
Characterizing Contextual Equivalence in Calculi with

Passivation

Serguëı Lengleta, Alan Schmittb, Jean-Bernard Stefanib

aUniversité Joseph Fourier, Grenoble, France
bINRIA, Grenoble, France

Abstract

We study the problem of characterizing contextual equivalence in higher-order
languages with passivation. To overcome the difficulties arising in the proof
of congruence of candidate bisimilarities, we introduce a new form of labelled
transition semantics together with its associated notion of bisimulation, which
we call complementary semantics. Complementary semantics allows to apply
the well-known Howe’s method for proving the congruence of bisimilarities in
a higher-order setting, even in the presence of an early form of bisimulation.
We use complementary semantics to provide a coinductive characterization of
contextual equivalence in the HOπP calculus, an extension of the higher-order
π-calculus with passivation, obtaining the first result of this kind. We then
study the problem of defining a more effective variant of bisimilarity that still
characterizes contextual equivalence, along the lines of Sangiorgi’s notion of
normal bisimilarity. We provide partial results on this difficult problem: we
show that a large class of test processes cannot be used to derive a normal
bisimilarity in HOπP, but we show that a form of normal bisimilarity can be
defined for HOπP without restriction.

1. Introduction

1.1. Characterizing contextual equivalence in higher-order concurrent languages

A natural notion of program equivalence in concurrent languages is a form
of contextual equivalence called barbed congruence, introduced by Milner and
Sangiorgi [31]. Roughly, given an operational semantics defined by means of a
small-step reduction relation, two processes are barbed congruent if they have
the same reductions and the same observables (or barbs), under any context.

The definition of barbed congruence, however, is impractical to use in proofs
because of its quantification on contexts. An important question, therefore, is to
find more effective characterizations of barbed congruence. A powerful method

Email addresses: serguei.lenglet@gmail.com (Serguëı Lenglet),
alan.schmitt@inria.fr (Alan Schmitt), jean-bernard.stefani@inria.fr (Jean-Bernard
Stefani)

Preprint submitted to Elsevier November 13, 2013

for proving program equivalence is the use of coinduction with the definition of
an appropriate notion of bisimulation. The question of characterizing barbed
congruence to enable the use of coinduction becomes that of finding appropriate
bisimulation relations such that their resulting behavioral equivalences, called
bisimilarities, are sound (i.e., included in) and complete (i.e., containing) with
respect to barbed congruence.

For first-order languages, such as CCS or the π-calculus, the behavioral
theory and the associated proof techniques, e.g., for proving congruence, are
well developed [39]. Characterizing contextual equivalence in these languages,
i.e., finding a bisimilarity relation that is both sound and complete with respect
to barbed congruence, is a reasonably well understood proposition.

The situation is less satisfactory for higher-order concurrent languages. Bisim-
ilarity relations that coincide with barbed congruence have only been given for
some higher-order concurrent languages. They usually take the form of context
bisimilarities, building on a notion of context bisimulation introduced by D. San-
giorgi for a higher-order π-calculus, HOπ [37]. Context bisimilarity has been
proven to coincide with contextual equivalence for higher-order variants of the
π-calculus: Sangiorgi’s HOπ [36, 37, 20], a concurrent ML with local names [19],
a higher-order distributed π-calculus called SafeDpi [16], Mobile Ambients [29],
and some of Mobile Ambients’s variants such as Boxed Ambients [5]. A sound
but incomplete form of context bisimilarity has been proposed for the Seal cal-
culus [10]. For the Homer calculus [14], strong context bisimilarity is proven
sound and complete, but weak context bisimilarity is not complete. A sound
and complete context bisimilarity has been defined for the Kell calculus [41],
but for the strong case only.

Context bisimilarity is not entirely satisfactory, however. Its definition still
involves quantification on processes (or on abstractions and concretions, follow-
ing Milner’s terminology [30], that can be understood, respectively, as receiving
processes and emitting processes).1 For this reason, Sangiorgi has introduced
in his study of HOπ [37] an alternative form of bisimulation, called normal
bisimulation, that replaces the universal quantification on processes in the in-
put and output clauses in the definition of context bisimulation with a single
test process.2 To the best of our knowledge, the only higher-order concurrent
language for which normal bisimilarity has been defined and proved to coincide

1Despite this quantification on processes, the use of context bisimulation as a proof tech-
nique is still an improvement over the direct use of barbed congruence, as argued in [29].
Removing this quantification would pave the way to automated proof support.

2For instance, the definition of an early strong contextual bisimulation R in HOπ has the
following input clause:

• for all P
a

−→ F , ∀C, ∃F ′ such that Q
a

−→ F ′ and F • C R F ′ • C

This input clause requires to find a matching transition for all emitting processes (actually
concretions) C. The corresponding clause in the definition of strong normal bisimilarity takes
the form:

• for all P
a

−→ F , ∃F ′ such that Q
a

−→ F ′ and F • C0 R F ′ • C0

where C0 is a fixed (up to the choice of a fresh name) emitting test process (concretion).

2

with context bisimilarity is HOπ and its typed variant [36, 37, 20].

1.2. Process calculi with passivation

The difficulties in characterizing contextual equivalence are particularly acute
in calculi featuring process passivation, such as the Homer calculus, the Kell cal-
culus, and, to some extent, the Seal calculus.

Let us motivate first our interest in higher-order languages with strong pro-
cess mobility and process passivation. Strong process mobility refers to the
possibility of moving a running process from one locus of computation (or local-
ity) to another. This feature typically occurs in languages or calculi intended for
distributed programming such as the Join calculus [27], Mobile Ambients [8], or
Nomadic Pict [44]. Process passivation refers to the ability to suspend the exe-
cution of a named running process and to pass around the suspended process,
typically as a higher-order parameter in messages. This capability is featured
in the Homer calculus [14], the M-calculus [40], and the Kell calculus [41]. Pas-
sivation actually subsumes strong mobility, as discussed in [41], since strong
mobility amounts to a sequence of passivation, transfer of the suspended pro-
cess between localities, and reactivation. Strong mobility is a linear operation
that moves a computation from one locality to another, whereas passivation
may be non-linear: a passivated process can be reactivated several times. The
Seal calculus [10] provides an intermediate form, with a combined migrate and
replicate (and hence non-linear) operation.

Strong mobility is one of several paradigms for mobile code. It has been in-
troduced as a primary feature in several languages, including Obliq [7], Nomadic
Pict [44], and JoCaml [12]. It potentially allows interesting performance and de-
sign trade-offs [9, 13], and its use can be compelling in certain application areas
such as network and distributed system management [3]. Process passivation
provides basic support for dynamic reconfiguration: with passivation, named
parts of a system can be replaced during execution. Dynamic reconfiguration
is useful to support patches and system updates while limiting system down-
time and increasing availability; to support fault recovery and fault tolerance
by providing a basic mechanism for checkpointing computations and replicating
them; and to support adaptive behaviors, whereby a system changes its con-
figuration to adapt to varying operating conditions, with the aim of improving
performance and/or dependability. A form of process passivation has been in-
troduced in the Acute programming language [42] for the same reasons. There,
it is called thunkification and applies to designated groups of threads.

In this paper, we work with the HOπP calculus, a minimal extension of HOπ
with passivation. An example of process passivation in HOπP is given by the
following reduction:

a[P] | a(X)Q −→ Q{P/X}

where a[P] is a locality named a that contains a process P , and a(X)Q is
a receiver process. The passivation above removes the locality a, and passes
process P as an argument to the receiver process a(X)Q. A locality a[] is an
execution context and is transparent: if P can evolve into P ′ (i.e., P −→ P ′),

3

then we have a[P] −→ a[P ′]. Also, if P can emit a message, then a[P] can also
emit the same message. This form of passivation in HOπP is a simplification
of the passivation constructs present in the Kell calculus and in the Homer
calculus. In particular, we eschew the use of join patterns of the Kell calculus,
and of communication paths of the Homer calculus.

1.3. Contributions

This paper contributes to the study of the interrelated issues of proving the
congruence of bisimilarity relations and of characterizing barbed congruence in
higher-order concurrent languages,3 notably those featuring strong process mo-
bility and process passivation capabilities such as the Seal calculus, the Homer
calculus, or the Kell calculus. Specifically, this paper makes two sets of contri-
butions: positive ones and negative ones.

On the positive side, we develop a new form of labelled transitions semantics
and its associated bisimulation, which we call complementary semantics, that
is devised to overcome the difficulties that appear when trying to apply Howe’s
method in proving the congruence and soundness of bisimulation relations de-
fined in an early style. Howe’s method is a systematic technique for proving the
congruence of bisimilarity relations [18, 1, 15]. Unfortunately, Howe’s method
is originally well suited for bisimulations that are defined in both a late and a
delay style, either of which generally breaks the correspondence with contextual
equivalence.4 In their work on the Homer calculus, Godskesen and Hildebrandt
have managed to extend Howe’s method to a version of context bisimulation
in an input-early style [14], but the resulting weak bisimilarity is not complete
with respect to weak barbed congruence. To our knowledge, our work is the
first one to exploit Howe’s method to prove congruence with bisimulation re-
lations defined in an early style. We then show that complementary semantics
and complementary bisimilarity can be used successfully to characterize barbed
congruence in HOπP, a minimal extension of (the second-order fragment of)

3Proving the congruence of a candidate bisimilarity is typically the key step in proving its
soundness with respect to barbed congruence.

4The early or late style of a bisimulation relation refers to the order of certain quantifica-
tions in its definition. For instance, the definition of an early strong contextual bisimulation
R in HOπ has the following two clauses:

• input clause: for all P
a

−→ F , ∀C, ∃F ′ such that Q
a

−→ F ′ and F • C R F ′ • C;

• output clause: for all P
a

−→ C, ∀F , ∃C′ such that Q
a

−→ C′ and F • C R F • C′.

The late variant of strong contextual bisimulation can be obtained by exchanging the order
of the quantifications ∀C,∃F ′ in the input clause, and of the quantifications ∀F,∃C′ in the
output clause. In other words, the “early” and late styles in a contextual bisimulation game
define when a test process is selected with respect to the move of the adversary: in the early
style, a test process C or F is selected before (hence the term early) the adversary has to pick
a matching move F ′ or C′.

The qualifier delay is used in relation with weak forms of contextual bisimulations. In the
definition of a delay bisimulation, internal actions are allowed before but not after a visible
action.

4

Sangiorgi’s HOπ with passivation. This is also, to our knowledge, the first
result of its kind.

On the negative side, we show that we we cannot readily exploit Sangiorgi’s
notion of normal bisimulation to derive more effective forms of bisimilarities than
contextual or complementary bisimilarity for concurrent higher-order languages
with process passivation. Specifically, we show that a large class of test processes
cannot be used to define for HOπP a notion of normal bisimilarity similar to the
one defined for HOπ. The difficulty seems to be linked to the interplay between
passivation and restriction. Indeed, we show that a form of normal bisimilarity
can be defined for HOP, a calculus which is essentially HOπP without restriction,
and that it coincides with barbed congruence.

1.4. Organization of the paper

The paper is organized as follows. In Section 2, we recall the main results
on HOπ, the higher-order π-calculus. We then introduce the HOπP calculus,
a minimal extension of HOπ with passivation. In Section 3, we review two
existing techniques for proving congruence of context bisimilarities: the tech-
nique used in the proof of congruence of strong context bisimilarity in the Kell
calculus, and Howe’s method. We explain why the Kell calculus method fails
when trying to prove the congruence of weak context bisimilarities, and why
Howe’s method fails when using early context bisimilarities. In Section 4, we
present our notion of complementary semantics, using the HOπ calculus as an
example. In Section 5, we present a complementary semantics for the HOπP
calculus, and we prove that in HOπP complementary bisimilarity coincides with
barbed congruence. In Section 6, we present counter examples that show that
Sangiorgi’s notion of normal bisimilarity, which he developed initially for HOπ,
cannot be readily applied to HOπP. In Section 7, we show that a form of nor-
mal bisimilarity can be defined for a sublanguage of HOπP called HOP, which
is essentially HOπP without restriction, and that normal bisimilarity coincides
with barbed congruence in HOP. Section 8 discusses related work. Section 9
concludes the paper and discusses future work. Appendix A gives the proofs
of the main theorems regarding the complementary semantics of HOπP (Sec-
tion 5), namely the relation between context and complementary semantics,
and the soundness of completeness results of weak complementary bisimilarity
with respect to barbed congruence. Appendix B elaborates on the finite pro-
cesses counter-examples given in Section 6, and Appendix C contains the proofs
regarding the normal bisimilarity of HOP (Section 7).

This paper refines and extends previous papers by the authors [26, 25]. The
HOπP calculus was first introduced in [26]. The results presented in Section
5 were given in [25] with only proof hints. The results presented in Section 7
and in Section 6.1 were given in [26] with only proof hints. The material in
Sections 3, 4, 6.2, and 6.3 is new.

5

P ::= 0 | X | P | P | a(X)P | a〈P 〉P | νa.P | !P

Figure 1: Syntax of the Higher Order π-Calculus

2. The HOπ and HOπP calculi

We recall in this Section previous results on HOπ, the higher order π-
calculus. We also introduce HOπP, an extension of HOπ with a passivation
operator.

2.1. The Syntax and Contextual Semantics of HOπ

The higher order π-calculus [37] is a variant of the π-calculus with higher-
order communication: the communication of names of the standard π-calculus
is replaced by the communication of processes.

We now state some conventions on notations. We let a, b, . . . range over
names, a, b, . . . range over conames, and X,Y, . . . range over process variables.
We write x̃ for a set {x1, . . . , xn}. Finally, we let γ range over names and
conames.

The syntax of the calculus is given in Figure 1. Terms include the inactive
process 0, process variables X, parallel composition of processes P | P , input
prefixing a(X)P , output prefixing a〈P 〉P , name restriction νa.P , and process
replication !P . The output prefix construction illustrates the higher order aspect
of the calculus, as a process (and not a name) is sent.

In process a(X)P , the variable X is bound. Similarly, in process νa.P , the
name a is bound. We write fv(P) for the free variables of a process P , fn(P)
for its free names, and bn(P) for its bound names. We write P{Q/X} for the
capture-free substitution of X by Q in P . For a name a and a process P , we
write a.P for a(X)P where X is not free in P , and a.P for a〈0〉P .

Remark 1. As in many other higher order calculi, replication does not have to
be built in as it can be encoded using the other constructs. To encode replication
in HOπ without replication, we first define Y as t(X)(P | X | t〈X〉0). We then
encode !P by the process Q = νt.(t〈Y 〉0 | Y). The process Y is similar to a copy
of P , except that it receives a copy of itself on t in order to launch a copy of
P and recreate the process Q. Hence the process Q reduces to P | Q, like the
process !P .

To encode replication of prefixed processes !m.P , we instead define Y as
m.t(X)(P | X | t〈X〉0). We then encode !m.P by the process Q = νt.(t〈Y 〉0 |
Y).

These encodings introduce an extra step to unfold the replication, which raises
issues with strong behavioral equivalences. We thus keep replication explicitly in
the calculus.

Convention. We identify processes up to α-conversion of names and vari-
ables: processes and agents are always chosen such that their bound names and
variables are distinct from free names and variables. In any discussion or proof,

6

P | (Q | R) ≡ (P | Q) | R P | Q ≡ Q | P P | 0 ≡ P

νa.νb.P ≡ νb.νa.P νa.0 ≡ 0 νa.(P | Q) ≡ P | νa.Q !P ≡ P |!P

a(X)P
a
−→ (X)P Abstr a〈Q〉P

a
−→ 〈Q〉P Concr

P
α
−→ A

P | Q
α
−→ A | Q

Par
P

α
−→ A

νa.P
α
−→ νa.A

Restr
P

α
−→ A

!P
α
−→ A |!P

Replic

P
a
−→ F P

a
−→ C

!P
τ
−→ F • C |!P

Replic-HO
P

a
−→ F Q

a
−→ C

P | Q
τ
−→ F • C

HO

Figure 2: Structural Congruence and Contextual Labeled Transition System for HOπ

we assume that bound names and bound variables of any process or actions
under consideration are chosen to be different from the names and variables
occurring free in any other entities under consideration. Note that with this
convention, we have νa.(P | Q) ≡ P | νa.Q in Figure 2, without qualification
on the free names of P . For the same reason, we do not have any side condition
in the rule Restr: because a is bound in νa.P , it cannot be free in the action
α.

