Since O

diagonalizes Σ, OW = UO diagonalizes the covariance matrix ΣW of W . Then,
for any P ∈ Hk,

(OWP )tΣ−1
W Cu,W(OWP ) = P tOtU tUΣ−1

Y U tUCuU
tUOP = (OP )tΣ−1

Y CuOP

(OWP )tCu,WΣ−1
W (OWP ) = P tOtU tUCuU

tUΣ−1
Y U tUOP = (OP )tCuΣ

−1
Y OP

By integrating the above equalities with respect to µ, we obtain the invariance
by isometry. The other invariances are obvious.

Remark 4.2. At first look, one may also consider matricial indices based on

Σ−αCuΣ
−β +Σ−βCuΣ

−α, with α+ β = 1.

Nevertheless, these matricial indices are not admissible even if Σ−αΣ−β = Σ−1

(see (5)) since they are not invariant by isometry.

Remark 4.3. For the sake of simplicity, we have restricted ourselves to the
generic case where all eigenvalues of Σ are simple. When there is only l (l < k)
distinct eigenvalues, the group Hk has to be replaced by the much more compli-
cated set of all isomorphisms P on R

k that can be written as

P = ΠO1 . . . Ol,
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where Π is some permutation on {1, . . . , k} and Oi (i = 1, . . . , l) is some isom-
etry on R

k letting invariant the orthogonal of the eigenspace associated with the
ith eigenvalue.

Let µ⋆ be the uniform probability measure on the finite set Hk.

Lemma 4.1. Let A be a square matrix of size k. Then

∫

Hk

P tAPµ⋆(dP ) =
Tr(A)

k
Ik.

Proof. One can see that Hk =
{

DǫPσ; ǫ ∈ {−1, 1}k and σ a permutation of {1, . . . , k}
}

where Dǫ = diag(ǫ) and Pσ the permutation matrix associated to σ that is

(Pσ)i,j =

{

1 if j = σ(i)
0 else.

Set Pǫ,σ = DǫPσ the element of Hk associated to ǫ and σ.
Then

B :=

∫

Pk

P t
ǫ,σAPǫ,σµ

⋆(dPǫ,σ) =
1

2kk!

∑

σ

P t
σ

(

∑

ǫ

Dt
ǫADǫ

)

Pσ

We have (Dt
ǫADǫ)ij = ǫiAijǫj, hence

(

∑

ǫ

Dt
ǫADǫ

)

ij

= Aij

∑

ǫ

ǫiǫj =

{

0 if i 6= j

2kAii if i = j.

Thus

Bij =
1

k!

∑

σ

k
∑

l=1

(Pσ)li (diag(A11, . . . , Akk)Pσ)lj

=
1

k!

∑

σ

(Pσ)σ−1(i),i (diag(A11, . . . , Akk)Pσ)σ−1(i),j

=

{

0 if i 6= j
1
k!

∑

σ Aσ−1(i),σ−1(i)(i) if i = j

and we have

Bii =
1

k!

k
∑

l=1





∑

σ s.t. σ−1(i)=l

All



 =
1

k!

k
∑

l=1

(k − 1)!All =
Tr(A)

k
.

Using the previous Lemma in conjunction with (7), we obtain the following
Sobol matricial index

Tu := Tu,µ⋆

=
Tr
(

Σ−1Cu

)

k
Ik. (8)

Notice that this matricial index only depends on the real number Tr
(

Σ−1Cu

)

/Tr(Ik)
which is easy to interpret.
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4.2 Comparison between Su(f) and T u

We have defined two nice candidates to generalize the scalar Sobol index in
dimension k. A natural question is: which one should be preferred? There is a
priori no universal answer.
Nevertheless, from a statistical point of view, Tu presents a major drawback:
its estimation may require the estimation of an inverse covariance matrix Σ−1,
which may be tricky. While the estimation of Su(f) only uses estimation of
traces of covariance matrices. Besides, the following example shows that Tu

may be useless in some models.

Example 4.1. We consider again the model of Example 3.2

Y = fa,b(X1, X2) =

(

X1 +X1X2 +X2

aX1 + bX1X2 +X2

)

.

We easily get

T 1 =
(b− a)2 + (a− 1)2

4[(b− a)2 + (a− 1)(b− 1)]
I2, T 2 =

(b − 1)2 + (a− 1)2

4[(b− a)2 + (a− 1)(b− 1)]
I2.

Thus
T 1 ≥ T 2 ⇐⇒ (a− 1)(a− 2b+ 1) ≥ 0

whereas we have obtained previously, the more intuitive result

S1(f) ≥ S2(f) ⇐⇒ a2 ≥ 1.

Moreover Tu is not informative since for a = 1, the indices T 1 and T 2 satisfy

T 1 = T 2 =
1

4
I2

and do not depend on b.

