Log-majorization of the moduli of the eigenvalues of a matrix polynomial by tropical roots

Abstract : We show that the sequence of moduli of the eigenvalues of a matrix polynomial is log-majorized, up to universal constants, by a sequence of "tropical roots" depending only on the norms of the matrix coefficients. These tropical roots are the non-differentiability points of an auxiliary tropical polynomial, or equivalently, the opposites of the slopes of its Newton polygon. This extends to the case of matrix polynomials some bounds obtained by Hadamard, Ostrowski and Pólya for the roots of scalar polynomials. We also obtain new bounds in the scalar case, which are accurate for "fewnomials" or when the tropical roots are well separated.
Type de document :
Article dans une revue
Linear Algebra and its Applications, Elsevier, 2017, 〈10.1016/j.laa.2016.11.004〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00881196
Contributeur : Marianne Akian <>
Soumis le : jeudi 7 novembre 2013 - 17:00:32
Dernière modification le : mercredi 14 novembre 2018 - 15:20:12

Lien texte intégral

Identifiants

Citation

Marianne Akian, Stéphane Gaubert, Meisam Sharify. Log-majorization of the moduli of the eigenvalues of a matrix polynomial by tropical roots. Linear Algebra and its Applications, Elsevier, 2017, 〈10.1016/j.laa.2016.11.004〉. 〈hal-00881196〉

Partager

Métriques

Consultations de la notice

587