We now recall structural congruence and the rules of the labelled transition
system in Figure 2, omitting the symmetric rules for Par and HO. Because of
the convention on bound and free names, we do not need a side-condition in rule
Restr. A process may evolve towards a process (internal actions P

τ
−→ P ′), an

abstraction (message input P
a
−→ F = (X)Q), or a concretion (message output

P
a
−→ C = νb̃.〈R〉Q). The transition P

a
−→ (X)Q means that P may receive a

process R on a to continue as Q{R/X}. The transition P
a
−→ νb̃.〈R〉Q means

that P may send the process R on a and continue as Q, and that the scope of
names b̃, which occur free in R, has to be expanded to encompass the recipient
of R.

A synchronous higher-order communication takes place when a concretion
interacts with an abstraction (rule HO). We define a pseudo-application oper-

ator • between an abstraction F = (X)P and a concretion C = νb̃.〈R〉Q as
follows.

(X)P • νb̃.〈R〉Q
∆
= νb̃.(P{R/X} | Q)

As above, we rely on the convention on bound and free names to avoid name
capture. We write (X)P ◦ Q for the application of the abstraction (X)P to the
process Q, and define it as follows.

(X)P ◦ Q
∆
= P{Q/X}

Let agents, noted A, be the set of processes, abstractions, and concretions.

7

We extend the parallel composition and restriction operators to all agents as
follows.

(X)Q | P
∆
= (X)(Q | P) νb̃.〈Q〉R | P

∆
= νb̃.〈Q〉(R | P)

P | (X)Q
∆
= (X)(P | Q) P | νb̃.〈Q〉R

∆
= νb̃.〈Q〉(P | R)

νa.(X)Q
∆
= (X)νa.P νa.νb̃.〈Q〉R

∆
= νb̃, a.〈Q〉R if a ∈ fn(Q)

νa.νb̃.〈Q〉R
∆
= νb̃.〈Q〉νa.R if a /∈ fn(Q)

Barbed congruence is the classic reduction-based behavioral equivalence. We
define reduction −→ as ≡

τ
−→≡ and weak reduction =⇒ as the reflexive and tran-

sitive closure of−→. Observables γ of a process P , written P ↓γ , are unrestricted
names or conames on which a communication may immediately occur. Contexts
C are terms with a hole ✷. Filling the hole with a process P is written C{P};
the capture of some free names of P may happen during the operation. In a
context, we cannot perform α-conversion on names that are bound at the hole
position. For example, the name a cannot be α-converted in νa.(✷ | P), but
can be α-converted in ✷ | (νa.P). In C = νa.((νa.✷) | a.0), the outermost
restriction on a cannot bind a free name at the hole position; therefore, C can
be α-converted into νb.((νa.✷) | b.0). A relation R is a congruence iff P R Q
implies C{P} R C{Q} for all C.

Definition 1. A symmetric relation on closed processes R is a strong barbed
bisimulation iff P R Q implies:

• for all P ↓γ , we have Q ↓γ ;

• for all P −→ P ′, there exists Q′ such that Q −→ Q′ and P ′ R Q′.

Two processes P,Q are strong barbed congruent, written P ∼b Q, if for all C

there exists a strong barbed bisimulation R such that C{P} R C{Q}.

Definition 2. A symmetric relation on closed processes R is a weak barbed
bisimulation iff P R Q implies:

• for all P ↓γ , we have Q =⇒↓γ ;

• for all P −→ P ′, there exists Q′ such that Q =⇒ Q′ and P ′ R Q′.

Two processes P,Q are weak barbed congruent, written P ≈b Q, if for all C

there exists a weak barbed bisimulation R such that C{P} R C{Q}.

A relation R is sound with respect to another relation R′ iff R⊆R′; R is
complete with respect to R′ iff R′⊆R. If R is both sound and complete with
respect to R′, then it characterizes R′. In the following, we will be interested
in relations that are at least sound with respect to strong or weak barbed con-
gruence, and in relations that characterize them.

In [37], Sangiorgi proposed context bisimilarities as alternatives to barbed
congruence.

8

Definition 3. Early strong context bisimilarity ∼ is the largest symmetric re-
lation on closed processes R such that P R Q implies:

• for all P
τ
−→ P ′, there exists Q′ such that Q

τ
−→ Q′ and P ′ R Q′;

• for all P
a
−→ F , for all C, there exists F ′ such that Q

a
−→ F ′ and (F • C) R

(F ′ • C);

• for all P
a
−→ C, for all F , there exists C ′ such that Q

a
−→ C ′ and (F • C) R

(F • C ′).

Note. The late variant of strong context bisimulation can simply be obtained
by changing the order of quantifications on concretions and abstractions in the
above clauses. Thus the clause for input in late style would be:
for all P

a
−→ F , there exists F ′ such that Q

a
−→ F ′ and for all C, we have

(F • C) R (F ′ • C).
As shown by Sangiorgi [36, 37], strong early context bisimilarity characterizes

strong barbed congruence:

Theorem 1. We have ∼ = ∼b.

Let us turn now to the weak case. We write
τ
=⇒ for the reflexive and transitive

closure of
τ
−→. For every name or coname γ, we write

γ
=⇒ for

τ
=⇒

γ
−→. As higher

order steps result in concretions and abstractions, they may not reduce further;
silent steps after this reduction are taken into account in the definition of weak
simulation. We define early weak context bisimilarity as:

Definition 4. Early weak context bisimilarity ≈ is the largest symmetric rela-
tion on closed processes R such that P R Q implies:

• for all P
τ
−→ P ′, there exists Q′ such that Q

τ
=⇒ Q′ and P ′ R Q′;

• for all P
a
−→ F , for all C, there exist F ′, Q′ such that Q

a
=⇒ F ′, F ′ • C

τ
=⇒

Q′, and F • C R Q′;

• For all P
a
−→ C, for all F , there exist C ′, Q′ such that Q

a
=⇒ C ′, F • C ′ τ

=⇒
Q′ and F • C R Q′.

Sangiorgi proves the soundness of ≈ in [37]:

Theorem 2. We have ≈ ⊆ ≈b.

Using the same technique as in the π-calculus [39], one can prove that ≈ is
also complete on image-finite processes.

Definition 5. A process P is image finite iff

• the set {P ′ | P
τ
=⇒ P ′} is finite;

• for all a, C, the set {P ′ | ∃F, P
a
=⇒ F ∧ (F • C)

τ
=⇒ P ′} is finite;

• for all a, F , the set {P ′ | ∃C,P
a
=⇒ C ∧ (F • C)

τ
=⇒ P ′} is finite.

9

Theorem 3. We have ≈b ⊆ ≈ on image-finite processes.

Context bisimulation may be understood as follows: when two tested pro-
cesses P and Q perform a partial action, such as sending or receiving a message,
the bisimulation considers every context which may complement the action. It
is easier to manipulate than barbed congruence, since it features only one test
in the internal action case. However, the universal quantification on concretions
or abstractions makes the definition still unpractical to use. To address this is-
sue, a simpler behavioral equivalence for HOπ, called normal bisimulation, was
invented by Sangiorgi.

2.2. Normal bisimulation

Normal bisimulation is a behavioral equivalence that reduces the number of
tests for each pair of processes under consideration. It relies on an encoding of
HOπ in a first-order π-calculus, leveraging the limited uses of a received process:
whether to duplicate or discard it, and when to run or forward the copies. These
behaviors can be simulated by replacing the process P by a name which is used
as a trigger to create a copy of P when needed. Formally, we have the following
factorization theorem:

Theorem 4. For every agent A, process Q, and name m with m /∈ fn(A,Q), the
agents A{Q/X} and νm.(A{m.0/X} |!m.Q) are weakly late context bisimilar.

The factorization theorem replaces a process Q by a trigger m.0 that may
activate a copy of Q on demand. This copy is provided by the associated process
!m.Q. Normal bisimulation relies on this translation to test equivalences of
processes.

Definition 6. Normal bisimilarity is the largest symmetric relation on closed
processes R such that P R Q implies:

• for all P
τ
−→ P ′, there exists Q′ such that Q

τ
=⇒ Q′ and P ′ R Q′;

• for all P
a
−→ F , there exist F ′, Q′ and a fresh name m such that Q

a
=⇒ F ′,

F ′ ◦ m.0
τ
=⇒ Q′ and F ◦ m.0 R Q′;

• for all P
a
−→ νb̃.〈R〉S, there exist a concretion νb̃′.〈R′〉S′, a process Q′,

and a fresh name m such that Q
a
=⇒ νb̃′.〈R′〉S′, νb̃′.(S′ | !m.R′)

τ
=⇒ Q′, and

νb̃.(S | !m.R) R Q′.

In the message input case, normal bisimilarity tests only a fresh trigger. In
the message sending case, normal bisimilarity tests processes where the emitted
processes R and R′ are made available through a name m. Using the factor-
ization theorem and the fact that weak late context bisimulation is a congru-
ence, Sangiorgi proved that normal bisimilarity coincides with weak late context
bisimilarity. Cao [6] extended the result to the strong case.

10

To summarize, context bisimulation is a first step in finding a simple behav-
ioral equivalence: it reduces only slightly the quantifications. Normal bisimula-
tion goes much further as only one test is performed for each transition step of
a process pair. We now study such relations for more expressive calculi.

2.3. Syntax and semantics of HOπP

We now study bisimulations in calculi with passivation capabilities as in
Homer or Kell. Instead of working in Homer or Kell directly, we define a sim-
pler calculus called HOπ with Passivation (HOπP), which extends HOπ with a
passivation operator. By doing this we avoid the unnecessary (for this study)
features of Homer and Kell (mainly additional control on communication), and
we are able to compare more directly bisimulations in HOπ and HOπP.

We add localities a[P], that are passivation units, to the HOπ constructs.
With the same notations as for HOπ, the syntax of HOπP is as follows.

P ::= 0 | X | P | P | a(X)P | a〈P 〉P | νa.P | !P | a[P]

When passivation is not triggered, a locality a[P] is a transparent evaluation
context: process P may evolve by itself and communicate freely with processes
outside of locality a. At any time, passivation may be triggered and the process
a[P] becomes a concretion 〈P 〉0. Passivation may thus occur as an internal τ
step only if there is a receiver on a ready to receive the contents of the locality.

We extend localities to all agents: if F = (X)P , then a[F]
∆
= (X)a[P]; if

C = νb̃.〈Q〉R, then a[C]
∆
= νb̃.〈Q〉a[R]. We also add the following rules to the

labeled transition system.

P
α
−→ A

a[P]
α
−→ a[A]

Loc a[P]
a
−→ 〈P 〉0 Passiv

Note that rule Loc implies that the scope of restricted names may cross
locality boundaries. Scope extrusion outside localities is performed “by need”
when a communication takes place. Structural congruence follows the same rules
as in HOπ (Figure 2), and as a consequence does not allow the restriction and
locality operators to commute freely. If it did, structurally congruent processes
would not be contextually bisimilar. For instance, let Q = a[νb.P] | a(X)(X |
X). It reduces to (νb.P) | (νb.P) by triggering the passivation. If we allow
the structural extrusion of νb across locality a, we would have Q ≡ νb.(a[P] |
a(X)(X | X)), which evolves to νb.(P | P). In this case, the name b is shared
by the two instances of P , whereas each instance of P has its own name b in
the first case. The two obtained processes may have different reductions. For
example, assume that P = b.0 | b.b.R.

• In the first case, we have (νb.(b.0 | b.b.R)) | (νb.(b.0 | b.b.R)), which
evolves to (νb.b.R) | (νb.b.R). No further reduction is possible.

• In the second case, we get νb.(b.0 | b.0 | b.b.R | b.b.R), which may evolve
to νb.(R | b.b.R). All the reductions of R are possible.

11

2.4. Context bisimilarity

As in HOπ, our goal is to find a simple bisimulation-based characteriza-
tion of barbed congruence. Observables for HOπP are unrestricted names or
conames on which a communication or a passivation may immediately occur.
The definition of strong barbed congruence is identical to Definition 1.

We now define a sound and complete context bisimulation for HOπP in the
strong case. We first notice that the context bisimulation given by Sangiorgi
for HOπ (Definition 3) is not sound in our calculus because of passivation. For
example, the HOπ bisimilarity relates the following processes.

P0 = a〈0〉!m.0 Q0 = a〈m.0〉!m.0

The differences between the emitted processes 0 and m.0 are shadowed by the
process !m.0. More precisely, we have to check that for all F , the processes
(F • 〈0〉!m.0) and (F • 〈m.0〉!m.0) are context bisimilar, i.e., for all R, we have

P ′ ∆
= R{0/X} | !m.0 in relation with Q′ ∆

= R{m.0/X} | !m.0. We have three
kinds of possible transitions from P ′:

• transitions from R alone: they are matched by the same transitions of R
in Q′;

• synchronizations between !m.0 and R or
m
−→-transitions from !m.0: they

are matched by the same transitions in Q′;

• synchronizations between the copies of the message m.0 and R or
m
−→-

transitions from the message: they are matched by synchronizations be-
tween !m.0 and R or

m
−→-transitions from !m.0 in Q′.

Conversely the transitions of Q′ are matched by P ′.

Remark 2. This result can be proven formally by considering the symmetric
closure of relation {(P{m.0/X} | !m.0, P{0/X} | !m.0)}, and showing that this
relation is an early strong bisimulation according to definition 3.

However P0 and Q0 are not barbed congruent in HOπP. The context C =
b[✷] | a(X)X | b(X)0 distinguishes them. We have C{P0} −→ b[!m.0] |
0 | b(X)0 = P ′ by a communication on a. This reduction is matched by
C{Q0} −→ b[!m.0] | m.0 | b(X)0 = Q′. By triggering the passivation on b, we
have P ′ −→ 0 and Q′ −→ m.0. The two resulting processes are not barbed
bisimilar.

In a concretion νã.〈R〉S, the emitted process Rmay be sent outside a locality
b while the continuation S stays in b. If the passivation on b is triggered, S
may be destroyed (as with P0 and Q0) or put in a different context. Hence
the passivation may separate the processes R and S and put them in totally
different contexts, which is not possible in a calculus without passivation. As
in Kell and Homer, we address this issue by testing messages and continuations
in different evaluation contexts E. These contexts, when applied to concretions,

12

take into account the fact that a message and its continuation are separated:
in the definition of a[C] for some concretion C, the message part of C is put
outside the locality whereas the continuation part remains inside. The grammar
of HOπP evaluation contexts is:

E ::= ✷ | νa.E | E | P | P | E | a[E]

We call these contexts used for observational purposes bisimulation contexts.
Early strong context bisimulation for HOπP is defined as follows.

Definition 7. Early strong context bisimilarity ∼ is the largest symmetric re-
lation on closed processes R such that P R Q implies fn(P) = fn(Q) and:

• for all P
τ
−→ P ′, there exists Q′ such that Q

τ
−→ Q′ and P ′ R Q′;

• for all P
a
−→ F , for all C, there exists F ′ such that Q

a
−→ F ′ and (F • C) R

(F ′ • C);

• for all P
a
−→ C, for all F , there exists C ′ such that Q

a
−→ C ′ and for all E,

we have (F • E{C}) R (F • E{C ′}).

This definition is similar to the ones for context bisimilarities in Homer [17]
and Kell [41] (except that in Kell, contexts are also added in the abstraction
case). The condition fn(P) = fn(Q) has been added because of lazy scope
extrusion: two bisimilar processes with different free names may be distin-
guished. For instance, a process P which cannot perform any transition but
with a free name b (e.g. νa.a.b.0) may be distinguished from 0 by a con-
text C = c[νb.d〈✷〉R] | d(X)c(Y)(Y | Y). The process C{P} may reduce to
νb.(R | R), whereas the process C{0} evolves toward (νb.R) | (νb.R). With
an appropriate R, the two processes have different transitions, as illustrated in
Section 2.3.

Example 1. The tests within contexts E make the HOπP context bisimilarity
∼ more discriminant than the HOπ one. However, the relation ∼ is still bigger
than trivial equivalences, such as structural congruence ≡. For instance, the
processes m.0 |!a[m.0] |!a[0] and !a[m.0] |!a[0] are early context bisimilar but
not structural congruent.

Remark 3. In the concretion case, one could imagine tests with localities F •
b[C], for a fresh name b, instead of tests with bisimulation contexts F • E{C}.
The two tests are almost equivalent, except that tests with contexts E allow
capture of free names of C. More precisely, let C = νã.〈R〉S; by passivation

of b, we have (F • b[C]) | b(X)Q
τ
−→ νã.((F ◦ R) | Q{S/X}). Unlike in

E{S}, free names of S cannot be captured in Q{S/X}. Contexts E may also
capture free names of the message R. Allowing capture makes proofs on ∼ easier;
we conjecture that testing using capture-free evaluation contexts is enough for
soundness.