Thus, it seems to us that Su(f) is a more relevant sensitivity measure, and, in
the sequel, we will focus our study on Su(f).

5 Estimation of Su(f)

5.1 The Pick and Freeze estimator

In practice, the covariance matrices Cu and Σ are not analytically available. In
the scalar case (k = 1), it is customary to estimate Su(f) by using a Monte-
Carlo Pick and Freeze method [13, 6], which uses a finite sample of evaluations
of f .

In this Section, we propose a Pick and Freeze estimator for the vectorial case
which generalizes the TN estimator studied in [6]. We set Y u = f(Xu, X

′
∼u)

where X ′
∼u is an independent copy of X∼u which is still independent of Xu. Let

N be an integer. We take N independent copies Y1, . . . , YN (resp. Y u
1 , . . . , Y u

N )
of Y (resp. Y u). For l = 1, . . . , k, and i = 1, . . . , N , we also denote by Yi,l (resp.
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Y u
i,l) the lth component of Yi (resp. Y u

i ). We then define the following estimator
of Su(f)

Su,N =

∑k
l=1

(

1
N

∑N
i=1 Yi,lY

u
i,l −

(

1
N

∑N
i=1

Yi,l+Y u

i,l

2

)2
)

∑k
l=1

(

1
N

∑N
i=1

Y 2

i,l
+(Y u

i,l
)2

2 −
(

1
N

∑N
i=1

Yi,l+Y u

i,l

2

)2
) . (9)

Remark 5.1. Note that this estimator can be written

Su,N =
Tr (Cu,N )

Tr (ΣN )
(10)

where Cu,N and ΣN are the empirical estimators of Cu = Cov(Y, Y u) and
Σ = Var(Y ) defined by

Cu,N =
1

N

N
∑

i=1

Y u
i Y t

i −
(

1

N

N
∑

i=1

Yi + Y u
i

2

)(

1

N

N
∑

i=1

Yi + Y u
i

2

)t

and

ΣN =
1

N

N
∑

i=1

YiY
t
i + Y u

i (Y u
i )t

2
−
(

1

N

N
∑

i=1

Yi + Y u
i

2

)(

1

N

N
∑

i=1

Yi + Y u
i

2

)t

.

5.2 Asymptotic properties

A straightforward application of the Strong Law of Large Numbers leads to

Proposition 5.1 (Consistency). Su,N converges almost surely to Su(f) when
N → +∞.

We now study to the asymptotic normality of (Su,N)N .

Proposition 5.2 (Asymptotic normality). Assume E(Y 4
l ) < ∞ for all l =

1, . . . , k. For l = 1, . . . , k, we set

Ul = (Y1,l − E(Yl))(Y
u
1,l − E(Yl)), Vl = (Y1,l − E(Yl))

2 + (Y u
1,l − E(Yl))

2.

Then √
N (Su,N − Su(f))

L→
N→∞

N1

(

0, σ2
)

(11)

where

σ2 = a2
∑

l,l′∈{1,...,k}
Cov(Ul, Ul′)+b2

∑

l,l′∈{1,...,k}
Cov(Vl, Vl′)+2ab

∑

l,l′∈{1,...,k}
Cov(Ul, Vl′),

(12)
with

a =
1

∑k
l=1 Var(Yl)

, b = −a

2
Su(f).
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Proof. Since Su,N remains invariant when Y is changed to Y − E(Y ), we have

Su,N = Φ

(

1

N

N
∑

i=1

Wi

)

,

where

Wi =



































(Yi1 − E(Y1))(Y
u
i1 − E(Y1))

...
Yik − E(Yk))(Y

u
ik − E(Yk))

Yi1 − E(Y1) + Y u
i1 − E(Y1)

...
Yik − E(Yk) + Y u

ik − E(Yk)
(Yi1 − E(Y1))

2 + (Y u
i1 − E(Y1))

2

...
(Yik − E(Yk))

2 + (Y u
ik − E(Yk))

2



































and

Φ(x1, . . . , xk, y1, . . . , yk, z1, . . . , zk) =

∑k
l=1

(

xl − (yl/2)
2
)

∑k
l=1 (zl/2− (yl/2)2)

.

The so-called Delta method ([14], Theorem 3.1) gives

√
N(Su,N − Su(f))

L→
N→∞

N1

(

0, σ2
)

where σ2 = gtΓg, Γ the covariance matrix of W1 and

g = ∇Φ(E(W1)).

We have

E(W1) = (Cov(Y1, Y
u
1 ), . . . ,Cov(Yk, Y

u
k ), 0, . . . , 0, 2VarY1, . . . , 2VarYk)

t
,

and by differentiation of Φ, g = (a, . . . , a, 0, . . . , 0, b, . . . , b)
t
. A simple matrix

calculus leads to (12).

