C. Berka and D. Levendowski, EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks, Aviat Space Environ Med, vol.78, issue.5, pp.231-275, 2007.

R. Berta, F. Bellotti, A. De-gloria, D. Pranantha, and C. Schatten, Electroencephalogram and Physiological Signal Analysis for Assessing Flow in Games, IEEE Transactions on Computational Intelligence and AI in Games, vol.5, issue.2, pp.164-175, 2013.
DOI : 10.1109/TCIAIG.2013.2260340

B. Blankertz, M. Tangermann, C. Vidaurre, S. Fazli, C. Sannelli et al., The Berlin Brain???Computer Interface: Non-Medical Uses of BCI Technology, Frontiers in Neuroscience, vol.4, p.198, 2010.
DOI : 10.3389/fnins.2010.00198

M. A. Boksem, T. F. Meijman, and M. M. Lorist, Effects of mental fatigue on attention: An ERP study, Cognitive Brain Research, vol.25, issue.1, pp.107-123, 2005.
DOI : 10.1016/j.cogbrainres.2005.04.011

D. Bowman, J. Gabbard, and D. Hix, A Survey of Usability Evaluation in Virtual Environments: Classification and Comparison of Methods, Presence: Teleoperators and Virtual Environments, vol.11, issue.4, pp.404-424, 2002.
DOI : 10.1162/105474698565686

T. Brandt, J. Dichgans, and E. Koenig, Differential effects of central versus peripheral vision on egocentric and exocentric motion perception, Experimental Brain Research, vol.64, issue.5, pp.476-491, 1973.
DOI : 10.1037/h0046162

A. Brouwer, M. A. Hogervorst, J. B. Van-erp, T. Heffelaar, P. H. Zimmerman et al., Estimating workload using EEG spectral power and ERPs in the n-back task, Journal of Neural Engineering, vol.9, issue.4, p.45008, 2012.
DOI : 10.1088/1741-2560/9/4/045008

A. Bruseberg and D. Mcdonagh-philp, Focus groups to support the industrial/product designer: a review based on current literature and designers??? feedback, Applied Ergonomics, vol.33, issue.1, pp.27-38, 2002.
DOI : 10.1016/S0003-6870(01)00053-9

G. Chanel, C. Rebetez, M. Bétrancourt, and T. Pun, Emotion Assessment From Physiological Signals for Adaptation of Game Difficulty, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol.41, issue.6, pp.411052-1063, 2011.
DOI : 10.1109/TSMCA.2011.2116000

R. Chavarriaga and J. D. Millan, Learning From EEG Error-Related Potentials in Noninvasive Brain-Computer Interfaces, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.18, issue.4, pp.381-389, 2010.
DOI : 10.1109/TNSRE.2010.2053387

A. R. Damasio, Descartes' error: emotion, reason, and the human brain, 1994.

A. C. Dirican and M. Göktürk, Psychophysiological measures of human cognitive states applied in human computer interaction, Procedia Computer Science, vol.3, pp.1361-1367, 2011.
DOI : 10.1016/j.procs.2011.01.016

S. H. Fairclough, Fundamentals of physiological computing, Interacting with Computers, vol.21, issue.1-2, pp.133-145, 2009.
DOI : 10.1016/j.intcom.2008.10.011

P. W. Ferrez and J. D. Millan, Error-Related EEG Potentials Generated During Simulated Brain–Computer Interaction, IEEE Transactions on Biomedical Engineering, vol.55, issue.3, pp.923-932, 2008.
DOI : 10.1109/TBME.2007.908083

P. M. Fitts, The information capacity of the human motor system in controlling the amplitude of movement, J. of experimental psychology. General, issue.6, pp.47381-391, 1954.

J. Friedman, On bias, variance, 0/1?loss, and the curse-of-dimensionality. Data mining and knowledge discovery, pp.55-77, 1997.

L. George and A. Lécuyer, An overview of research on'passive'brain-computer interfaces for implicit human-computer interaction, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00537211

L. George, F. Lotte, R. V. Abad, and A. Lécuyer, Using scalp electrical biosignals to control an object by concentration and relaxation tasks: Design and evaluation, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011.
DOI : 10.1109/IEMBS.2011.6091554

URL : https://hal.archives-ouvertes.fr/inria-00634549

D. Grimes, D. Tan, H. , and S. , Feasibility and pragmatics of classifying working memory load with an electroencephalograph. CHI '08, p.835, 2008.