The definition of context bisimilarity is similar in the weak case.

13

Definition 8. Early weak context bisimilarity ≈ is the largest symmetric rela-
tion on closed processes R such that P R Q implies:

• for all P
τ
−→ P ′, there exists Q′ such that Q

τ
=⇒ Q′ and P ′ R Q′;

• for all P
a
−→ F , for all C, there exist F ′, Q′ such that Q

a
=⇒ F ′, (F ′ • C)

τ
=⇒

Q′, and (F • C) R Q′;

• For all P
a
−→ C, for all F , there exists C ′ such that Q

a
=⇒ C ′ and for all E,

there exists Q′ such that (F • E{C ′})
τ
=⇒ Q′ and (F • E{C}) R Q′.

In the following section, we discuss techniques developed for Kell and for
Homer that can be used to show that context bisimulation is sound and complete
in the strong case. We also explain why these techniques fail in the weak case
with early context bisimilarity.

3. Congruence proofs

3.1. Kell soundness proof

As in HOπ, the soundness proof used for Kell relies on a substitution lemma.

Lemma 1. Let A be an agent and P,Q be processes; if P and Q are strong
(respectively weak) context bisimilar, then A{P/X} and A{Q/X} are strong
(respectively weak) context bisimilar.

The approach of [37] to prove this lemma in HOπ can be summed up by:

• the result is proved for evaluation contexts (parallel composition, replica-
tion, and restriction);

• the result is proved for all processes, using the first step.

The distinction is useful since if A is an evaluation context, the reductions of
A{P/X} may come from A or P , whereas if A is not an evaluation context,
P cannot be reduced. However, this method fails with HOπP. Unlike HOπ,
an execution context in HOπP may become a non-execution context (a locality
may become a message output preventing internal reductions).

More precisely, to show the first step of Sangiorgi’s method in the locality
case, we would have to prove that if P ∼ Q, then a[P] ∼ a[Q]. We would thus
have to build a relation R such that (assuming P ∼ Q):

a[P]

a

��

R
a[Q]

a

��

〈P 〉0
R

〈Q〉0

14

and such that R is a bisimulation5. Therefore for all abstractions (X)R, we
would have R{P/X} R R{Q/X}. To prove a sub-case of the substitution
lemma, we would have to consider the relation R = {(R{P/X}, R{Q/X}), P ∼
Q} and show that it is a bisimulation. But this would be the same as proving
the substitution lemma directly, making the approach fail.

The method used for the Kell-calculus is the following one. For two finite
sets of processes P̃ = (Pi)i∈I , Q̃ = (Qi)i∈I of the same size and a relation R,

we write P̃ R Q̃ iff we have Pi R Qi for all i ∈ I. We define a relation

R = {(C{R{P̃ /Ỹ }},C{R{Q̃/Ỹ }}), fv(R) = Ỹ , P̃ ∼ Q̃}

and we show that its reflexive and transitive closure is a bisimulation. We
assume now that we work with the early definition, but the proof technique
works with the late one as well. The candidate relation requires contexts C

in its definition to take into account name capture, which may happen in the
message output tests because of bisimulation contexts E.

We first explain why we work with the reflexive and transitive closure instead
of the relation itself. To show that R is a bisimulation, we proceed by structural
induction on C, and we perform a nested induction on the derivation of the
transition C{R{P̃ /Ỹ }}

α
−→ R′. For any agent A and processes P̃ , we write A

P̃

for A{P̃ /Ỹ }. Suppose C = ✷ and consider the case where R = R1 | R2, and
R evolves by a higher-order communication. We want to close the following
diagram

R1
P̃
| R2

P̃

τ

��

R
R1

Q̃
| R2

Q̃

F
P̃ ′

• C
P̃ ′′

knowing that R1
P̃

a
−→ F

P̃ ′
and R2

P̃

a
−→ C

P̃”
for some a. By definition we have

R1
P̃
R R1

Q̃
so by applying C

P̃”
to F

P̃ ′
(we work with early bisimulation, hence

we have to choose the concretion before getting a matching abstraction), we
have by induction:

R1
P̃

a

��

R
R1

Q̃

a

��

F
P̃ ′

R
F
Q̃′

5Note that R relates processes only, but we use R to relate agents in some diagrams for
simplicity

15

with F
P̃ ′

• C
P̃”

R F
Q̃′

• C
P̃”

.

We have R2
P̃
R R2

Q̃
, so by applying C

P̃”
to F

Q̃′
we have:

R2
P̃

a

��

R
R2

Q̃

a

��

C
P̃ ′′

R
C

Q̃′′

with F
Q̃′

• C
P̃”

R F
Q̃′

• C
Q̃”

. From these we can conclude that:

R1
P̃
| R2

P̃

τ

��

R
R1

Q̃
| R2

Q̃

τ

��

F
P̃ ′

• C
P̃ ′′

R
F
Q̃′

• C
P̃ ′′

R
F
Q̃′

• C
Q̃′′

As a result, we have:

R
P̃

τ

��

R
R

Q̃

��

R′
P̃ ′∪P̃ ′′

R2

R′
Q̃′∪Q̃′′

while we need R′
P̃ ′∪P̃”

R R′
Q̃′∪Q̃”

. More generally, we prove that R progresses

towards its reflexive and transitive closure R∗, in the sense of [39].

Definition 9. Let R,S two relations on processes. The relation R strongly
progresses towards S in an early style iff P R Q implies fn(P) = fn(Q) and:

• for all P
τ
−→ P ′, there exists Q′ such that Q

τ
−→ Q′ and P ′ S Q′;

• for all P
a
−→ F and all C, there exists F ′ such that Q

a
−→ F ′ and F • C S

F ′ • C;

• for all P
a
−→ F and all F , there exists C ′ such that Q

a
−→ C ′ and for all E,

we have F • E{C} S F • E{C ′}.

Using a diagram, we have:

P

α

��

R
Q

α

��

A
R∗

A′

In the strong case, it is sufficient to show that R∗ is a bisimulation. Suppose
that P R∗ Q and P

α
−→ A′. There exists P1, . . . , Pn such that P R P1 R

. . . Pn R Q. We want to close the following diagram:

16

P

α

��

R
P1 Pn

R
Q

A

Since R progress towards R∗, we build A1 . . . An, A
′ such that A R∗ A1 R∗

. . . An R∗ A′.

P

a

��

R
P1

a

��

Pn

a

��

R
Q

a

��

A
R∗

A1 An
R∗

A′

Since R∗ is transitive, we have A R∗ A′ as required. The soundness proof using
the Kell-calculus technique can be found in [24]. This approach fails in the weak
case. Suppose now we have P R Q (where R is the congruence closure of the

weak bisimilarity ≈) and P
τ
−→ P ′. We want to close the following diagram:

P

τ

��

R
P1 Pn

R
Q

P ′

We use the fact that R progresses towards R∗ for P, P ′, P1. Suppose that, for
instance, P1 performs at least two internal actions.

P

τ

��

R
P1

τ

��

R
P2 Pn

R
Q

P12

τ

��

P13

��

P ′ R∗

P ′
1

We close the sub-diagram P1, P12, P2:

17

P

τ

��

R
P1

τ

��

R
P2

��

Pn
R

Q

P12

τ

��

R∗

P22

P13

��

P ′ R∗

P ′
1

Hence we have P12 R∗ P22 and P12
τ
−→ P13: the diagram P,Q, P ′ we want to

close may be smaller than P12, P22, P13. The scheme may then recursively and
infinitely repeat itself. Knowing that R progress towards R∗ does not allow to
prove that R∗ is a bisimulation in the weak case. This problem is similar to the
application of up-to techniques in the weak case [31]. Hence we cannot show
that the early bisimulation is a congruence in the weak case with this technique.

Remark 4. We have the same results with the late bisimulation: we can prove
that the late bisimulation is a congruence in the strong case, but not in the weak
one.

Remark 5. On the contrary, the method used by Sangiorgi may easily be
adapted in the weak case for HOπ without passivation. Transitivity issues are
dealt with by using up-to techniques mixing strong and weak bisimilarities. See
[37] for further details.

3.2. Howe’s Method

Howe’s method [18, 1, 15] is a systematic proof technique to show that a
simulation R is a congruence. The method can be divided in three steps: first,
prove some basic properties on the Howe’s closure R• of the relation. By con-
struction, R• contains R and is a congruence. Second, prove a simulation-like
property for R•, and finally prove that R and R• coincide on closed processes.
Since R• is a congruence, conclude that R is a congruence.

The definition of the Howe’s closure relies on the open extension of R, noted
R◦: it extends the definition of the relation R to open processes, that are
processes with free process variables.

Definition 10. Let P and Q be two open processes. We have P R◦ Q iff
Pσ R Qσ for all process substitutions σ that close P and Q.

Howe’s closure is inductively defined as the smallest congruence which con-
tains R◦ and is closed under right composition with R◦.

Definition 11. Howe’s closure R• of a relation R is the smallest relation ver-
ifying:

18

• R◦⊆R•;

• R•R◦⊆R•;

• for all operators op of the language, if P̃ R• Q̃, then op(P̃) R• op(Q̃).

By definition, R• is a congruence, and the composition with R◦ allows some
transitivity and gives some additional properties to the relation.

Remark 6. In the literature (e.g., [18, 15, 17]) Howe’s closure is usually in-
ductively defined by the following rule for all operators op in the language:

P̃ R• R̃ op(R̃) R◦ Q

op(P̃) R• Q

Both definitions are equivalent (see [15] for the proof). We believe that Defini-
tion 11 is easier to understand and to work with in proofs.

In our case, we want to prove that a bisimilarity B is a congruence. By
definition, we have B◦⊆B•. To have the reverse inclusion, we prove that B• is
a bisimulation. To this end, we need the following classical properties of the
Howe’s closure.

Lemma 2. Let R be a reflexive relation. If P R• Q and R R• S, then we have
P{R/X} R• Q{S/X}.

This lemma is typically used to establish the simulation-like result (second
step of the method). We sketch the proof in order to give an idea on why the
transitive item R•R◦⊆R• is needed in Definition 11. The proof is by induction
on the derivation of P R• Q. Suppose we have P R◦ Q. Since R R• S and
R• is a congruence, we have P{R/X} R• P{S/X}. Let σ be a substitution
that closes P , Q, and S except for X; by open extension definition, we have
P{S/X}σ R Q{S/X}σ, i.e., we have P{S/X} R◦ Q{S/X}. Finally we have
P{R/X} R•R◦ Q{S/X}, hence we have P{R/X} R• Q{S/X}. The other
cases are easy using the induction hypothesis.

Remark 7. One may define Howe’s closure with R◦R•⊆R• as the transitive
item instead of R•R◦⊆R•. However left relation composition with R◦ raises
issues when proving weak simulation properties, while right relation composition
works in the strong and weak cases.

We cannot prove directly that B• is symmetric. Instead we use the following
lemma.

Lemma 3. Let R be an equivalence. Then the reflexive and transitive closure
(R•)∗ of R• is symmetric.

Proof. By proving by induction that P (R•)−1Q implies P (R•)∗Q for all P,Q.

19

Then one proves that the restriction of (B•)∗ to closed terms is a bisimula-
tion, Consequently we have B⊆B•⊆ (B•)∗ ⊆B on closed terms, and we conclude
that B is a congruence.

The main difficulty lies in the proof of the simulation-like property for Howe’s
closure. In the following subsection, we explain why we cannot directly use
Howe’s method with early context bisimilarity (Definitions 3 and 7).

3.3. Communication Problem

Proving that a congruence is a simulation raises transitivity issues, as we
can see with the Kell proof method (Section 3.1). To avoid this problem, we

establish a stronger result. Given a bisimilarity B based on a LTS P
λ
−→ A,

the simulation-like result follows the pattern below, similar to a higher-order
bisimilarity clause, such as the one for Plain CHOCS [43].

Let P B• Q. If P
λ
−→ A, then for all λ B• λ′, there exists B such that

Q
λ′

−→ B and A B• B.
Early bisimulations are those where all the information about a step on one

side is known before providing a matching step. In the higher-order setting with
concretions and abstractions, it means that when an output occurs, the abstrac-
tion that will consume the output is specified before the matching step is given.
In fact, the matching step may very well be different for a given output when
the abstraction considered is different. Symmetrically, in the case of an input,
the matching step is chosen depending on the input and the actual concretion
that is provided. In both cases, this amounts to putting the abstraction in the
label in the case of an output, and the concretion in the label in case of an
input. One is thus lead to prove the following simulation property.

Conjecture 1. If P R• Q, then:

• for all P
τ
−→ P ′, there exists Q′ such that Q

τ
−→ Q′ and P ′ R• Q′;

• for all P
a
−→ F , for all C R• C ′, there exists F ′ such that Q

a
−→ F ′ and

F • C R• F ′ • C ′;

• for all P
a
−→ C, for all F R• F ′ there exists C ′ such that Q

a
−→ C ′ and for

all E, we have F • E{C} R• F ′ • E{C ′}.

These clauses raise several issues. First, we have to find extensions of Howe’s
closure to abstractions and concretions which fit an early style. Even assum-
ing such extensions, there are issues in the inductive proof of conjecture 1 with
higher-order communication. The reasoning is by induction on P R• Q. Sup-
pose we are in the parallel case, i.e., we have P = P1 | P2 and Q = Q1 | Q2, with

P1 R• Q1 and P2 R• Q2. Suppose that we have P
τ
−→ P ′, and the transition

comes from rule HO: we have P1
a
−→ F , P2

a
−→ C and P ′ = F • C. We want

to find Q′ such that Q
τ
−→ Q′ and P ′ R• Q′. We also want to use the same

rule HO, hence we have to find F ′, C ′ such that Q
τ
−→ F ′ • C ′. However we

20

cannot use the input clause of the induction hypothesis with P1, Q1: to have a
F ′ such that Q1

a
−→ F ′, we have to find first a concretion C ′ such that C R• C ′.

We cannot use the output clause with P2, Q2 either: to have a C ′ such that

Q2
a
−→ C ′, we have to find first an abstraction F ′ such that F R• F ′. We cannot

bypass this mutual dependency and the inductive proof of conjecture 1 fails.

Remark 8. Note that the reasoning depends more on the bisimilarity than on
the calculus: the same problem occurs with early context bisimilarities for HOπ,
Homer, and the Kell calculus.

A simple way to break the mutual dependency between concretions and
abstractions is to give up on the early style. An approach, used in [14], is to
change the output case to a late style (hence the name, input-early, of their
bisimulation): an output is matched by another output independently of the
abstraction that receives it. This breaks the symmetry and allows us to proceed
forward: first find the matching output C ′, then for this C ′ find the matching
input using the input-early relation ∼ie. Howe’s closure is then extended to
concretions C ∼•

ie C ′ and a simulation-like property similar to Conjecture 1 is
shown, except that the output clause is changed into:

• for all P
a
−→ C, there exists C ′ such that Q

a
−→ C ′ and C ∼•

ie C
′.

However, in the weak case, this input-early approach does not result in a
sound and complete characterization of weak barbed congruence. Definition
of weak input-early bisimilarity has to be written in the delay style: internal
actions are not allowed after a visible action. The delay style is necessary to
keep the concretion clause independent from abstractions. It is not satisfactory
since delay bisimilarities are generally not complete with respect to weak barbed
congruence.