Remark 5.2. Following the same idea, it is possible, for v ⊂ {1, . . . ,p}, to
derive a (multivariate) central limit theorem for

(Su,N , Sv,N , Su∪v,N ) =

(

Tr (Cu,N )

Tr (ΣN )
,
Tr (Cv,N )

Tr (ΣN )
,
Tr (Cu∪v,N )

Tr (ΣN )

)

.

We then can derive a (scalar) central limit theorem for Su∪v,N −Su,N −Sv,N , a
natural estimator of Su∪v−Su−Sv, which quantifies the influence (for u∩v = ∅)
of the interaction between the variables of u and v.

Proposition 5.3. Assume E(Y 4
l ) < ∞ for l = 1, . . . , k. Then (Su,N)N is

asymptotically efficient for estimating Su(f) among regular estimator sequences
that are function of the exchangeable pair (Y, Y u).

13



Proof. Note that

Su(f) = Φ (Tr (Cu) ,Tr (ΣY )) and Su,N = Φ(Tr (Cu,N ) ,Tr (ΣN ))

where Φ is defined by Φ(x, y) = x/y.
Proceeding as in the proof of Proposition 2.5 in [6], we derive that Cu,N (re-
spectively ΣN ) is asymptotically efficient for estimating Cu (resp. ΣY ). Then,
Theorem 25.50 (efficiency in product space) in [14] gives that (Cu,N ,ΣN ) is
asymptotically efficient for estimating (Cu,ΣY ).
Now since Φ (respectively Tr) is differentiable in R

2 \ {y = 0} (resp. in
Mk) we can apply Theorem 25.47 in [14] (efficiency and Delta method) to get
that (Φ (Tr (Cu,N ) ,Tr (ΣN )))N is also asymptotically efficient for estimating
Φ (Tr (Cu) ,Tr (ΣY )).

5.3 Concentration inequality

In this section we apply Corollary 1.17 of Ledoux [8] to give a concentration
inequality for Su,N . In order to be self-contained we recall Ledoux’s result.

Corollary 5.1 (Corollary 1.17 of [8]). Let P = µ1 ⊗ . . . ⊗ µn be a product
probability measure on the cartesian product X = X1× . . .×Xn of metric spaces
(Xi, di) with finite diameters Di, i = 1, . . . , n, endowed with the l1 metricd =
∑n

i=1 di. Let F be a 1-Lipschitz function on (X, d). Then, for every r ≥ 0,

P (F ≥ EP (F ) + r) ≤ e−r2/2D2

where D2 =
∑n

i=1 D
2
i .

Our concentration inequality is the following

Proposition 5.4. Assume that Y is bounded almost surely in R
k, that is, there

exists ρ > 0 so that ‖Y ‖2 < ρ. Let vl := Σl,l/ρ
2 for l = 1 . . . k.

Then, for all t ≥ 0, we have

P (Su,N − Su(f) ≥ t) ≤ exp



−N

32

(

t− 1
2N (Su(f) + t− 1)(Su(f) + 1)

1 + Su(f) + t+ |Su(f) + t− 1|
k
∑

l=1

vl

)2


 ,

and, for all t ≥ (1−Su(f))(1+Su(f))
2N−(1+Su(f)) , we have

P (Su,N − Su(f) ≤ −t) ≤ exp



−N

32

(

t+ 1
2N (Su(f)− t− 1)(Su(f) + 1)

1 + Su(f)− t+ |Su(f)− t− 1|

k
∑

l=1

vl

)2


 .

Remark 5.3. Note that the use of Corollary 1.17 of Ledoux [8] leads to bounds
improving the one obtained in [5].

Proof. Since Su(f) and Su,N are invariant by homothety, one can scale the
output Y so that Y ∈ Bk(0, 1), the unit Euclidean ball of Rk. From now on, we
assume that Y ∈ Bk(0, 1) and ρ = 1.
By Remark 5.1, one gets

P (Su,N − Su(f) ≥ t) = P (Tr (Cu,N )− (Su(f) + t)Tr (ΣN ) ≥ 0) . (13)
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Now let G : (Bk(0, 1)×Bk(0, 1))
N → R defined by

G((x1, y1), . . . , (xN , yN )) =

k
∑

l=1

[

1

N

N
∑

i=1

(

xi,lyi,l − (Su(f) + t)
(xi,l)

2 + (yi,l)
2

2

)

+ (Su(f) + t− 1)

(

1

N

N
∑

i=1

xi,l + yi,l
2

)2]

,

with xi = (xi,l)l=1,...,k and yi = (yi,l)l=1,...,k for all i = 1, . . . , N.
A simple computation gives that

G ((Y1, Y
u
1 ) , . . . , (YN , Y u

N )) = Tr (Cu,N )− (Su(f) + t)Tr (ΣN ) .