B. Hamadicharef, BCI literature -a bibliometric study, ISSPA '10, pp.626-629, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00511189

S. Hart and L. Staveland, Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research, Human mental workload, 1988.
DOI : 10.1016/S0166-4115(08)62386-9

D. Heingartner, Mental block, IEEE Spectrum, vol.46, issue.1, pp.42-43, 2009.
DOI : 10.1109/MSPEC.2009.4734313

L. Hirshfield, K. Chauncey, and R. Gulotta, Combining Electroencephalograph and Functional Near Infrared Spectroscopy to Explore Users??? Mental Workload, p.9, 2009.
DOI : 10.1207/s15327590ijhc1702_3

J. Jankowski and M. Hachet, A Survey of Interaction Techniques for Interactive 3D Environments, Eurographics '13, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00789413

M. A. Just, P. Carpenter, and A. Miyake, Neuroindices of cognitive workload: Neuroimaging, pupillometric and event-related potential studies of brain work, Theoretical Issues in Ergonomics Science, vol.4, issue.1-2, pp.56-88, 2003.
DOI : 10.1080/14639220210159735

J. M. Kivikangas, I. Ekman, G. Chanel, S. Järvelä, B. Cowley et al., A review of the use of psychophysiological methods in game research, Proc. of 1st Nordic DiGRA, 2010.
DOI : 10.1386/jgvw.3.3.181_1

W. Klimesch, M. Doppelmayr, H. Russegger, T. Pachinger, and J. Schwaiger, Induced alpha band power changes in the human EEG and attention, Neuroscience Letters, vol.244, issue.2, pp.73-79, 1998.
DOI : 10.1016/S0304-3940(98)00122-0

J. Kohlmorgen, G. Dornhege, M. Braun, B. Blankertz, K. Müller et al., Improving human performance in a real operating environment through real-time mental workload detection, Toward Brain-Computer Interfacing, 2007.

F. Laurent, M. Valderrama, M. Besserve, M. Guillard, J. Lachaux et al., Multimodal information improves the rapid detection of mental fatigue, Proc. Contr, pp.1-9, 2013.
DOI : 10.1016/j.bspc.2013.01.007

Y. Liu, O. Sourina, and M. Nguyen, Real-Time EEG-Based Emotion Recognition and Its Applications, In Trans. comp. science, pp.256-277, 2011.
DOI : 10.1007/978-3-642-22336-5_13

M. L. Loggia, M. Juneau, and M. C. Bushnell, Autonomic responses to heat pain: Heart rate, skin conductance, and their relation to verbal ratings and stimulus intensity, Pain, vol.152, issue.3, pp.152592-152600, 2011.
DOI : 10.1016/j.pain.2010.11.032

M. M. Lorist, M. Klein, S. Nieuwenhuis, D. Jong, R. Mulder et al., Mental fatigue and task control: Planning and preparation, Psychophysiology, vol.37, issue.5, pp.37614-37639, 2000.
DOI : 10.1111/1469-8986.3750614

R. Mandryk, K. Inkpen, and T. Calvert, Using psychophysiological techniques to measure user experience with entertainment technologies, Behaviour & Information Technology, vol.29, issue.2, 2006.
DOI : 10.1016/0022-1031(84)90047-7

S. Mathan, S. Whitlow, and T. Feyereisen, Work- Sense: Exploring the Feasibility of Human Factors Assessment using Electrophysiological Sensors, 4th IACS, 2007.

G. Matthews, S. E. Campbell, S. Falconer, L. Joyner, J. Huggins et al., Fundamental dimensions of subjective state in performance settings: Task engagement, distress, and worry., Emotion, vol.2, issue.4, pp.315-340, 2002.
DOI : 10.1037/1528-3542.2.4.315

T. Milekovic, T. Ball, A. Schulze-bonhage, A. Aertsen, and C. Mehring, Detection of Error Related Neuronal Responses Recorded by Electrocorticography in Humans during Continuous Movements, PLoS ONE, vol.26, issue.2, 2013.
DOI : 10.1371/journal.pone.0055235.t004

C. Mühl, A. Brouwer, N. Van-wouwe, E. L. Van-den-broek, F. Nijboer et al., Modalityspecific Affective Responses and their Implications for Affective BCI, 5th Int. BCI Conf, pp.120-123, 2011.

M. Mustafa, L. Lindemann, and M. Magnor, EEG analysis of implicit human visual perception, Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems, CHI '12, p.513, 2012.
DOI : 10.1145/2207676.2207746

L. Nacke, M. Ambinder, A. Canossa, R. Mandryk, and T. Stach, Game Metrics and Biometrics: The Future of Player Experience Research, Future Play, 2009.

L. E. Nacke and C. A. Lindley, Affective ludology, flow and immersion in a first-person shooter: Measurement of player experience, J. Can. Game Stud. Ass, vol.3, issue.5, 2009.