We thus propose a different approach, detailed in Section 4, that works with
weak bisimulations defined in the early non-delay style. In our solution, the
output clause is not late, just a little less early. More precisely, instead of
requiring the abstraction before providing a matching output, we only require
the process that will do the reception (that will reduce to the abstraction).
This may seem a very small change, yet it is sufficient to break the symmetry.
We return to the communication problem where P1 | P2 is in relation with

Q1 | Q2. The concretion C ′ from Q2 matching the P2
a
−→ C step depends

only on Q1, which is known, and not on some unknown abstraction. We can
then obtain the abstraction F ′ from Q1 that matches the P1

a
−→ F step. This

abstraction depends fully on C ′, in the usual early style. Technically, we do not
use concretions and abstractions anymore. In the LTS, when a communication
between P and Q occurs, this becomes a transition from P using Q as a label
(rule HOp

τ in Fig. 4). Higher in the derivation, the actual output from P is
discovered, and we switch to dealing with the input knowing exactly the output
(rule Outp

o in Fig. 5). The proof of the bisimulation property for the candidate
relation relies on this serialization of the LTS, which illustrates the break in the

21

a(X)P
a,R
7−−→ P{R/X} In

π
Q

a,R
7−−→ Q′

a〈R〉S
a,Q
7−−→ Q′ | S

Out
π

P1
λ
7−→ P ′

1

P1 | P2
λ
7−→ P ′

1 | P2

Par
π

P
λ
7−→ P ′

νa.P
λ
7−→ νa.P ′

Restr
π

P
λ
7−→ P ′

!P
λ
7−→ P ′ |!P

Replic
π

P
a,P
7−−→ P ′

!P
τ
7−→ P ′ |!P

Replic-HO
π

P
a,Q
7−−→ P ′

P | Q
τ
7−→ P ′

HO
π

Figure 3: Complementary LTS for HOπ

symmetry. On the other hand, the gap between a completely early relation and
this one is small enough to let us prove that they actually coincide.

4. Complementary semantics for HOπ

We now propose a new semantics for HOπ that coincide with the contextual
one yet allow the use of Howe’s method to prove soundness of early bisimilarities.

4.1. Complementary LTS

We define a LTS P
λ
7−→ P ′ where processes always evolve towards other pro-

cesses. We have three kinds of transitions: internal actions P
τ
7−→ P ′, message

input P
a,R
7−−→ P ′, and message output P

a,R
7−−→ P ′. We call this new LTS com-

plementary since in the output action, we put the context which complements
P in the label λ of the transition. Rules of the LTS can be found in Figure 3,
except for the symmetric of rules Parπ and HOπ.

Rules for internal actions P
τ
7−→ P ′ are similar to the one for the contextual

LTS P
τ
−→ P ′, except for higher-order communication since we change the mes-

sage output judgement; we detail rule HOπ later. Message input P
a,R
7−−→ P ′

means that process P may receive the process R as a message on a and becomes
P ′. In the contextual style, it means that P

a
−→ F and P ′ = F ◦ R for some F ;

complementary message input is just a contextual message input written in the
early style.

The main difference is in how we define output actions. The transition

P
a,R
7−−→ P ′ means that P may send a message on a, R may receive on a, and

the communication on a between P and R results in P ′. It is not the same as
writing contextual transition P

a
−→ C in an early style; instead of putting an

abstraction F in the label, we put a process R. The transition P
a,R
7−−→ P ′ means

that there exists F,C such that P
a
−→ C, R

a
−→ F , and P ′ = F • C.

22

Rules of the LTS (Figure 3) are classic except rules HOπ and Outπ. With
our convention on bound and free names, we do not have a side-condition in
rule Restrπ: because a is bound in νa.P , it cannot be free in λ, so if λ = b, R
or λ = b, R, then we have a 6= b and a /∈ fn(R). In rule HOπ, the premise

P
a,Q
7−−→ P ′ means that P and Q can communicate on a name a and the result

is P ′, i.e., P | Q
τ
−→ P ′ (by communication on a), which is exactly what the

conclusion of the rule states. Rule Outπ has a premise (unlike its equivalent
rule Concr) since in the conclusion we need the result Q′ of the input of R on
a by Q.

The complementary LTS has the same semantics as the contextual LTS, as
stated in the following lemma:

Lemma 4. Let P be an HOπ process.

• We have P
τ
−→≡ P ′ iff P

τ
7−→≡ P ′.

• If P
a
−→ F , then for all R we have P

a,R
7−−→ F ◦ R. If P

a,R
7−−→ P ′, then there

exists F such that P
a
−→ F and P ′ = F ◦ R.

• If P
a
−→ C, then for all R such that R

a
−→ F , we have P

a,R
7−−→≡ F • C. If

P
a,R
7−−→ P ′, then there exist F,C such that P

a
−→ C, R

a
−→ F , P ′ ≡ F • C.

The correspondence is up to ≡ because of scope extrusion. The contextual
LTS performs scope extrusion iff the name belongs to the free names of the
message, while the complementary LTS always performs scope extrusion. For
instance, for P = a(X)X | νb.a〈c.0〉b.0, we have P

τ
−→ c.0 | νb.b.0 and P

τ
7−→

νb.(c.0 | b.0).

4.2. Complementary Bisimilarity

We now define complementary bisimilarity and prove its soundness using
Howe’s method. The result in itself, i.e., the definition of a sound bisimilarity
in HOπ, is far from being a new one [36, 37]. However, it allows us to explain
why complementary semantics is well suited to apply Howe’s method. Strong
complementary bisimilarity for HOπ is simply the bisimilarity associated to the
complementary LTS.

Definition 12. Strong complementary bisimilarity ∼m is the largest symmetric

relation on closed processes R such that P R Q and P
λ
7−→ P ′ implies Q

λ
7−→ Q′

with P ′ R Q′.

As in context bisimilarity, in the message output case P
a,R
7−−→ P ′, the match-

ing transition Q
a,R
7−−→ Q′ still depends on a receiving entity (here R). However,

instead of considering a context which directly receives the message (an ab-
straction F), we consider a process R which evolves toward an abstraction.
This nuance allows us to use Howe’s method to prove soundness of ∼m. We ex-
tend ∼•

m to labels λ: we have λ ∼•
m λ′ iff λ = λ′ = τ , or λ = (γ,R), λ′ = (γ,R′)

with R ∼•
m R′. We prove the following simulation-like property for ∼•

m:

23

Lemma 5. Let P,Q be closed processes. If P ∼•
m Q and P

λ
7−→ Q, then for all

λ ∼•
m λ′, there exists Q′ such that Q

λ′

7−→ Q′ and P ′ ∼•
m Q′.

We do not have the same problem as in Section 3.3 with higher-order com-
munication. We remind that in this case, we have P1 | P2 ∼•

m Q1 | Q2 with

P1 ∼•
m Q1, P2 ∼•

m Q2 and P1
a,P2
7−−−→ P ′. We can apply directly the message out-

put clause of the induction hypothesis: there exists Q′ such that Q1
a,Q2
7−−−→ Q′

and P ′ ∼•
m Q′. We conclude that Q1 | Q2

τ
7−→ Q′ (by rule HOπ) with P ′ ∼•

m Q′

as wished.

Theorem 5. Relation ∼m is a congruence.

Following the correspondence result between the two LTS (Lemma 4), we
now prove that the two bisimilarities are equal. The differences in the message
output clauses are covered mainly with Lemma 4. The bisimilarities differ also
in how they deal with input actions: complementary bisimilarity tests with
a process while context bisimilarity tests with a concretion. Testing with all
concretions includes tests with 〈P 〉0, which are the same as tests with P (up to
≡). Consequently one inclusion is easy to establish:

Lemma 6. We have ∼⊆∼m.

The proof is done by showing that ∼ is a strong complementary bisimilarity
(up to ≡). The reverse inclusion requires the congruence result on ∼m (Theorem
5).

Lemma 7. We have ∼m⊆∼.

We prove the inclusion by showing that ∼m is an early strong context bisim-
ulation (up to ≡). In the message input case, we have roughly P ′{R/X} ∼m

Q′{R/X}; by congruence it implies that νb̃.(P ′{R/X} | S) ∼m νb̃.(Q′{R/X} |

S), i.e., (X)P ′ • νb̃.〈R〉S ∼m (X)Q′ • νb̃.〈R〉S. With Theorem 5, tests with
processes are as discriminatory as tests with concretions.

We can also define complementary semantics and bisimilarity in the weak
case; see [23] for definitions and results. We give more details on the weak case
for HOπP (Section 5.2).

5. Application to HOπP

5.1. Complementary LTS

As in Section 4, we define a complementary semantics which considers pro-
cesses instead of abstractions in the message output case. However, there are two
additional issues with HOπP. First, we have to include bisimulation contexts E

since they appear in bisimilarity definitions (Definitions 7 and 8). Second, scope
extrusion matters more than in HOπ, since scope of restricted names may cross
locality boundaries by communication but not by structural congruence. We

24

a(X)P
a,R
7−−→ P{R/X} In

p
i

P
µ
7−→ P ′

P | Q
µ
7−→ P ′ | Q

Par
p
iτ

P
µ
7−→ P ′

νa.P
µ
7−→ νa.P ′

Restr
p
iτ

P
a,P,✷
7−−−→

b̃
P ′

!P
τ
7−→ P ′ |!P

Replic-HO
p
τ

P
µ
7−→ P ′

!P
µ
7−→ P ′ |!P

Replic
p
iτ

P
µ
7−→ P ′

a[P]
µ
7−→ a[P ′]

Loc
p
iτ

P
a,Q,✷
7−−−−→

b̃
P ′

P | Q
τ
7−→ P ′

HO
p
τ

Figure 4: Complementary LTS for HOπP: Internal and Message Input Actions

cannot always extrude names and still have an equivalent semantics (up to ≡)
as in HOπ.

We let λ range over labels of the complementary LTS. Internal actions

P
τ
7−→ P ′ and message input P

a,R
7−−→ P ′ are similar to the HOπ complemen-

tary transitions, except that we have to add rules for localities. We write
µ
7−→ for

τ
7−→ ∪

a,R
7−−→. We write nbh(E) the set of names bound by E at the hole position,

defined inductively as follows:

nbh(✷) = ∅

nbh(E | P) = nbh(P | E) = nbh(E)

nbh(a[E]) = nbh(E)

nbh(νa.E) = nbh(E) ∪ {a}

Rules can be found in Figure 4 except for the symmetric counterpart of rules
Par

p
iτ and HOp

τ . Rule HOp
τ relies on message output transitions and is ex-

plained later. As before, we do not have a side condition on rule Restr
p
iτ

because of our convention on bound and free names; if µ = b, R, then we have
implicitly b 6= a and a /∈ fn(R).

Output rules can be found in Figure 5, except for the symmetric of rule Parp
o.

In HOπP, context bisimilarities test a message output with an abstraction F

and a bisimulation context E. As in HOπ, output actions P
a,Q,E
7−−−→

b̃
P ′ consider

a receiving process Q instead of F . We have to add contexts E in our labels to
keep the same discriminating power, and we also use a set of names b̃ to deal with

scope extrusion. Transition P
a,Q,E
7−−−→

b̃
P ′ means that P is put under context E

and emits a message on a, which is received by Q, i.e., we have E{P} | Q
τ
7−→ P ′

by communication on a. In the contextual style, it means that there exists F,C

such that P
a
−→ C, Q

a
−→ F , and P ′ = F • E{C}.

Scope extrusion may happen in the process under consideration (e.g., P =
νc.a〈R〉S with c ∈ fn(R)) or because of the bisimulation context E (e.g., P =

25

fn(R) = b̃ Q
a,R
7−−→ Q′ nbh(E) ∩ b̃ = ∅

a〈R〉S
a,Q,E
−֒−−→

b̃
Q′ | E{S}

Out
p
o

fn(P) = b̃ Q
b,P
7−−→ Q′ nbh(E) ∩ b̃ = ∅

b[P]
b,Q,E
−֒−−→

b̃
Q′ | E{0}

Passiv
p
o

P1

a,Q,E{✷|P2}
−֒−−−−−−−→

b̃
P ′

P1 | P2
a,Q,E
−֒−−→

b̃
P ′

Par
p
o

P
a,Q,E{✷|!P}
−֒−−−−−−−→

b̃
P ′

!P
a,Q,E
−֒−−→

b̃
P ′

Replic
p
o

P
a,Q,E{b[✷]}
−֒−−−−−−→

b̃
P ′

b[P]
a,Q,E
−֒−−→

b̃
P ′

Loc
p
o

P
a,Q,E
−֒−−→

b̃∪{c} P ′

νc.P
a,Q,E
−֒−−→

b̃
νc.P ′

Extr
p
o

P
a,Q,E{νc.✷}
−֒−−−−−−−→

b̃
P ′

νc.P
a,Q,E
−֒−−→

b̃
P ′

Restr
p
o

P
a,Q,E
−֒−−→

b̃
P ′

P
a,Q,E
7−−−→

b̃
P ′

CFree
p
o

c /∈ nbh(E) ∪ nbh(F)

P
a,Q,E{F}
7−−−−−−→

b̃
P ′ c ∈ b̃ c /∈ fn(Q) ∪ fn(E)

P
a,Q,E{νc.F}
7−−−−−−−−→

b̃
νc.P ′

Capt
p
o

Figure 5: Complementary LTS for HOπP: Message Output Actions

26

a〈R〉S and E = d[νc.(✷ | c.0)] with c ∈ fn(R)). We first define auxiliary

transitions P
a,Q,E
−֒−−→

b̃
P ′, where we do not allow the latter kind of capture, and

we then give rules for general output transitions.

Rule Outp
o deals with message output a〈R〉S

a,Q,E
−֒−−→

b̃
E{S} | Q′. Premise

Q
a,R
7−−→ Q′ checks that Q may receive R on a, and the resulting process Q′ is

run in parallel with the continuation S under context E. We check that E does
not capture free names of R with the side-condition nbh(E) ∩ b̃ = ∅. We keep

the free names b̃ of R in the label for potential scope extrusion.
For instance, let P = a〈R〉S and c ∈ fn(R). Process νc.P may emit R

on a, but the scope of c has to be expanded to encompass the recipient of R.
The premise of rule Extrp

o checks that P may output a message; here we have

a〈R〉S
a,Q,E
−֒−−→fn(R) E{S} | Q′. In conclusion, we have νc.a〈R〉S

a,Q,E
−֒−−→fn(R)\c

νc.(E{S} | Q′). The scope of c includes Q′ as wished.
Suppose now that P = a〈R〉S with c /∈ fn(R). Process νc.P may emit

a message, but the scope of c has to encompass the continuation S only: we

want to obtain νc.P
a,Q,E
−֒−−→

b̃
E{νc.S} | Q′ (with b̃ = fn(R)). To this end, we

consider P
a,Q,E{νc.✷}
−֒−−−−−−−→

b̃
P ′ as the premise of rule Restrp

o. In process P ′, the

continuation is put under E{νc.✷}, hence we obtain a〈R〉S
a,Q,E{νc.✷}
−֒−−−−−−−→fn(R)

E{νc.S} | Q′ = P ′, as expected and reflected in the conclusion of the rule. With
our convention on bound and free names, the rules Extrp

o and Restrp
o do not

need side-conditions on c; because c is bound in νc.P , we implicitly have c 6= a
and c /∈ fn(Q) ∪ fn(E) ∪ b̃ in both rules.

Rule for passivation Passivp
o is similar to ruleOutp

o, while rules Loc
p
o, Par

p
o,

Replicp
o follow the same pattern as rule Restrp

o. Rule CFreepo simply means
that a transition with a capture-free context is a message output transition.
We now explain how to deal with context capture with rule Captp

o. Suppose
P = a〈R〉S and E′ = d[νc.(✷ | c〈0〉0)] with c ∈ fn(R); we want to obtain

P
a,Q,E′

7−−−−→
b̃
νc.(d[S | c〈0〉0] | Q′) (with the scope of c extended out of d). We

first consider the transition P
a,Q,E{F}
7−−−−−−→

b̃
P ′ without capture on c; in our case we

have P
a,Q,d[✷]
7−−−−−→

b̃
d[S | c〈0〉0] | Q′ = P ′ with E = d[✷] and F = ✷ | c〈0〉0. Using

the rule we have P
a,Q,E{νc.F}
7−−−−−−−−→

b̃
νc.P ′, i.e., P

a,Q,E′

7−−−−→
b̃
νc.(d[S | c〈0〉0] | Q′).

The scope of c is extended outside E and includes the recipient of the message
as wished.

In rule Captp
o, the side-condition c /∈ nbh(E) ∪ nbh(F) ensures that there

is exactly one restriction on c around the hole in E{νc.F}. This is merely a
convenience for certain proofs and does not impact the LTS semantics, because
any context E′ such that c ∈ nbh(E′) can be written E{νc.F} with c /∈ nbh(E)∪
nbh(F) using α-conversion for the restrictions νc which do not bind c at the hole
of F. The side-condition c /∈ fn(Q) ∪ fn(E) in the same rule prevents unwanted
captures from happening; the convention on bound and free names does not
apply here, because the name c is bound at the hole position in E{νc.F} and it

27

cannot be α-converted.
Premise P

a,Q,✷
7−−−−→

b̃
P ′ of rule HOp

τ (Figure 4) means that process P sends a
message on a to Q without any context around P , and the result is P ′. Con-
sequently we have P | Q

τ
7−→ P ′ by communication on a, which is the expected

conclusion. Names b̃ may no longer be potentially extruded, so we simply forget
them.