We have:

∂G

∂xi
=

(

∂G

∂xi,l

)

l=1,...,k

=
1

N
(yi − (Su(f) + t)xi + (Su(f) + t− 1)w)

and symmetrically

∂G

∂yi
=

(

∂G

∂yi,l

)

l=1,...,k

=
1

N
(xi − (Su(f) + t) yi + (Su(f) + t− 1)w) ,

where

w =
1

N

N
∑

r=1

xr + yr
2

.

Applying several times the triangular inequality and that ‖w‖2 ≤ 1, we deduce

∥

∥

∥

∥

∂G

∂xi

∥

∥

∥

∥

2

≤ 1

N
(|1 + Su(f) + t|+ |Su(f) + t− 1|)

and
∥

∥

∥

∥

∂G

∂yi

∥

∥

∥

∥

2

≤ 1

N
(|1 + Su(f) + t|+ |Su(f) + t− 1|).

Thus, G is L-Lipschitz with L := 1
N (1 + Su(f) + t+ |Su(f) + t− 1|).

Now we apply Corollary 1.17 of Ledoux [8] with

• Xi = Bk(0, 1)×Bk(0, 1) endowed with the metric di defined by

di(z, z
′) := ‖x− x′‖2 + ‖y − y′‖2

for z = (x, y) ∈ Xi and z′ = (x′, y′) ∈ Xi, x, x′, y and y′ ∈ Bk(0, 1),

• X = X1 × . . .×XN , with the l1-metric d =
∑N

i=1 di,

• Di = diam(Xi) = 2 + 2 = 4 and D2 =
∑N

i=1 D
2
i = 16N ,

• F = G/L,

• r = −E(F ) =
[

t− 1
2N (Su(f) + t− 1)(Su(f) + 1)

]
∑k

l=1 vl/L ≥ 0 as 0 ≤
Su(f) ≤ 1.
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We then get the upper deviation bound of (13).
To get the second bound, we repeat the procedure by replacing G (respectively
t) by −G (resp. −t). Note that in this case, we take

r = −
(

−t− 1

2N
(Su(f)− t− 1)(Su(f) + 1)

) k
∑

l=1

vl/L,

which is non-negative thanks to the minoration hypothesis on t.

The bounds in Proposition 5.4 depend on the unknown quantity Su(f) which
can not be computed in practice. To address this problem, we use the bound
0 ≤ Su(f) ≤ 1 to get:

Corollary 5.2. Let V =
(

∑k
l=1 vl

)2

. We have

∀t ≥ 0, P (Su,N − Su(f) ≥ t) ≤ exp

(

−NV

128

(

1− 1

N

)2(
t

1 + t

)2
)

, (14)

∀t ∈
]

9

8N
, 1

[

, P (Su,N − Su(f) ≤ −t) ≤ exp

(

−NV

128

(

t− 9

8N

)2
)

. (15)

Proof. 1. Proof of (14): by Proposition 5.4 we have

P (Su,N − Su(f) ≥ t) ≤ exp

(

−NVH(t, Su(f))

32

)

,

with

H(t, Su(f)) =

(

t− 1
2N (Su(f) + t− 1)(Su(f) + 1)

1 + Su(f) + t+ |Su(f) + t− 1|

)2

.

If 0 ≤ Su(f) ≤ 1− t we have

H(t, Su(f)) =
1

4

(

t− 1

2N
(Su(f) + t− 1)(Su(f) + 1)

)2

,

and so

H(t, Su(f)) ≥ t2

4
≥ 1

4

(

t

(1 + t)

)2(

1− 1

N

)2

,

as, in this case,

1

2N
(Su(f) + t− 1)(Su(f) + 1) ≤ 0.

Now if Su(f) ≥ 1− t,

H(t, Su(f)) =
1

4

(

t− 1
2N (Su(f) + t− 1)(Su(f) + 1)

Su(f) + t

)2

.

and we have

t− 1
2N (Su(f) + t− 1)(Su(f) + 1)

Su(f) + t
≥ t− t

N

1 + t
≥ 0,
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hence in this case

H(t, Su(f)) ≥ 1

4

(

t

1 + t

)2(

1− 1

N

)2

.

Finally, in all cases, we have (14).

2. Proof of (15): hypothesis t ≥ 9/(8N) ensures that the second part of
Proposition 5.4 can be applied. We have

P (Su,N − Su(f) ≤ −t) ≤ exp

(

−NVH(t, Su(f))

32

)

,

with

H(t, Su(f)) =

(

t+ 1
2N (Su(f)− t− 1)(Su(f) + 1)

1 + Su(f)− t+ |Su(f)− t− 1|

)2

.