L. E. Nacke, S. Stellmach, and C. A. Lindley, Electroencephalographic Assessment of Player Experience: A Pilot Study in Affective Ludology, Simulation & Gaming, vol.42, issue.5, pp.632-655, 2010.
DOI : 10.1177/1046878110378140

S. Nieuwenhuis, K. R. Ridderinkhof, J. Blom, G. P. Band, and A. Kok, Error-related brain potentials are differentially related to awareness of response errors: Evidence from an antisaccade task, Psychophysiology, vol.38, issue.5, pp.38752-60, 2001.
DOI : 10.1111/1469-8986.3850752

R. E. Nisbett and T. D. Wilson, Telling more than we can know: Verbal reports on mental processes., Psychological Review, vol.84, issue.3, pp.231-260, 1977.
DOI : 10.1037/0033-295X.84.3.231

J. A. Ogolla, Usability Evaluation: Tasks Susceptible to Concurrent Think-Aloud Protocol, 2011.

R. Parasuraman, Neuroergonomics: Brain-Inspired Cognitive engineering, The Oxford Handbook Of Cog. Engin, p.672, 2013.
DOI : 10.1093/oxfordhb/9780199757183.013.0010

T. Partala and V. Surakka, Pupil size variation as an indication of affective processing, International Journal of Human-Computer Studies, vol.59, issue.1-2, pp.185-198, 2003.
DOI : 10.1016/S1071-5819(03)00017-X

R. W. Picard, Affective computing, 1995.
DOI : 10.1037/e526112012-054

J. Posner, J. Russell, and B. S. Peterson, The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology, Development and Psychopathology, vol.59, issue.03, pp.715-749, 2005.
DOI : 10.1016/S0006-3223(98)00275-3

N. Ravaja, FUGA: The Fun of Gaming: Measuring the Human Experience of Media Enjoyment, 2009.

C. Saavedra and L. Bougrain, Processing Stages of Visual Stimuli and Event-Related Potentials, The NeuroComp/KEOpS'12 workshop, pp.1-5, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00756795

G. Schalk, J. R. Wolpaw, D. J. Mcfarland, and G. Pfurtscheller, EEG-based communication: presence of an error potential, Clinical Neurophysiology, vol.111, issue.12, pp.2138-2182, 2000.
DOI : 10.1016/S1388-2457(00)00457-0

N. M. Schmidt, B. Blankertz, and M. S. Treder, Online detection of error-related potentials boosts the performance of mental typewriters, BMC Neuroscience, vol.13, issue.1, p.19, 2012.
DOI : 10.1016/j.neuroimage.2010.06.048

S. Scholler, S. Bosse, M. S. Treder, B. Blankertz, G. Curio et al., Toward a Direct Measure of Video Quality Perception Using EEG, IEEE Transactions on Image Processing, vol.21, issue.5, pp.2619-2648, 2012.
DOI : 10.1109/TIP.2012.2187672

J. C. Shaw, The brain's alpha rhythms and the mind, 2003.

M. Slater, B. Lotto, M. Arnold, and M. Sanchez-vives, How we experience immersive virtual environments: the concept of presence and its measurement, pp.40193-210, 2009.

A. Sobolewski, R. Chavarriaga, and J. And-millán, Error Processing of Self-paced Movements, TOBI Workshop IV, pp.137-138, 2013.

R. Trachel, T. Brochier, and M. Clerc, Enhancing visuospatial attention performance with braincomputer interfaces. CHI '13, p.1245, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00817799

B. Van-de-laar, H. Gürkök, D. P. Bos, F. Nijboer, A. J. Nijholt et al., Brain-Computer Interfaces and User Experience Evaluation Brain-Based Indices for User System Symbiosis, Towards Practical Brain-Computer Interfaces Brain-Computer Interfaces, pp.223-237, 2010.

G. Vecchiato, L. Astolfi, F. De-vico-fallani, J. Toppi, F. Aloise et al., On the Use of EEG or MEG Brain Imaging Tools in Neuromarketing Research, Computational Intelligence and Neuroscience, vol.54, issue.2, p.643489, 2011.
DOI : 10.1016/S0165-0173(98)00056-3

C. Vi and S. Subramanian, Detecting error-related negativity for interaction design, Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems, CHI '12, p.493, 2012.
DOI : 10.1145/2207676.2207744

J. Weber, Think Aloud Best Practices Study, 2007.

T. O. Zander and C. Kothe, Towards passive brain???computer interfaces: applying brain???computer interface technology to human???machine systems in general, Journal of Neural Engineering, vol.8, issue.2, p.25005, 2011.
DOI : 10.1088/1741-2560/8/2/025005