5.2. Complementary Bisimilarities

We only give definitions and results, and point out the differences with HOπ
(Section 4.2). In Appendix A, we prove the main results of this section in the
weak case (the proofs are similar or easier in the strong case). More specifically,
we prove the inclusion between weak context and complementary bisimilarity
(Theorem 9), and the soundness (Theorem 8) and completeness (Theorem 10)
of weak complementary bisimilarity.

Strong complementary bisimilarity is defined as follows.

Definition 13. Strong complementary bisimilarity ∼m is the largest symmetric
relation on closed processes R such that P R Q implies fn(P) = fn(Q) and for

all P
λ
7−→ P ′, there exists Q

λ
7−→ Q′ such that P ′ R Q′.

To prove the simulation-like result, we have to extend Howe’s closure to
bisimulation contexts: we define E ∼•

m F as the smallest congruence that con-
tains ∼•

m and rule ✷ ∼•
m ✷. Except for this point, Howe’s method is easy to

apply.

Theorem 6. Relation ∼m is a congruence and is sound with respect to ∼b.

The relation is also complete, therefore we have the following equality.

Theorem 7. We have ∼ = ∼b.

Correspondence with context bisimilarity is more problematic than in HOπ.
We have two major differences. First, the output clause of complementary

bisimilarity requires that transition P
a,T,E
7−−−→

b̃
P ′ has to be matched by a transi-

tion Q
a,T,E
7−−−→

b̃
Q′ with the same set of names b̃ which may be extruded. At first

glance, we do not have this requirement for the early strong context bisimilarity,
hence we have to prove that it is the case. For a concretion C = νb̃.〈R〉S, we

define extr(C)
∆
= fn(R) \ b̃.

Lemma 8. Let P ∼ Q. Let P
a
−→ C, F an abstraction, and Q

a
−→ C ′ such that

for all E, we have F • E{C} ∼ F • E{C ′}. Then we have extr(C) = extr(C ′).

Proof. Let b, e /∈ fn(P,Q). Given two distinct names c, d, we define:

Ec,d
∆
= νbe.b[νc.e[✷] | e(Y)(c.0 | c.c.d.0)] | b(Z)(Z | Z)

Suppose the scope of the name c is extruded outside b. After passivation of e and
duplication of the content of b, it is possible to perform the two synchronizations

28

of c; the name d becomes observable. Conversely, if d becomes observable,
then passivation of locality e has been triggered, and a synchronization on c is
possible. Since passivation of e destroys any possible occurrence of c in e, the
synchronization is possible only if the scope of c is extended outside b before
duplication of the content of b. Thus, the name d becomes observable iff name
c is extruded outside b.

Let c ∈ extr(C) and d such that d /∈ fn(P,Q, F). Let P ′ ∆
= F • Ec,d{C}. We

have P ′ ∼ F • Ec,d{C
′}

∆
= Q′. By definition, c is extruded outside b in P ′, hence

name d becomes observable. Since we have P ′ ∼ Q′, d becomes also observable
in Q′. which is possible only if c ∈ extr(C ′). Consequently we have extr(C) ⊆
extr(C ′). Conversely let c ∈ extr(C ′) and d such that d /∈ fn(P,Q, F). Let

P ′ ∆
= F • Ec,d{C}. We have P ′ ∼ F • Ec,d{C

′}
∆
= Q′. With the same reasoning

on Q′ observables, we can prove similarly extr(C ′) ⊆ extr(C).

Using Lemma 8, we have the following inclusion:

Lemma 9. We have ∼ ⊆ ∼m.

The proof is done by showing that ∼ is a strong complementary bisimilarity.
As a direct consequence, we can deduce that ∼ is sound:

Corollary 1. We have ∼ ⊆ ∼b.

Moreover, if P ∼m Q and P
a,T,E
7−−−→

b̃
P ′, then the matching transition

Q
a,T,E
7−−−→

b̃
Q′ depends on the context E. In the context bisimilarity (Defini-

tion 7), the matching transition is independent from E; context bisimilarity is
late with respect to bisimulation contexts, while complementary bisimilarity is
early with respect to these contexts. Proving that ∼m ⊆ ∼ remains an open
problem, but we conjecture that this inclusion holds.

Remark 9. We can define an early context bisimilarity with respect to contexts
by changing the message output clause of Definition 7 into

• for all P
a
−→ C, for F,E, there exists C ′ such that Q

a
−→ C ′ and (F •

E{C}) R (F • E{C ′}).

We can prove that this modified bisimilarity ∼′ is sound (using Kell soundness
proof method) and complete (with the usual proof scheme). Consequently we
have ∼′ = ∼b and ∼m = ∼b, so we have ∼m = ∼b = ∼′. However we can prove
soundness of ∼′ independently from ∼m only in the strong case; this reasoning
cannot be applied in the weak case.

We extend these results to the weak case. We write Z
τ
=⇒ the reflexive and

transitive closure of
τ
7−→. We define Z

a,R
==⇒ as Z

τ
=⇒

a,R
7−−→Z

τ
=⇒. In the weak case, two

processes P and Q may evolve independently before interacting with each other.

Since a transition P
a,Q,E
7−−−→

b̃
P ′ includes a communication between P and Q, we

have to authorize Q to perform τ -actions before interacting with P in the weak

output transition. We define P Z
a,Q,E
===⇒

b̃
P ′ as P Z

τ
=⇒

a,Q′,E
7−−−−→

b̃
Z
τ
=⇒ P ′ with Q Z

τ
=⇒ Q′.

29

Definition 14. Weak complementary bisimilarity ≈m is the largest symmetric
relation on closed processes R such that P R Q implies fn(P) = fn(Q) and for

all P
λ
7−→ P ′, there exists Q Z

λ
=⇒ Q′ such that P ′ R Q′.

Using the same proof techniques as in the strong case, we have the following
results:

Theorem 8. Relation ≈m is a congruence.

Theorem 9. We have ≈ ⊆ ≈m.

Bisimilarity ≈m coincides with ≈b on image-finite processes; a closed process

P is image finite iff for every label λ, the set {P ′, P Z
λ
=⇒ P ′} is finite. Using the

same proof technique as in [39], we have the following completeness result.

Theorem 10. Let P,Q be image-finite processes. We have P ≈b Q if and only
if P ≈m Q.

Complementary bisimilarity characterizes barbed congruence in the strong
and weak cases. However this relation is not completely satisfactory since it tests
an infinite number of environments to equate processes, especially in the message
output case. The next step is to find a behavioral equivalence with fewer tests,
similar to the HOπ normal bisimilarity (Section 2.2). In the following section,
we give counter-examples which suggest that finding such simpler relations is
not possible in HOπP.

6. Abstraction Equivalence in HOπP

In this section, we present counter-examples to show that a simplification
similar to HOπ normal bisimilarity (Section 2.2) is not possible in HOπP. We
prove that testing using large sub-classes of HOπP processes (the abstraction-
free and the finite processes) is not enough to guarantee bisimilarity of abstrac-
tion. We first present a counter-example which relies on the chosen “by need”
scope extrusion, and we then give other counter-examples which do not need
this mechanism.

6.1. Abstraction-Free Processes

In the following, we omit the trailing zeros to improve readability; in an
agent definition, m stands for m.0. We also write νab.P for νa.νb.P . Let

0m
∆
= νa.a.m. Process 0m cannot perform any transition, like 0, but it has a

free name m. We define the following abstractions:

(X)P
∆
= (X)νnb.(b[X | νm.a〈0m〉(m | n | m.m.p)] | n.b(Y)(Y | Y))

(X)Q
∆
= (X)νmnb.(b[X | a〈0〉(m | n | m.m.p)] | n.b(Y)(Y | Y))

The two abstractions differ in the process emitted on a and in the position of
name restriction on m (inside or outside hidden locality b). An abstraction-free

30

process is a process built with the regular HOπP syntax but without message
input a(X)P .

We recall that ∼ is the early strong context bisimilarity (Definition 7).

Lemma 10. Let R be an abstraction-free process. We have (X)P ◦ R ∼ (X)Q ◦
R.

Since R is abstraction-free, it cannot receive the message emitted on a;
consequently R cannot interact with P or Q. Passivation of locality b (after the
communication on n) and transitions from R in (X)P ◦ R are easily matched
by the same transitions in (X)Q ◦ R.

Let Pm,R = νnb.(b[R | m | n | m.m.p] | n.b(Y)(Y | Y)), F be an abstrac-
tion, and E be an evaluation context such that m /∈ fn(E, F). We now prove

that (X)P ◦ R
a
−→ νm.〈0m〉Pm,R is matched by (X)Q ◦ R

a
−→ 〈0〉νm.Pm,R,

i.e., that we have νm.(F ◦ 0m | E{Pm,R}) ∼ F ◦ 0 | E{νm.Pm,R}. Since
m /∈ fn(E, F), there is no interaction on m between F,E, and Pm,R, and the
inert process 0m does not interfere either. Hence the possible transitions from
νm.(F ◦ 0m | E{Pm,R}) are the internal ones from F and E, interactions be-
tween F , E, and R on names other than m, and internal actions in Pm,R. All
of them are matched by the same transitions in F ◦ 0 | E{νm.Pm,R}.

Abstractions (X)P and (X)Q may have different behaviors with an argu-
ment which may receive on a, like a(Z)q, with p 6= q. By communication on a,

we have (X)Q ◦ a(Z)q
τ
−→ νmnb.(b[q | m | n | m.m.p] | n.b(Y)(Y | Y))

∆
= Q1.

Since Q1 may perform a
q
−→ transition, it can only be matched by (X)P ◦

a(Z)q
τ
−→ νnb.(b[νm.(q | m | n | m.m.p)] | n.b(Y)(Y | Y))

∆
= P1. Notice that in

P1, the restriction on m remains inside hidden locality b.
After synchronization on n and passivation/communication on b, we have

Q1(
τ
−→)2νmnb.(q | q | m | m | m.m.p | m.m.p)

∆
= Q2 (the process inside

b in Q1 is duplicated). After two synchronizations on m, we have Q2(
τ
−→

)2νmnb.(q | q | p | m.m.p)
∆
= Q3, and Q3 may perform a

p
−→ transition. These

transitions cannot be matched by P1. Performing the duplication, we have

P1(
τ
−→)2νnb.(νm.(q | m | m.m.p) | νm.(q | m | m.m.p))

∆
= P2. Each copied

sub-process q | m | m.m.p of P2 has its own private copy of m, and we can
no longer perform any transition to have the observable p. More generally, the

sequence of transitions Q1(
τ
−→)4

p
−→ cannot be matched by P1, consequently Q1

and P1 (and therefore (X)Q ◦ a(Z)q and (X)P ◦ a(Z)q) are not bisimilar.

The previous example shows that testing abstractions with abstraction-free
processes (such as m.0) is not enough to distinguish them. This example re-
lies heavily on the chosen “by need” scope extrusion (restrictions are extruded
outside localities along with messages only when needed), which is also used
in Homer or Kell. Using a different definition of scope extrusion, for instance
by considering name restriction to be a fresh name generator, is unfortunately
not a solution: we present in the next section other counter-examples which do

31

not rely on scope extrusion yet show that testing using a large class of finite
processes is not sufficient to derive abstractions equivalence.

6.2. Finite Processes

We define finite processes as follows:

Definition 15. A finite process is a HOπP process built on the following gram-
mar:

PF ::= 0 | PF | PF | νa.PF | a〈P 〉PF | a(X)PF | a[PF]

Roughly, finite processes cannot initiate an infinite sequence of transitions.
Notice that in a message output, the message does not matter and can be a
regular process. We do not allow process variable X in the syntax, hence finite
processes encompass only message inputs a(X)PF where either X /∈ fv(PF) or
where X appears in emitted messages only (since emitted processes in a message
output may be any process). In other words, processes received on input can
only be passed around but never activated. With unrestricted message input, we
may encode replication (as explained in Section 2.1) and therefore have infinite
sequence of transitions.

We extend the definition to all agents in the following way: a concretion
νb̃.〈R〉S is finite iff S is finite. An abstraction (X)P is finite iff P is finite. We
write AF the set of finite agents. We give some properties of finite agents:

Lemma 11. Let F be a finite abstraction. For all HOπP processes P , the
process F ◦ P is finite.

Let PF be a finite process:

• If PF
α
−→ A for some α, then A is finite.

• The set {α|∃A,PF
α
−→ A} is finite.

• For all action α, the set {A|PF
α
−→ A} is finite.

• There is no infinite sequence of processes (Pi) such that P0 = PF and for

all i, Pi
τ
−→ Pi+1 or Pi

a
−→ νb̃.〈R〉Pi+1 or Pi

a
−→ F with F ◦ P = Pi+1 for

some P .

Since the LTS is finitely branching (second and third properties of Lemma
11) and any sequence of transitions initiated by PF is finite, we can speak about
the length of the longest sequence of transitions initiated by PF , called depth.

Definition 16. We define inductively the depth of a finite agent AF , written
d(AF), as:

• d(PF) = 0 if there is no transition from PF .

• d(PF) = 1 +max {d(A)|∃α, PF
α
−→ A} otherwise.

• For all finite concretions νb̃.〈P 〉PF , we have d(νb̃.〈P 〉PF) = d(PF).

32

• For all finite abstractions (X)PF , we have d((X)PF) = d(PF).

We may think that the depth of an abstraction depends on the interacting
process. It is not the case since process variables may only occur in processes
emitted in a message output, and the depth of a concretion takes into account
the continuation only. Hence we have the following lemma:

Lemma 12. Let F be a finite abstraction. For all HOπP processes P , we have
d(F ◦ P) = d(F)

We now use depth to prove that using finite processes to test bisimilarity of
abstractions is not sufficient.

6.3. Counter-examples

In this section, we give counter-examples to show that testing using finite
processes is not enough to ensure bisimilarity of abstractions in HOπP (extended
with a sum operator; we do not know if such a counter-example can be defined
in pure HOπP). To show this, we define inductively two families of HOπP ab-
stractions (Fn), (Gn), such that for any finite process PF with d(PF) ≤ n, the
processes Fn ◦ PF and Gn ◦ PF are context bisimilar, but Fn ◦ Qn+1 and
Gn ◦ Qn+1 (where Qn+1 is a process mn+1. . . .m1.0 with n+ 1 names) are not
context bisimilar. The proofs for this section can be found in Appendix B.

For a a name and F = (X)P an abstraction, we write a.F for a(X)P . We

also define τ.P
∆
= νa.(a.0 | a.P) (with a /∈ fn(P)). We define:

F0
∆
= (X0)X0

G0
∆
= (X0)(X0 | X0)

and for n > 0, we define

Fn
∆
= (Xn)(νan.(an[Xn] | an.Fn−1) +Rn)

Gn
∆
= (Xn)(νan.(an[Xn] | an.Gn−1) + Sn)

with Rn = νan.τ.Gn−1 ◦ Xn and Sn = νan.τ.Fn−1 ◦ Xn. Notice that Rn

mimics passivation of locality an in Gn, and Sn mimics passivation of an in Fn.
They have been added to match some particular transitions.

Let PF be a finite process such that d(PF) ≤ n. We study first the relation
between Fn ◦ PF and Gn ◦ PF . If n = 0, which means that PF cannot perform
any transition, then we have to compare PF and PF | PF , which are obviously
bisimilar. Otherwise, we have three kinds of transitions. We consider first the
transition Fn ◦ PF

τ
−→ νan.Gn−1 ◦ PF , which comes from the sub-process Rn.

This transition is easily matched by the passivation of locality an in Gn ◦ PF :
we have Gn ◦ PF

τ
−→ νan.Gn−1 ◦ PF , the two obtained processes are identical.

Similarly, we have Fn ◦ PF
τ
−→ νan.Fn−1 ◦ PF by passivation of locality an;

33

Gn ◦ PF matches this transition by the τ -action Gn ◦ PF
τ
−→ νan.Fn−1 ◦ PF

from the sub-process Sn.
The last kind of evolutions from the process Fn ◦ PF is the succession of

one or several transitions from PF , followed by passivation of an. Roughly we
have Fn ◦ PF

α1−→ . . .
αk−−→ νan.(an[P

′
F] | an.Fn−1)

τ
−→ νan.(Fn−1 ◦ P ′

F), with
d(P ′

F) ≤ n− 1. It can be matched by the same transitions in Gn ◦ PF ; we have

Gn ◦ PF
α1−→ . . .