As necessarily Su(f)− t− 1 ≤ 0, we have:

H(t, Su(f)) =
1

4

(

t+
1

2N
(Su(f)− t− 1)(Su(f) + 1)

)2

,

and, as (Su(f)− t− 1)(Su(f) + 1) is minimal when Su(f) = t/2, we have

t+
1

2N
(Su(f)− t− 1)(Su(f) + 1) ≥ t− 1

2N

(

t

2
+ 1

)2

≥ t− 9

8N
,

as t ≤ 1. Hence

H(t, Su(f)) ≥ 1

4

(

t− 9

8N

)2

,

which completes the proof.

5.4 Numerical illustrations

In this section, we provide numerical simulations for the sensitivity indices Su(f)
defined in Section 3.

5.4.1 Toy example

We consider again Example 3.2 with k = p = 2, a = 2 and b = 3 which leads to
the following model

Y = f(X1, X2) =

(

X1 +X2 +X1X2

2X1 + 3X1X2 +X2

)

.

In the “Gaussian case” (respectively “Uniform case”), we take X1 and X2 in-
dependent standard Gaussian random variables (resp. independent uniform
random variables on [0; 1]). In these two cases, a simple analytic calculus yields
the true values of the sensitivity indices S1(f) and S2(f).
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N=100 N=2000 N=10000 True value

Gaussian case
S1(f) 0.97 0.94 0.97 0.2941
S2(f) 0.94 0.93 0.93 0.1176

Uniform case
S1(f) 1 1 1 0.6084
S2(f) 0.97 0.98 0.97 0.3566

Table 1: Estimated coverages of the 95% confidence intervals for S1(f) and
S2(f).
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Figure 2: (Estimated) smallest N to have P (|Su,N − Su(f)| ≥ t) ≤ 5% for
u = {1} or {2}.

Asymptotic confidence interval We perform 100 simulations of the es-
timated Pick and Freeze confidence interval given by Proposition 5.2 for N =
100, 200 and 10000. In each case, we estimate the coverage of the 95% confidence
interval procedure by counting the proportion of estimated intervals containing
the true value.
The results are gathered in Table 1. We see that the estimated coverages are
close to the theoretical level of 95% with a coverage higher than the theoretical
one in the Uniform case and lesser in the Gaussian case.

Concentration inequality We notice that the concentration inequality (Propo-
sition 5.4) can not be applied to the Gaussian case since ‖Y ‖2 is not bounded.
Hence we only study the Uniform case.
For different values of t, we compute the (estimated) smallest N so that the
upper bound of P (|Su,N − Su(f)| ≥ t) of Corollary 5.2 achieves 5% (i.e., the
sum of the right-hand sides of (14) and (15) is less than 0.05). The constant
V is estimated empirically. The results of these computations are displayed in
Figure 2. The set u is {1} or {2}.
These results clearly show that the confidence intervals produced by the use of
the concentration inequality on Su(f) require a large sample size. As a conse-
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Variable Interpretation (SI unit) Distribution
m mass (kg) Unif([10;12])
c damping constant (N · m−1 · s) Unif([0.4; 0.8])
k spring constant (N · m−1) Unif([70;90])
l initial elongation (m) Unif([-1; -0.25])

Table 2: Interpretations and distributions of the parameters in the spring-mass
model.

quence, its use is only possible when many evaluations of the output function f
are available.

5.4.2 Mass-spring model

In this section, we consider the displacement x(t) of a mass connected to a
spring for t ∈ [0; 40]. This displacement is given by the following second-order
differential equation

mx′′(t) + cx′(t) + kx(t) = 0,

together with initial conditions x(0) = l, x′(0) = 0. We use the readily-available
analytical closed-form expression of this initial-value problem for x(t).
The input parameters are X = (m, c, k, l) (so that p = 4) whose interpretations
and distributions are given in Table 2.
The output vector is defined by

Y = f(X) = (x(t1), x(t2), . . . , x(t800)) , for ti = 0.05i and k = 800.

Unidimensional first-order Sobol indices By considering each component
of Y independently, it is possible to estimate the (unidimensional first-order)
Sobol indices of Y (ti) for i = 1, . . . , 800 and each input variable. This gives the
plot of Figure 3.
This plot seems difficult to interpret since we can see that the indices for l, k
and m oscillate rapidly, leading to a frequent change of their respective rankings
as time evolves. This is an additional motivation for using the generalized Sobol
indices considered in this paper, easier to interpret. Note that, for large values
of t, the first-order indices do not sum up to 1 meaning that interactions between
the variables have a large influence for such t’s.

Generalized Sobol indices We have computed the generalized Sobol indices
for the output vector Y , for u = {m}, {c}, {k} or {l} as well as their 95%
confidence intervals for N = 2000. The numerical results are gathered in Table
3.
This computation makes clear that the ranking of the first-order influence indices
of each input parameter is S{k}(Y ) > S{m}(Y ) > S{l}(Y ) > S{c}(Y ).