αk−−→ νan.(an[P
′
F] | an.Gn−1)

τ
−→ νan.(Gn−1 ◦ P ′

F). Hence we
obtain two processes bisimilar to Fn−1 ◦ P ′

F and Gn−1 ◦ P ′
F with d(P ′

F) ≤ n−1
Consequently, we can prove the following lemma by induction on n:

Lemma 13. If d(PF) ≤ n, then Fn ◦ PF ∼ Gn ◦ PF .

Now, we consider (mk) a family of pairwise distinct fresh names which do not
occur in any Fn nor Gn. Let Q1 = m1.0 and Qk+1 = mk+1.Qk for all k > 1.
We explain why Fn ◦ Qn+1 and Gn ◦ Qn+1 are not bisimilar. Consider the

following sequence of transitions from Fn ◦ Qn+1: an
mn+1

−−−−→ transition, followed

by a passivation of locality an; we obtain Fn ◦ Qn+1
mn+1

−−−−→ νan.(an[Qn] |

an.Fn−1)
τ
−→∼ Fn−1 ◦ Qn. As this sequence must be matched by Gn ◦ Qn+1,

in particular the initial
mn+1

−−−−→ transition that selects the left process in the
choice, we obtain Fn−1 ◦ Qn and Gn−1 ◦ Qn. After repeating this sequence of
transitions n− 1 times, we obtain F0 ◦ Q1 = m1.0 and G0 ◦ Q1 = m1.0 | m1.0,
which are clearly not bisimilar. Consequently Fn ◦ Qn+1 is not bisimilar to
Gn ◦ Qn+1.

To summarize, testing using a finite process PF with depth n is not enough,
since we have Fn ◦ PF ∼ Gn ◦ PF , but Fn ◦ Qn+1 ≁ Gn ◦ Qn+1. Testing using
a finite set P of finite processes is not enough either. Since P is finite, the set
{d(PF)|PF ∈ P} is finite and has a greatest element d. For all PF ∈ P, we have
Fd ◦ PF ∼ Gd ◦ PF but Fd ◦ Qd+1 ≁ Fd ◦ Qd+1. Similarly, testing using an
infinite set of finite processes with depths bounded by d is not enough.

Finite processes allow for very limited inputs, therefore most finite processes
are abstraction-free processes, and are already covered by the abstraction-free
counter-example. However, the finite processes counter-examples do not rely on
scope extrusion “by need” like the previous one, which means that they may
still be valid with other ways to handle scope extrusion. However, both counter-
examples are not definitive enough to state that we cannot define an equivalence
which tests only a finite set of processes at each bisimulation step; the problem
remains open. We can however define a normal bisimilarity if we remove the
restriction operator from HOπP, as explained in the following section.

7. Normal Bisimilarities in HOP

We now develop a full behavioral theory for HOP, a calculus with passivation
but without restriction: we define higher-order and normal bisimilarities which
characterize barbed congruence in both strong and weak cases. HOP (for Higher
Order with Passivation) is the calculus obtained by removing restriction from

34

HOπP and adding a sum operator (to obtain the characterization result, since
+ is needed to show the completeness of HO bisimilarity and requires restriction
to be faithfully encoded). The LTS contextual rules for HOP are the same as
the HOπP ones, with the addition of the rule

P
α
−→ A

P +Q
α
−→ A

Sum

and of its symmetric rule. The structural congruence rules for HOP, also written
≡, is the smallest congruence that verifies the following laws.

P | (Q | R) ≡ (P | Q) | R P | Q ≡ Q | P P | 0 ≡ P

P + (Q+R) ≡ (P +Q) +R P +Q ≡ Q+ P P + 0 ≡ P !P ≡ P |!P

Even without restriction, HOP remains quite expressive since it is an exten-
sion of the Turing-complete HOcore calculus defined in [21].

7.1. HO Bisimulation

We first give an LTS-based characterization of strong barbed congruence
(Definition 1). As pointed out in Section 2.4, a message and its continuation
may be put in different contexts because of passivation. Moreover, they are
completely independent since they no longer share private names, as there is no
restriction. Instead of keeping them together, we can now study them separately
and still have a sound and complete bisimilarity. We propose the following
bisimulation, called HO bisimulation, similar to the higher-order bisimulation
given by Thomsen for Plain CHOCS [43].

Definition 17. Early strong HO bisimilarity, written
.
∼, is the largest symmet-

ric relation R such that P R Q implies:

• for all P
τ
−→ P ′, there exists Q′ such that Q

τ
−→ Q′ and P ′ R Q′.

• for all P
a
−→ F , for all closed processes R, there exists F ′ such that Q

a
−→ F ′

and F ◦ R R F ′ ◦ R.

• for all P
a
−→ 〈R〉S, there exists R′, S′ such that Q

a
−→ 〈R′〉S′, R R R′, and

S R S′.

In the following we also use the late counterpart of HO bisimilarity, written
.
∼l, which is obtained by replacing the input case by:

• For all P
a
−→ F , there exists F ′ such that Q

a
−→ F ′ and for all closed

processes R, F ◦ R R F ′ ◦ R.

We show later that early and late HO bisimilarities coincide (as in HOπ). Howe’s
method works with

.
∼l; there is no need to define a complementary semantics.

35

Theorem 11. We have P
.
∼l Q iff P and Q are strong barbed congruent.

We define early weak (non-delay) HO bisimulation as:

Definition 18. Early weak HO bisimilarity, written
.
≈, is the largest symmetric

relation on closed processes R such that P R Q implies:

• for all P
τ
−→ P ′, there exists Q′ such that Q

τ
=⇒ Q′ and P ′ R Q′.

• for all P
a
−→ F , for all closed processes R, there exist F ′, Q′ such that

Q
a
=⇒ F ′, F ′ ◦ R

τ
=⇒ Q′, and F ◦ R R Q′.

• for all P
a
−→ 〈R〉S, there exist R′, S′′, S′ such that Q

a
=⇒ 〈R′〉S′′, S′′ τ

=⇒ S′,
R R R′, and S R S′.

We define late weak HO bisimilarity, written
.
≈l, by replacing the input

clause by:

• for all P
a
−→ F , there exists F ′ such that Q

a
=⇒ F ′ and for all closed

processes R, there exists Q′ such that F ′ ◦ R
τ
=⇒ Q′ and F ◦ R R Q′.

As in the strong case, we prove soundness of
.
≈ using Howe’s method.

Theorem 12. If P
.
≈ Q, then P and Q are weak barbed congruent.

We prove completeness on image-finite processes. A HOP process P is image
finite iff for all α, the set {A|P

α
=⇒ A} is finite.

Theorem 13. Let P,Q be image finite processes. If P,Q are weak barbed con-
gruent, then they are early weak HO bisimilar.

We note that the definitions of higher-order bisimulations are easier to use
since there is no universal quantification in the concretion case. In the following
subsection, we show that the one in the abstraction case is not necessary.

7.2. Normal Bisimulation

In this section, we define a sound and complete bisimulation for the strong
and weak cases without any universal quantification, similar to HOπ normal
bisimulation [37]. Sangiorgi first defined it in the weak case, and then Cao
extended it to the strong case [6]. In Appendix C, we prove the main results
(Lemma 14 and Theorem 14) in the strong case; the proof is similar in the weak
case.

In the message input case, HOπ normal bisimulation tests abstractions with
only one trigger m.0, where m is a fresh name. This testing is not sufficient in
HOP. Consider the following processes:

P1
∆
=!a[X] |!a[0] Q1

∆
= X | P1

Let Pm
∆
= P1{m.0/X}, Qm

∆
= Q1{m.0/X}, Pm,n

∆
= P1{m.n.0/X}, and Qm,n

∆
=

Q1{m.n.0/X}, where m,n do not occur in P1, Q1.

36

We first prove that Pm
.
∼l Qm. Since the other transitions are easily

matched, we consider only the move Qm
m
−→ 0 | Pm. It can only be matched

by a replicated locality a[m.0]; we have Pm
m
−→ a[0] | Pm. The two resulting

processes 0 | Pm and a[0] | Pm are immediately bisimilar, due to the presence
of !a[0] in Pm. Consequently we have Pm

.
∼l Qm.

However we have Pm,n 6
.
∼l Qm,n. Indeed, the transition Qm,n

m
−→ n.0 |

Pm,n
∆
= Q′

m,n can only be matched by Pm,n
m
−→ a[n.0] | Pm,n

∆
= P ′

m,n. Processes
P ′
m,n and Q′

m,n are not HO bisimilar: by passivation of locality a[n.0], we have

P ′
m,n

a
−→ 〈n.0〉Pm,n, which can only be matched by Q′

m,n

a
−→ 〈m.n.0〉Q′

m,n or

Q′
m,n

a
−→ 〈0〉Q′

m,n. The emitted processes are not pairwise HO bisimilar, conse-
quently we have P ′

m,n 6
.
∼l Q

′
m,n.

One could argue that the weakness of the distinguishing power of the trigger
m.0 is due to the fact that localities are completely transparent, thus the prove-
nance of a message may not be directly observed. However, the existence of
localities around a message has indirect effects, when passivation transforms an
evaluation context (the locality) into a message that may be discarded. Triggers
of the form m.n.0 allow the observation of an evaluation context (there is an
emission on m) that disappears (there is no further emission on n), thus the
presence of enclosing localities.

We now generalize this idea to show that it may be used to pinpoint the
position of a process variable in the locality tree. Suppose we have P{m.n.0/X}
bisimilar to Q{m.n.0/X}, withm,n not occurring in P,Q. Suppose further that

P
m
−→ P ′ is matched by Q

m
−→ Q′. The processes P ′, Q′ may now perform one

and only one
n
−→ transition from the single process n.0. Now suppose that n.0

is in a locality a in P ′. Passivation of this locality results in a concretion whose
message R is such that R

n
−→. The process Q′ has to match these transitions

with Q′ a
−→ 〈R′〉S′ such that R

.
∼l R

′. Since R
n
−→, we have R′ n

−→; it is possible
if and only if the single occurrence of n.0 in Q′ was in a locality a. With the
same argument on R,R′, we prove that the locality hierarchies around n.0 in
P ′ and Q′ are the same. This result is formalized by the following lemma:

Lemma 14. Let P,Q such that fv(P,Q) ⊆ {X} and m,n two names which
do not occur in P,Q. Suppose we have P{m.n.0/X}

.
∼l Q{m.n.0/X} and

P{m.n.0/X}
m
−→ P ′{m.n.0/X}{n.0/Y }

∆
= Pn matched by Q{m.n.0/X}

m
−→

Q′{m.n.0/X}{n.0/Y }
∆
= Qn with Pn

.
∼l Qn.

There exist k ≥ 0, a1, . . . ak, P1 . . . Pk+1, Q1 . . . Qk+1 such that either Pn ≡
n.0 | P1 and Qn ≡ n.0 | Q1 or

Pn ≡ a1[. . . ak−1[ak[n.0 | Pk+1] | Pk] | Pk−1 . . .] | P1

Qn ≡ a1[. . . ak−1[ak[n.0 | Qk+1] | Qk] | Qk−1 . . .] | Q1

and for all 1 ≤ j ≤ k + 1, Pj
.
∼l Qj.

The lemma allows us to decompose Pn, Qn in bisimilar sub-processes. For
instance, if we have Pn ≡ a[b[n.0 | P3] | P2] | P1 with Pn

.
∼l Qn, then Qn ≡

37

a[b[n.0 | Q3] | Q2] | Q1 with P1
.
∼l Q1, P2

.
∼l Q2, and P3

.
∼l Q3. Note that we

do not decompose the initial processes P and Q themselves, but this result is
enough to prove the following theorem:

Theorem 14. Let P,Q two processes such that fv(P,Q) ⊆ {X} and m,n two
names which do not occur in P,Q. If P{m.n.0/X}

.
∼l Q{m.n.0/X}, then for

all closed processes R, we have P{R/X}
.
∼l Q{R/X}

We sketch the proof of Theorem 14 to explain how Lemma 14 is used.

Sketch. We show that the symmetric closure of the relation

R
∆
= {(P{R/X}, Q{R/X}) | P{m.n.0/X}

.
∼l Q{m.n.0/X},m, n not in P,Q}

is a late HO bisimulation. It is done by case analysis on the transition performed
by P{R/X}. Suppose we have P{R/X}

τ
−→ P ′{R′/Xi}{R/X}, i.e., a copy of

R (at position Xi) performs a transition R
τ
−→ R′. Occurrence Xi is in an

evaluation context, so we have P{m.n.0/X}
m
−→ P ′{n.0/Xi}{m.n.0/X} = P ′

n,

matched by Q{m.n.0/X}
m
−→ Q′{n.0/Xj}{m.n.0/X} = Q′

n with P ′
n

.
∼l Q

′
n. As

Xj is also in an evaluation context, we have Q{R/X}
τ
−→ Q′{R′/Xj}{R/X}.

We now have to prove that P ′{R′/Xi}{m.n.0/X}
.
∼l Q

′{R′/Xj}{m.n.0/X}.
Lemma 14 allows us to write P ′

n ≡ a1[. . . ak[n.0 | Pk+1] | Pk . . .] | P1 and
Q′

n ≡ a1[. . . ak[n.0 | Qk+1] | Qk . . .] | Q1 with (Pr), (Qr) pairwise bisimilar
processes for r ∈ {1 . . . k + 1}. Since Pk+1

.
∼l Qk+1 and

.
∼l is sound, we have

ak[R
′ | Pk+1]

.
∼l ak[R

′ | Qk+1]. By induction on r ∈ {k . . . 1}, we prove that
ar[. . . ak[R

′ | Pk+1] | Pk . . .] | Pj
.
∼l ar[. . . ak[R

′ | Qk+1] | Qk . . .] | Qj , obtaining
P ′{R′/Xi}{m.n.0/X}

.
∼l Q

′{R′/Xj}{m.n.0/X} (for r = 1) as needed.

Using this result we define a normal bisimulation for HOP:

Definition 19. Strong normal bisimilarity
.
∼n is the largest symmetric relation

on closed processes R such that P R Q implies :

• for all P
τ
−→ P ′, there exists Q′ such that Q

τ
−→ Q′ and P ′ R Q′.

• for all P
a
−→ F , there exists F ′ such that Q

a
−→ F ′ and for two names m,n

which do not occur in processes P,Q, we have F ◦ m.n.0 R F ′ ◦ m.n.0.

• for all P
a
−→ 〈R〉S, there exists R′, S′ such that Q

a
−→ 〈R′〉S′, R R R′ and

S R S′.

As a corollary of Theorem 14, we have

Corollary 2.
.
∼l=

.
∼n=

.
∼.

By definition, we have
.
∼l⊆

.
∼⊆

.
∼n. The inclusion

.
∼n⊆

.
∼l is a consequence

of Theorem 14.
Weak normal bisimilarity that coincides with weak HO bisimilarity may also

be defined.

38

Definition 20. Weak normal bisimilarity
.
≈n is the largest symmetric relation

on closed processes R such that P R Q implies:

• for all P
τ
−→ P ′, there exists Q′ such that Q

τ
=⇒ Q′ and P ′ R Q′.

• for all P
a
−→ F , there exists G such that Q

a
=⇒ F ′ and for two names

m,n which do not occur in processes P,Q, there exists Q′ such that F ′ ◦
m.n.0

τ
=⇒ Q′ and F ◦ m.n.0 R Q′.

• for all P
a
−→ 〈R〉S, there exists R′, S′′, S′ such that Q

a
=⇒ 〈R′〉S′′, S′′ τ

=⇒ S′,
R R R′ and S R S′.

Theorem 15.
.
≈n=

.
≈=

.
≈l

The proof technique is similar to the strong case and relies on weak ver-
sions of Theorem 14 and Lemma 14. Hence in a calculus with passivation and
without restriction, we can define a suitable bisimulation without any universal
quantification in the strong and weak cases.

8. Related work

Behavioral equivalences in higher-order calculi. Very few higher-order calculi
feature a coinductive characterization of weak barbed congruence, let alone
one with finite testing, similar to normal bisimilarity. It is the case in HOπ
(discussed in Section 2.1), and in a fragment of concurrent ML with local names
[19]. In both calculi, normal bisimilarity comes from a triggered semantics,
where triggers are passed instead of processes, which equates the “regular”
semantics in the weak case. Cao [6] has extended HOπ normal bisimilarity
to the strong case.

HOcore [21] is a minimal higher-order calculus (without any restriction or
replication constructors), with various characterizations of strong barbed con-
gruence, including higher-order and normal ones. Lanese et al. also give an
axiomatization for bisimilarity, which shows that a behavioral equivalence in
HOcore is in fact very discriminating. The authors do not know if their results
holds in the weak case or when replication is added to the calculus.

Mobile Ambients [8] is a calculus with hierarchical localities and subjective
linear process mobility. Localities, called ambients, may move by themselves in
the locality hierarchy, without any acknowledgement from their environment,
but they cannot be duplicated. Contextual characterizations of weak barbed
congruence have been defined for Mobile Ambients [29] and its variant NBA [5].
A normal characterization has yet to be found in both calculi.

Difficulties arise in more expressive process calculi. The Seal calculus [10] is
a calculus with objective process mobility which allows more flexibility than Mo-
bile Ambients; in particular localities may be stopped, and duplicated. Process
mobility requires synchronization between three processes (a process sending a
name a, a receiving process, and a locality named a). The authors define a
weak delay context bisimilarity in [10] called Hoe bisimilarity for the Seal cal-
culus and prove its soundness. The authors point out that Hoe bisimilarity is

39

not complete, not only because of the delay style, but also because of the labels
introduced for partial synchronization which are most likely not all observable.

The Kell calculus [41] and Homer [17] are two higher-order calculi featuring
a more general process mobility called passivation or active mobility. The two
calculi differ in how they handle communication; in particular, the Kell calcu-
lus allows join patterns while Homer does not. Sound and complete contexts
bisimilarities have been defined for both calculi in the strong case. As stated
before, a weak delay input-early bisimilarity has been proven sound in Homer
using Howe’s method.

Congruence proof method. In [28], Li and Liu propose a labelled transition sys-
tem and a strong bisimilarity similar to the complementary semantics for HOπ
(Section 4). However, they do not use Howe’s method to prove congruence of
the bisimilarity; instead they use an ad hoc method which relies on the factor-
ization theorem (Theorem 4). A factorization theorem is a property stronger
than congruence, and calculi featuring such a result are the exceptions, not the
rule. Therefore Li and Liu congruence proof method probably cannot be used
for other process calculi.

Howe’s method has been originally used to prove congruence in a lazy func-
tional programming language [18]. Baldamus and Frauenstein [2] are the first
to adapt the method to process calculi for variants of Plain CHOCS [43]. They
prove congruence of a late delay context bisimilarity in a calculus with static
scoping, and then use it for late and early delay higher-order bisimilarities in a
calculus with dynamic scoping, where emitted messages may escape the scope
of their restricted names. Hildebrandt and Godskesen adapt Howe’s method for
their calculus Homer [17]. As already explained through this paper, they prove
congruence for late delay [17] and input-early delay [14] context bisimilarities.

In [38], Sangiorgi et al. propose environmental bisimilarity for several higher-
order languages, including HOπ. The idea is to compare P and Q using an
environment E , which represents the knowledge that an observer has about these
processes. This environment contains for instance the processes emitted by P
and Q. The observer uses the environment to challenge P and Q. For instance,
the observer is able to compare inputs from P and Q with any messages built
from the processes inside E . Environmental bisimilarity characterizes barbed
congruence in HOπ. More recently, Piérard and Sumii developed environmental
bisimulations for HOπP [33]. Their approach is not complete, seemingly because
of the interplay between “by need” scope extrusion and passivation, but as
they show it may be applied “up to context”, it potentially simplifies some
bisimilarity proofs.

Instead of proving directly congruence of the bisimilarity, it is possible to
design the LTS so that the associated bisimilarity is automatically a congru-
ence. We briefly mention three methods which rely on this principle. A first
method is to respect some LTS rule format that guarantees that the correspond-
ing bisimilarity is a congruence. Checking that a LTS follows a given format
is usually simpler than proving congruence directly. For higher-order calculi,
Mousavi et al. [32] propose the Promoted and Higher-Order PANTH formats.

40

The Promoted PANTH format guarantees that the regular bisimilarity (where
an action is matched by exactly the same action) associated to the LTS is a
congruence, and the Higher-Order PANTH format guarantees that the higher-
order bisimilarity (where a higher-order action is matched by a bisimilar one, as
in Section 7.1) is a congruence. However, these formats can be used for strong
bisimilarities only. Furthermore, they exclude side-conditions on names (such as
a ∈ fn(R)), making lazy scope extrusion (as in HOπP) impossible to write. Some
rule formats that handle name bindings have been defined in [45, 11] for first-
order process calculi; it would be interesting to combine the PANTH formats
with these systems to be able to deal with lazy scope extrusion in higher-order
calculi.

In [34, 35], the LTS rules are automatically derived from the reduction rules
and observable so that the associated bisimilarity is a congruence. Reduction
rules are decomposed in order to identify the reacting sub-term and the context
the environment has to provide to trigger the reduction. The method has been
applied to the π-calculus [34], HOπ [34], and the Ambients [35], but only to
prove congruence of strong bisimilarities. We do not know if the method works
for weak ones.

Process calculi can be viewed as reactive systems, where transitions from

a term C{P} to P ′ are written P
C
−→ P ′. The main goal is then to find the

minimal context C such that an interaction with P is possible. Bonchi et al. [4]
propose a LTS derived from reactive systems for the Ambients, and use barbed
bisimilarities to characterize strong and weak barbed congruence. We do not
know if it is possible to encode calculi with passivation as reactive systems.

9. Conclusions and Future Work

Behavioral theory in calculi with passivation (like the Kell calculus or Homer)
is less developed than the HOπ one. They are equipped with a sound and
complete context bisimulation in the strong case only, which features additional
tests on contexts in the message output case. Using HOπP, a higher-order
calculus with passivation, we explain why usual congruence proof methods fail
in the weak case in calculi with passivation. In particular, we explain that
Howe’s method cannot be applied to early context bisimilarities because of the
interdependency between the message input and message output clauses. To
overcome this difficulty, we define a complementary labelled transition system
where message outputs do not depend on an abstraction, but on a process which
evolves to an abstraction. This modification allows to use the Howe’s method
to prove congruence in the strong and weak cases.

We define a complementary semantics for HOπ and HOπP (and also for the
Seal [10] in [23]). In HOπ, the complementary semantics is sound and complete,
and coincides with early context bisimilarity. We obtain similar results in HOπP,
except we only have one inclusion instead of equality between the relations;
we conjecture that they are indeed equal. We also define a complementary
semantics for the Kell in [22], with mixed results. The main issue is dealing

41

with join patterns. To complement an emitting process P , we need a receiving
process Q, but also other emitting processes R̃ to match the receiving pattern
of Q. We cope with this difficulty by progressively instantiating the pattern
of Q: to receive n messages, we use n transitions instead of one. To apply
the Howe’s method, we have to consider the bisimilarity which relates partially
instantiated inputs. As a result, we obtain a sound but not complete bisimilarity
in the weak case. Nevertheless, we believe it is possible to define a sound and
complete complementary bisimilarity in a Kell variant without join patterns or
in Homer.

The crucial step in defining a complementary semantics for a given calculus
is the definition of the transition rules, especially the message output ones.
If these rules are written under some restrictions, the congruence proof of the
associated bisimilarity is straightforward. A future work would be to make these
restrictions explicit. For instance, the classical rule for replication

P |!P
α
−→ A

!P
α
−→ A

makes inductive proofs of the Howe’s method fails, because P |!P in the premise
is not a subterm of the process !P in the conclusion. Identifying all these
constraints can lead to the definition of a rule format which guarantees the
soundness of the associated complementary bisimilarity, similar to the Promoted
or Higher-Order PANTH format for higher-order calculi [32].

We also plan to study complementary bisimilarities defined with the regular
contextual semantics. As mentioned before, in Kell (and more generally, in cal-
culi with join-patterns), it is not possible to define a satisfactory complementary
semantics; the associated bisimilarity is not complete. We want to come back
to contextual semantics in order to fix this issue. It means that we change the
message output clause of the early context bisimilarity such that the matching
transition depends on a process, and not on an abstraction. For instance in
HOπ, we have to consider the following clause:

• If P
a
−→ C, then for all process R, there exists C ′ such that Q

a
−→ C ′, and

for all F such that R
a
−→ F , we have F • C R F • C ′.

The corresponding relation is not completely early, because the matching tran-
sition does not depend on an abstraction F , but it is not late either, because the
transition depends on a process R. We believe we can prove directly soundness
of this “between late and early” bisimilarity with Howe’s method, and we hope
we can use this technique to obtain a characterization result in the weak case
for the Kell.

Complementary and context bisimilarities are not completely satisfactory as
substitutes for barbed congruence, since they reduce only slightly the quantifica-
tions. The following step is to find a characterization with fewer quantifications,
similar to normal bisimilarity in HOπ. We give counterexamples which suggest

42

HOcore [21]
HO & normal bis.
strong case only
axiomatisation

+ restriction
replication

||

+ passivation
replication

""

HOπ [37]
context & normal bis.
strong & weak cases

+ passivation

##

HOP [26], Sec. 7
HO & normal bis.
strong & weak cases

+ restriction

{{

HOπP [25], Sec. 5
context bis.

strong & weak cases

Figure 6: Characterizations results in some simple higher-order calculi

that it is not possible to find such relations in HOπP. We conjecture that in a
calculus featuring passivation and name restriction, we cannot define a sound
and complete strong bisimilarity with fewer tests than in Definition 7. We are
however able to define such relation in HOP, a calculus with passivation but
without restriction. In the case of HOπ, normal bisimulation comes from an
encoding of higher-order processes into first-order ones, which is not possible
in HOP. Instead, normal bisimulation in HOP relies on some means (a process
m.n.0) to observe locality hierarchies and to decompose abstractions in bisimi-
lar sub-processes. We wonder if we can go further, and define an axiomatisation
of barbed congruence in HOP. We plan to study a minimal calculus with pas-
sivation (simpler than HOP) to see if we can obtain an axiomatisation result
similar to the HOcore one [21].

Finally, we obtain very different characterization results in HOπP and HOP,
the two calculi with passivation we have studied in this paper. We summarize
our results and compare them to results in similar calculi in Figure 6. Passiva-
tion in itself is not a problem when defining behavioral equivalences; the addi-
tional complexity previously observed in calculi such as Homer or Kell comes
from the interaction between passivation and restriction.

[1] M. Baldamus. Semantics and Logic of Higher-Order Processes: Character-
izing Late Context Bisimulation. PhD thesis, Berlin University of Technol-
ogy, 1998.

43

[2] M. Baldamus and T. Frauenstein. Congruence proofs for weak bisimula-
tion equivalences on higher–order process calculi. Technical report, Berlin
University of Technology, 1995.

[3] M. Baldi and G. P. Picco. Evaluating the Tradeoffs of Mobile Code Design
Paradigms in Network Management Applications. In 20th International
Conference on Software Engineering (ICSE’97). IEEE, 1998.

[4] F. Bonchi, F. Gadducci, and G.V. Monreale. Reactive systems, barbed
semantics, and the mobile ambients. In FOSSACS ’09, pages 272–287.
Springer, 2009.

[5] M. Bugliesi, S. Crafa, M. Merro, and V. Sassone. Communication and
mobility control in boxed ambients. Information and Computation, 202,
2005.

[6] Z. Cao. More on bisimulations for higher order pi-calculus. In FoSSaCS
’06, volume 3921 of LNCS, pages 63–78. Springer, 2006.

[7] L. Cardelli. A language with distributed scope. Computing Systems Vol. 8
No. 1, 1995.

[8] L. Cardelli and A. D. Gordon. Mobile ambients. In FoSSaCS ’98, volume
1378 of LNCS, pages 140–155. Springer, 1998.

[9] A. Carzaniga, G. P. Picco, and G. Vigna. Designing Distributed Applica-
tions with Mobile Code Paradigms. In 19th International Conference on
Software Engineering (ICSE’97). IEEE, 1997.

[10] G. Castagna, J. Vitek, and F. Zappa Nardelli. The Seal Calculus. Infor-
mation and Computation, 201(1):1–54, 2005.

[11] M. P. Fiore and S. Staton. A congruence rule format for name-passing
process calculi. Inf. Comput., 207(2):209–236, 2009.

[12] C. Fournet, F. Le Fessant, L. Maranget, and A. Schmitt. JoCaml: a lan-
guage for concurrent, distributed and mobile programming. In Summer
Schol Adv. Functional Programming, volume 2638 of LNCS, 2003.

[13] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code Mobility.
IEEE Trans. Software Eng., 24(5), 1998.

[14] J. C. Godskesen and T. Hildebrandt. Extending howe’s method to early
bisimulations for typed mobile embedded resources with local names. In
FSTTCS ’05, volume 3821 of LNCS, pages 140–151. Springer, 2005.

[15] A. D. Gordon. Bisimilarity as a theory of functional programming. Mini-
course. Notes Series NS-95-3, BRICS, University of Cambridge Computer
Laboratory, July 1995. iv+59 pp.

44

[16] M. Hennessy, J. Rathke, and N. Yoshida. Safedpi: a language for controlling
mobile code. Acta Inf., 42(4-5), 2005.

[17] T. Hildebrandt, J. C. Godskesen, and M. Bundgaard. Bisimulation congru-
ences for Homer — a calculus of higher order mobile embedded resources.
Technical Report ITU-TR-2004-52, IT University of Copenhagen, 2004.

[18] D. J. Howe. Proving congruence of bisimulation in functional programming
languages. Information and Computation, 124(2):103–112, 1996.

[19] A. Jeffrey and J. Rathke. A theory of bisimulation for a fragment of con-
current ML with local names. Theoretical Computer Science, 323:1–48,
2004.

[20] A. Jeffrey and J. Rathke. Contextual equivalence for higher-order pi-
calculus revisited. Logical Methods in Computer Science, 1(1), 2005.

[21] I. Lanese, J. A. Pérez, D. Sangiorgi, and A. Schmitt. On the expressiveness
and decidability of higher-order process calculi. In LICS, pages 145–155.
IEEE Computer Society, 2008.

[22] S. Lenglet. Bisimulations dans les calculs avec passivation. PhD thesis,
Université de Grenoble, 2010.

[23] S. Lenglet, A. Schmitt, and J.-B. Stefani. Howe’s method for early bisimi-
larities. Technical Report RR 6773, INRIA, 2008.

[24] S. Lenglet, A. Schmitt, and J.-B. Stefani. Normal bisimulations in process
calculi with passivation. Technical Report RR 6664, INRIA, 2008.

[25] S. Lenglet, A. Schmitt, and J.-B. Stefani. Howe’s method in calculi with
passivation. In CONCUR ’09, volume 5710 of LNCS, pages 448–462.
Springer, 2009.

[26] S. Lenglet, A. Schmitt, and J.-B. Stefani. Normal bisimulations in process
calculi with passivation. In FoSSaCS ’09, volume 5504 of LNCS, pages
257–271. Springer, 2009.

[27] J.-J. Levy. Some results in the join-calculus. Lecture Notes in Computer
Science, 1281:233+, 1997.

[28] Y. Li and X. Liu. Towards a theory of bisimulation for the higher-order
process calculi. Journal of Computer Science and Technology, 19(3):352–
363, 2004.

[29] M. Merro and F. Zappa Nardelli. Behavioral theory for mobile ambients.
Journal of the ACM, 52(6):961–1023, 2005.

[30] R. Milner. Communicating and Mobile Systems : the π-calculus. Cambridge
University Press, 1999.

45

[31] R. Milner and D. Sangiorgi. Techniques of weak bisimulation up-to. In
CONCUR ’92, volume 630 of LNCS, 1992.

[32] M. Mousavi, M. J. Gabbay, and M. A. Reniers. Sos for higher order pro-
cesses (extended abstract). In CONCUR’05, volume 3653 of LNCS, pages
308–322. Springer, 2005.

[33] Adrien Piérard and Eijiro Sumii. Sound bisimulations for higher-order dis-
tributed process calculus. In Martin Hofmann, editor, FOSSACS ’11, vol-
ume 6604 of Lecture Notes in Computer Science, pages 123–137. Springer,
2011.

[34] J. Rathke and P. Sobocinski. Deconstructing behavioural theories of mo-
bility. In IFIP TCS ’08, volume 273 of IFIP, pages 507–520. Springer,
2008.

[35] J. Rathke and P. Sobocinski. Deriving structural labelled transitions for
mobile ambients. In CONCUR ’08, volume 5201 of LNCS, pages 462–476.
Springer, 2008.