6 Case of functional outputs

In many practical situations the output Y is functional. It is then useful to ex-
tend the vectorial indices to functional outputs. This is the aim of the following
section.
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Figure 3: Plots of the estimated unidimensional first-order Sobol indices
Su(Y (t)) as functions of t for u = {m}, {c}, {k} or {l}. The dots around
each curve form the hull of the 95% confidence intervals for these indices with
N = 2000.

Variable u Punctual estimate for Su(Y ) 95% confidence interval for Su(Y )
m 0.0826 [0.0600 ; 0.1052]
c 0.0020 [-0.0181; 0.0222]
k 0.2068 [0.1835 ; 0.2301]
l 0.0561 [0.0328 ; 0.0794]

Table 3: Results of the estimation of the first-order generalized Sobol indices in
the spring-mass model.
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6.1 Definition

Let H be a separable Hilbert space endowed with the scalar product 〈·, ·〉 and
the norm || · ||. Let f be a H-valued function, i.e. Y and Y u are H-valued
random variable. We assume that E

(

‖Y ‖2
)

< ∞. Recall that E (Y ) is defined
by duality as the unique member of H satisfying

E (〈h, Y 〉) = 〈h,E(Y )〉 for all h ∈ H.

Recall that the covariance operator associated with Y is the endomorphism Γ
on H defined, for h ∈ H by Γ(h) = E [〈Y, h〉Y ] . We also recall that it is a well
known fact that E

(

‖Y ‖2
)

< ∞ implies that Γ is then a Trace class operator and
its trace is then well defined. We generalize the definition of Su(f) introduced
in Section 3 for functional outputs:

Definition 6.1. Su,∞(f) = Tr(Γu)
Tr(Γ) , where Γu is the endomorphism on H defined

by Γu(h) = E [〈Y u, h〉Y ] for any h ∈ H.

In the next lemma we give the so-called polar decomposition of the traces of Γ
and Γu.

Lemma 6.1. We have

Tr(Γ) = E
(

‖Y ‖2
)

− ‖E(Y )‖2

Tr(Γu) =
1

4

[

E
(

‖Y + Y u‖2
)

− E
(

‖Y − Y u‖2
)

− 4‖E (Y ) ‖2
]

.

Let (ϕl)1≤l be an orthonormal basis of H. Then

‖Y ‖2 =

∞
∑

i=1

〈Y, ϕi〉2.

Now, in view of estimation, we truncate the previous sum by setting

‖Y ‖2m =

m
∑

i=1

〈Y, ϕi〉2.

Remark 6.1. It amounts to truncate the expansion of Y to a certain level m.
Let Ym be the truncated approximation of Y :

iidYm =

m
∑

l=1

〈Y, ϕi〉ϕl,

seen as a vector of dimension m, and results of Section 5 can be applied to Ym.
Notice that Ym is than the projection of Y onto Span(ϕ1, . . . , ϕm).

6.2 Estimation of Su,∞(f)

As in Section 5, we define the following estimator of Su,∞(f):

Su,m,N =
1
4N

∑N
i=1

(

‖Yi + Y u
i ‖2m − ‖Yi − Y u

i ‖2m − ‖Y + Y u‖2m
)

1
N

∑N
i=1

(

‖Yi‖2
m+‖Y u

i
‖2
m

2 −
∥

∥

∥

Y+Y u

2

∥

∥

∥

2

m

) .
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Let T be a H-valued random variable. For any sequence (Ti)i∈N∗ of iid variables
distributed as T , we define

DN,m(T ) =
1

N

N
∑

i=1

(

‖Ti‖2m −
∥

∥T
∥

∥

2

m

)

and

ej = E (〈Ti, ϕj〉)
vj = E

(

〈Ti, ϕj〉2
)

Zi,j = 〈Ti, ϕj〉 − ej

Wi,j = 〈Ti, ϕj〉2 − vj .

In the spirit of [4], we decompose DN,m(T ) and give asymptotics for each of the
terms of the decomposition.

Proposition 6.1.

1. DN,m(T ) can be rewritten as the sum of a totally degenerated U-statistic
of order 2, a centered linear term and a deterministic term in the following
way

DN,m(T )− E
(

‖T ‖2
)

+ ‖E (T ) ‖2 = −UNK(T ) + PNL(T )−Bm(T ) (16)

where

UNK(T ) :=

m
∑

l=1

1

N2

∑

1≤i6=j≤N

Zi,lZj,l

PNL(T ) :=
1

N

(

1− 1

N

) m
∑

l=1

N
∑

i=1

(Wi,l − 2elZi,l)

Bm(T ) :=
∑

l>m

(

vl − e2l
)

+
1

N

m
∑

l=1

(

vl − e2l
)

.

2. Assume that there exists δ > 1 so that

vl = E
(

〈T, ϕl〉2
)

= O(l−(δ+1)) (17)

iid and δ′ > 1 so that

E
(

〈T, φl〉4
)

= O(l−δ′). (18)

Then for any m = m(N) so that:

m(N)

N
1

2δ

→ +∞,
m(N)√

N
→ 0, (19)

we have

(a) B2
m(T ) = o (1/N)
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(b) E
(

(UNK(T ))2
)

= o (1/N)

(c) PNL(T )− PNL′(T ) = oP

(

1√
N

)

where PNL′(T ) := 1
N

(

1− 1
N

)
∑∞

l=1

∑N
i=1

[

Wi,l − 2elZi,l

]

.

Proof. In order to simplify the notation, we set UNK := UNK(T ),
PNL := PNL(T ), Bm := Bm(T ) and PNL′ := PNL′(T ).

a) Term Bm

Since
∑∞

l=1 vl < +∞, (vl)l is bounded, let K be so that maxl≥1 vl ≤ K. We
have, for sufficiently large m(N) (hence sufficiently large N),

Bm =
∑

l>m(N)

(vl − e2l ) +
1

N

m(N)
∑

l=1

(vl − e2l )

≤
∑

l>m(N)

vl +
1

N

m(N)
∑

l=1

vl

≤
∑

l>m(N)

vl +
m(N)K

N

≤ C
∑

l>m(N)

l−(δ+1) +
m(N)K

N
for a constant C>0.

Hence,

NB2
m ≤ 2NC





∑

l>m(N)

l−(δ+1)





2

+
2

N
m(N)2K2

≤ 2NC

(

∫ +∞

m(N)

x−(δ+1) dx

)2

+
2

N
m(N)2K2

≤ 2NCδ−2m(N)−2δ +
2

N
m(N)2K2

and both terms go to zero when N → +∞ by (19). Hence

B2
m = o

(

1

N

)

.

b) Term UNK
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One has E((UNK)2) = E1 + E2 + E3 where

E1 =
2

N4

m
∑

l,k=1

∑

1≤i1 6=j1≤N

E

[

Zi1,lZi1,kZj1,lZj1,k

]

,

E2 =
4

N4

m
∑

l,k=1

∑

i1,j1,j2all 6=
E

[

Zi1,lZi1,kZj1,lZj2,k

]

,

E3 =
1

N4

m
∑

l,k=1

∑

i1,j1,i2,j2all 6=
E

[

Zi1,lZi2,kZj1,lZj2,k

]

.

One easily see that E2 = E3 = 0, since, for all l, the variables (Zi,l)1≤i≤N are
centered and independent.

Let us now compute and bound E1.

E1 =
2

N4

m
∑

l,k=1

∑

1≤i1 6=j1≤N

E

[

Zi1,lZi1,kZj1,lZj1,k

]

=
2

N2

(

1− 1

N

) m
∑

l,k=1

E

[

Z1,lZ1,kZ2,lZ2,k

]

=
2

N2

(

1− 1

N

) m
∑

l,k=1

[

E (Z1,lZ1,k)
]2

≤ 2

N2

(

1− 1

N

) m
∑

l,k=1

E
(

Z2
1,l

)

E
(

Z2
1,k

)

≤ 2

N2

(

1− 1

N

)

(

m
∑

l=1

E
(

Z2
1,l

)

)2

≤ 2

N2

(

1− 1

N

)

(

m
∑

l=1

vl

)2

,

as
0 ≤ E(Z2

1,l) = E((〈T1, φl〉 − el)
2) = E(〈T1, φl〉2)− e2l ≤ vl. (20)

By assumption (17), the series (
∑

l vl) is convergent. Thus we proceed as for
Bm to get, for sufficiently large m(N) (hence sufficiently large N),

E1 ≤ 2

N2

(

1− 1

N

)

(m(N)K)2 ,

As a consequence, by (19), E1 = o
(

1
N

)

and we obtain that E
(

(UNK)2
)

= o
(

1
N

)

.

c) Term PNL

By Markov inequality we have

P

(√
N |PNL′ − PNL| > ǫ

)

≤ N

ǫ2
E

(

|PNL′ − PNL|2
)

. (21)
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Hence, it is sufficient to prove that NE

(

|PNL′ − PNL|2
)

→ 0 when N → +∞.

But

(PNL′ − PNL)
2

=

(

1

N

(

1− 1

N

) N
∑

i=1

∑

l>m

[

Wi,l − 2elZi,l

]

)2

≤
(

1

N

N
∑

i=1

Am,i

)2

,

where Am,i :=
∑

l>m(Wi,l − 2elZi,l). Then

NE

(

(PNL′ − PNL)
2
)

≤ 1

N
Var

(

N
∑

i=1

Am,i

)

= Var (Am,1) . (22)

The last inequalities come from the fact that (Am,i)i=1,...,N are centered and
i.i.d r.v.s. Indeed, since by assumption (17), we can apply Tonelli’s theorem
to show that

∑

l>m E (|Wi,l|) and
∑

l>m E (|Zi,l|) are finite. Hence, by Fubini’s
theorem and the fact that each variable Wi,l − 2elZi,l is centered, we get

E(Am,i) = E

(

∑

l>m

(Wi,l − 2elZi,l)

)

=
∑

l>m

E (Wi,l − 2elZi,l) = 0,

which proves that Am,i is centered.

It remains now to upper-bound Var(Am,1).

Var(Am,1) = E





(

∑

l>m

(W1,l − 2elZ1,l)

)2




≤ 2E





(

∑

l>m

W1,l

)2


+ 2E





(

∑

l>m

2elZ1,l

)2


 .
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On one hand, for all sufficiently large m,

E





(

∑

l>m

W1,l

)2


 = E





(

∑

l>m

〈T, φl〉2 − E(〈T, φl〉2)
)2




= E





(

∑

l>m

〈T, φl〉2
)2


−
(

∑

l>m

E(〈T, φl〉2)
)2

≤ E





(

∑

l>m

〈T, φl〉2
)2




=
∑

l>m,l′>m

E
(

〈T, φl〉2〈T, φl′〉2
)

≤
∑

l>m,l′>m

√

E (〈T, φl〉4)E (〈T, φl′〉4) (Cauchy-Schwarz)

=

(

∑

l>m

√

E (〈T, φl〉4)
)2

≤
∑

l>m

E
(

〈T, φl〉4
)

(Jensen’s inequality)

→ 0 when N → +∞, by (18) and m(N) → +∞

and on the other hand,

E





(

∑

l>m

elZ1,l

)2


 ≤ E

(

∑

l>m

e2l
∑

l>m

Z2
1,l

)

(Cauchy-Schwarz)

≤
(

∑

l>m

e2l

)(

∑

l>m

vl

)

by (20)

≤
(

∑

l>m

vl

)2

(because e2l ≤ vl by Jensen’s inequality)

→ 0 when N → +∞ by (17).

So Var(Am,1) = o(1), hence (by (22) and (21)) we have PNL−PNL′ = oP

(

1√
N

)

.

Theorem 6.1. Suppose that conditions (17), (18) and (19) of Proposition 6.1
are fulfilled. Then we have:

√
N(Su,m,N − Su(f))

L→
N→∞

N (0, σ2) (23)

with σ2 depending on the moments of (DN,m(Y ), DN,m(Y + Y u), DN,m(Y − Y u)) .

Before starting the proof of the theorem we state an auxiliary lemma:

Lemma 6.2.
√
N
∥

∥Y − Y u
∥

∥

2

m
converges to 0 in probability.
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Proof. Since

√
N
∥

∥Y − Y u
∥

∥

2

m
≤

√
N
∥

∥Y − Y u
∥

∥

2
=

1√
N

∥

∥

∥

∥

∥

√
N

[

1

N

N
∑

i=1

(Yi − Y u
i )

]∥

∥

∥

∥

∥

2

.

We conclude using the central limit theorem for random variables valued in an
Hilbert space (see e.g. [9]).

Proof. First we note that

Su,m,N =
1

2

DN,m(Y + Y u)−DN,m(Y − Y u)−
∥

∥Y − Y u
∥

∥

2

m

DN,m(Y ) +DN,m(Y u) +
∥

∥Y − Y u
∥

∥

2

m

.

The proof will be decomposed into 3 steps.

• Step 1 We prove a vectorial central limit theorem (CLT) for

(DN,m(Y ), DN,m(Y u), DN,m(Y + Y u), DN,m(Y − Y u)) .

The vector

VN := (DN,m(Y ), DN,m(Y u), DN,m(Y + Y u), DN,m(Y − Y u))

can be decomposed as in Proposition 6.1 in the following way

VN − E (VN ) = −UNK+ PNL
′ + (PNL− PNL

′)− Bm (24)

where

UNK := (UNK(Y ), UNK(Y u), UNK(Y + Y u), UNK(Y − Y u))

PNL := (PNL(Y ), PNL(Y u), PNL(Y + Y u), PNL(Y − Y u))

PNL
′ := (PNL′(Y ), PNL′(Y u), PNL′(Y + Y u), PNL′(Y − Y u))

Bm := (Bm(Y )Bm(Y u), Bm(Y + Y u), Bm(Y − Y u)) .

By Proposition 6.1 2., it is enough to prove a CLT for PNL
′. This is the case

since it is an empirical sum of i.i.d. centered random vectors.

• Step 2 Using Lemma 6.2 and the Delta method, we derive a CLT for

(

DN,m(Y + Y u)−DN,m(Y − Y u)−
∥

∥Y − Y u
∥

∥

2

m
, DN,m(Y ) +DN,m(Y u) +

∥

∥Y − Y u
∥

∥

2

m

)

.

• Step 3 We conclude using the Delta method.
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