[36] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and
Higher-Order Paradigms. PhD thesis, Department of Computer Science,
University of Edinburgh, 1992.

[37] D. Sangiorgi. Bisimulation for higher-order process calculi. Information
and Computation, 131(2):141–178, 1996.

[38] D. Sangiorgi, N. Kobayashi, and E. Sumii. Environmental bisimulations
for higher-order languages. In LICS ’07, pages 293–302. IEEE Computer
Society, 2007.

[39] D. Sangiorgi and D. Walker. The Pi-Calculus: A Theory of Mobile Pro-
cesses. Cambridge University Press, 2001.

[40] A. Schmitt and J.-B. Stefani. The M-calculus: A higher-order distributed
process calculus. In POPL’03, pages 50–61, New Orleans, LA, USA, Jan-
uary 2003.

[41] A. Schmitt and J.-B. Stefani. The Kell Calculus: A Family of Higher-Order
Distributed Process Calculi. In Global Computing 2004 workshop, volume
3267 of LNCS, 2004.

[42] P. Sewell, J. Leifer, K. Wansbrough, F. Zappa Nardelli, M. Allen-Willians,
P. Habouzit, and V. Vafeiadis. Acute: High-level programming language
design for distributed computation. Journal of Functional Programming,
17(4-5), 2007.

[43] B. Thomsen. Plain chocs: A second generation calculus for higher order
processes. Acta Informatica, 30(1):1–59, 1993.

46

[44] P. Wojciechowski and P. Sewell. Nomadic Pict: Language and Infrastruc-
ture. IEEE Concurrency, vol. 8, no 2, 2000.

[45] A. Ziegler, D. Miller, and C. Palamidessi. A congruence format for name-
passing calculi. Electr. Notes Theor. Comput. Sci., 156(1):169–189, 2006.

Appendix A. Weak Complementary Semantics in HOπP

In this section, we first prove the relation between the context and comple-
mentary LTS and bisimilarities (Theorem 9). We then prove soundness (Theo-
rem 8) and completeness (Theorem 10) of the weak complementary bisimilarity
with respect to barbed congruence.

Appendix A.1. Correspondence Lemmas

Lemma 15. If P
a
−→ F , then for all R we have P

a,R
7−−→ F ◦ R. If P

a,R
7−−→ P ′,

then there exists F such that P
a
−→ F and P ′ = F ◦ R.

Proof. We proceed by structural induction on P .

• If P = a(X)P ′, then by rule Abstr we have P
a
−→ F = (X)P ′, and by

rule In
p
i we have P

a,R
7−−→ P ′{R/X} = F ◦ R for all R, hence the result

holds.

• Let P = P1 | P2. Suppose we have P
a
−→ F , which is possible only by

rule Par (and its symmetric, which is handled similarly). Consequently

we have P1
a
−→ F ′ and F = F ′ | P2. By induction we have P1

a,R
7−−→ F ′ ◦ R

for all R, hence by rule Par
p
iτ we have P

a,R
7−−→ F ′ ◦ R | P2 = F ◦ R,

as required. Suppose we have P
a,R
7−−→ P ′, which is possible only by rule

Par
p
iτ (and its symmetric, which is handled similarly). Consequently we

have P1
a,R
7−−→ P ′

1 and P ′ = P ′
1 | P2. By induction there exists F such that

P1
a
−→ F and P ′

1 = F ◦ R. Consequently by rule Par we have P
a
−→ F | P2

with P ′ = (F | P2) ◦ R, as required.

• The locality, restriction, and replication cases are similar to the parallel
case.

For a concretion C = νb̃.〈R〉S, we remind that extr(C)
∆
= fn(R) \ b̃.

Lemma 16. Let P be an HOπP process.

Suppose P
a
−→ C. For all Q such that Q

a
−→ F and for all E such that

nbh(E) ∩ extr(C) = ∅, we have P
a,Q,E
−֒−−→extr(C) F • E{C}.

If P
a,Q,E
−֒−−→

b̃
P ′, then there exists F,C such that P

a
−→ C, Q

a
−→ F , b̃ =

extr(C), and P ′ = F • E{C}.

47

Proof. We proceed by structural induction induction on P .

• Let P = a〈P1〉P2. We have P
a
−→ 〈P1〉P2 = C. Let Q such that Q

a
−→ F

and E such that nbh(E) ∩ b̃ = ∅. We have F • E{C} = F ◦ P1 | E{P2}.

By Lemma 15, we have Q
a,P1
7−−−→ F ◦ P1. Let b̃ = fn(P1); by rule Outp

o, we

have P
a,Q,E
−֒−−→

b̃
F • E{C} with b̃ = fn(P1) = extr(C) as wished.

We now prove the reverse implication. We have P
a,Q,E
−֒−−→

b̃
Q′ | E{P2} with

Q
a,P1
7−−−→ Q′ and b̃ = fn(P1). By Lemma 15, there exists F such that Q

a
−→ F

and Q′ = F ◦ P1. Let C = 〈P1〉P2. We have P
a
−→ C, P ′ = F • E{C} and

b̃ = fn(P1) = extr(C), as required.

• Let P = P1 | P2. Suppose we have P
a
−→ C, which is possible by rule

Par or its symmetric. In the case of rule Par, we have P1
a
−→ C ′ and

C = C ′ | P2. Let Q
a
−→ F and E be an evaluation context. By induction

we have P1

a,Q,E{✷|P2}
−֒−−−−−−−→

b̃
F • E{C ′ | P2} with b̃ = extr(C ′). By rule Parp

o

we have P
a,Q,E
−֒−−→

b̃
F • E{C}, and we have b̃ = extr(C ′) = extr(C), as

required.

Suppose we have P
a,Q,E
−֒−−→

b̃
P ′, which is possible by rule Parp

o or its

symmetric. In the case of rule Parp
o, we have P1

a,Q,E{✷|P2}
−֒−−−−−−−→

b̃
P ′. By

induction there exists F,C such that P1
a
−→ C, Q

a
−→ F , b̃ = extr(C) and

P ′ = F • E{C | P2}. Consequently by rule Par we have P
a
−→ C | P2 = C ′

with P ′ = F • E{C ′} and b̃ = extr(C) = extr(C ′), as required.

• The locality case is similar to the parallel one for the evaluation rules
(Loc and Locp

o), and to the message output one for the passivation rules
(Passiv and Passivp

o).

• The replication case is similar to the parallel one.

• Let P = νc.P1. Suppose first we have P
a
−→ C. By rule Restr we have

P1
a
−→ C ′ and C = νc.C ′. Let Q

a
−→ F and E be an evaluation context. We

distinguish two cases:

– If c ∈ extr(C ′), then we have F • E{νc.C ′} = νc.(F • E{C ′}). By

induction we have P1
a,Q,E
−֒−−→

b̃
P ′
1 with b̃ = extr(C ′) and P ′

1 = F •

E{C ′}. We have c ∈ b̃, so by rule Extrp
o we have P

a,Q,E
−֒−−→

b̃\{c}

νc.P ′
1 = F • E{νc.C ′}. We have extr(C) = extr(C ′)∪{c}) = b̃ \ {c},

hence the result holds.

– If c /∈ extr(C ′), then by induction we have P1

a,Q,E{νb.✷}
−֒−−−−−−−→

b̃
P ′
1 with

b̃ = extr(C ′) and P ′
1 = F • E{νc.C ′} = F • E{C}. By rule Restrp

o

48

we have P
a,Q,E
−֒−−→

b̃
F • E{C}, and we have b̃ = extr(C ′) = extr(C),

as required.

Suppose now that P
a,Q,E
−֒−−→

b̃
P ′. We have two cases:

– Rule Restrp
o: we have P1

a,Q,E{νc.✷}
−֒−−−−−−−→

b̃
P ′ with c /∈ b̃. By induction

there exists F,C such that P1
a
−→ C, Q

a
−→ F , b̃ = extr(C) and

P ′ = F • E{νc.C}. By rule Restr we have P
a
−→ νc.C = C ′, and

extr(C ′) = extr(C) = b̃ since c /∈ b̃. We have P ′ = F • E{C ′}, as
required.

– Rule Extrp
o: we have P1

a,Q,E
−֒−−→

b̃∪{c} P ′
1 with P ′ = νc.P ′

1. By induc-

tion there exists F,C such that P1
a
−→ C, Q

a
−→ F , b̃∪ {c} = extr(C),

and P ′
1 = F • E{C}. By rule Restr we have P

a
−→ νc.C = C ′. Since

b̃∪{c} = extr(C), c is free in the message of C, consequently we have

F • E{C ′} = νc.(F • E{C}) = P ′6. We also have b̃ = extr(C) =
extr(C ′), as required.

Lemma 17. Let P be an HOπP process.

If P
a
−→ C, then for all Q such that Q

a
−→ F and for all E, we have

P
a,Q,E
7−−−→extr(C) F • E{C}.

If P
a,Q,E
7−−−→

b̃
P ′, then there exists F,C such that P

a
−→ C, Q

a
−→ F , b̃ =

extr(C), and P ′ = F • E{C}.

Proof. Let P
a
−→ C, Q

a
−→ F , and E an evaluation context. We prove the

first result by induction on the number of captures by E, i.e. on the size of
the set nbh(E) ∩ extr(C). If nbh(E) ∩ b̃ = ∅, then by Lemma 16 we have

P
a,Q,E
−֒−−→extr(C) F • E{C}. By rule CFreepo we have the required result.
Otherwise, there exists c,E1E2 such that E = E1{νc.E2}. The context E1{E2}

is performing less capture than E, so by induction we have P
a,Q,E1{E2}
7−−−−−−−→extr(C)

F • E1{E2{C}}. By ruleCaptp
o, we have P

a,Q,E
7−−−→extr(C) νc.(F • E1{E2{C}}) =

F • E{C}, as required.

We prove the reverse implication by induction on the derivation of P
a,Q,E
7−−−→

b̃

P ′. If the transition comes from rule CFreepo, we have nbh(E) ∩ b̃ = ∅, and
we can use Lemma 16. Otherwise, by rule Captp

o there exists c,E1,E2, P
′′

such that E = E1{νc.E2}, P
a,Q,E1{E2}
7−−−−−−−→

b̃
P ′′ with P ′ = νc.P ′′, and c ∈ b̃. By

6Note that, because c is bound in P , c is not free in Q and E by our convention on bound
names, so no unintended capture happens there

49

induction there exists F,C such that P
a
−→ C, Q

a
−→ F , P ′′ = F • E1{E2{C}},

and extr(C) = b̃. Since c ∈ b̃ = extr(C), we have F • E{C} = νc.(F •
E1{E2{C}}) = νc.P ′′ = P ′, as required.

Lemma 18. Let P be an HOπP process. We have P
τ
−→ P ′ iff P

τ
7−→ P ′.

Proof. We proceed by structural induction on P .
Let P = P1 | P2. By case analysis on the rule used to derive P

τ
−→ P ′:

• Par: in this case we have P1
τ
−→ P ′

1 and P ′ = P ′
1 | P2. By induction we

have P1
τ
7−→ P ′

1, hence by rule Par
p
iτ we have P

τ
7−→ P ′, as required.

• HO: in this case, we have P1
a
−→ F , P2

a
−→ C, and P ′ = F • C. By

induction we have P2
a,P1,✷
7−−−−→

b̃
F • C, so by rule HOp

τ we have P
τ
7−→ P ′,

as required.

We now prove the reverse implication.

• Par
p
iτ : we have P1

τ
7−→ P ′

1 and P ′ = P ′
1 | P2. By induction we have

P1
τ
−→ P ′

1, hence we have P
τ
−→ P ′

1 | P2 by rule Par.

• HOp
τ : we have P1

a,P2,✷
7−−−−→

b̃
P ′. By induction there exists F,C such that

P1
a
−→ C, P2

a
−→ F and P ′ = F • C. By rule HO, we have P

τ
−→ P ′, as

required.

The locality, restriction, and replication cases are similar.

Lemma 19. Let P be an HOπP process.

• We have P
τ
=⇒ P ′ iff P Z

τ
=⇒ P ′.

• Let R be a closed process. If P
a
=⇒ F and F ◦ R

τ
=⇒ P ′ then we have

P Z
a,R
==⇒ F ◦ R. If P Z

a,R
==⇒ P ′, then there exists F such that P

a
=⇒ F and

F ◦ R
τ
=⇒ P ′.

• If P
a
=⇒ C, then for all Q,E such that Q

a
=⇒ F and F • E{C}

τ
=⇒ P ′, we

have P Z
a,Q,E
===⇒

b̃
P ′ with b̃ = extr(C). If P Z

a,Q,E
===⇒

b̃
P ′, then there exists F,C

such that P
a
=⇒ C, Q

a
=⇒ F , b̃ = extr(C), and F • E{C}

τ
=⇒ P ′.

Proof. By Lemma 18 we have
τ
−→=

τ
7−→, so we have

τ
=⇒= Z

τ
=⇒.

If P
τ
=⇒ P ′′ a

−→ F and F ◦ R
τ
=⇒ P ′, then we have P Z

τ
=⇒ P ′′ and F ◦ R Z

τ
=⇒ P ′

by the first result. By Lemma 15 we have P ′′ a,R
7−−→ F ◦ R, consequently we have

P Z
a,R
==⇒ P ′. If P Z

τ
=⇒ P1

a,R
7−−→ P2 Z

τ
=⇒ P ′, then we have P

τ
=⇒ P1 and P2

τ
=⇒ P ′. By

Lemma 15 there exists F such that P1
a
−→ F and F ◦ R = P2. Consequently we

have P
a
=⇒ F and F ◦ R

τ
=⇒ P ′ as wished.

50

Let P
τ
=⇒ P ′′ a

−→ C, Q
τ
=⇒ Q′′ a

−→ F , and F • E{C}
τ
=⇒ P ′. We have

P Z
τ
=⇒ P ′′, Q Z

τ
=⇒ Q′′ and F • E{C} Z

τ
=⇒ P ′ by the first result. By Lemma 17

we have P ′′ a,Q′′,E
7−−−−→

b̃
F • E{C} with b̃ = extr(C), so we have P Z

a,Q′′,E
====⇒

b̃
P ′.

Consequently we have P Z
a,Q,E
===⇒

b̃
P ′, as required. If P Z

a,Q,E
===⇒

b̃
P ′, then we have

P Z
τ
=⇒ P1

a,Q′,E
7−−−−→

b̃
P2 Z

τ
=⇒ P ′ with Q Z

τ
=⇒ Q′. We have P

τ
=⇒ P1, P2

τ
=⇒ P ′, and

Q
τ
=⇒ Q′ by the first result. By Lemma 17 there exists F,C such that P1

a
−→ C,

Q′ a
−→ F , b̃ = extr(C), and P2 = F • E{C}. Consequently we have P

a
=⇒ C,

Q
a
=⇒ F , and F • E{C}

τ
=⇒ P ′, as required.

We now prove the correspondence between ≈ and ≈m. The correspondence
proof for ∼ and ∼m is similar.

Lemma 20. If P
a
−→ C then we have fn(C) ⊆ fn(P).

Proof. By induction on P
a
−→ C.

Lemma 21. Let P ≈ Q. Let P
a
−→ C, F an abstraction, and Q

a
=⇒ C ′ such that

for all E, there exists Q′ such that F • E{C ′}
τ
=⇒ Q′ and F • E{C} ≈ Q′. Then

we have extr(C) = extr(C ′).

Proof. Similar to the one of Lemma 8.

Theorem 16 (Theorem 9). If P ≈ Q then P ≈m Q.

Proof. We prove that ≈ is a weak complementary bisimulation. Let P ≈ Q.
We have fn(P) = fn(Q) by definition.

• If P
τ
7−→ P ′ then by Lemma 18 we have P

τ
−→ P ′. By definition there exists

Q′ such that Q
τ
=⇒ Q′ and P ′ ≈ Q′. By Lemma 19 we have Q Z

τ
=⇒ Q′, and

we have P ′ ≈ Q′ as wished.

• If P
a,R
7−−→ P ′, then by Lemma 15 there exists F such that P

a
−→ F and P ′ =

F ◦ R. By definition there exists G,Q′ such that Q
a
=⇒ G, G • 〈R〉0

τ
=⇒ Q′

and Q′ ≈ F • 〈R〉0. We have G • 〈R〉0 ≡ G ◦ R so by Lemma 19 we have

Q Z
a,R
==⇒ Q′ ≈ F • 〈R〉0 ≡ P ′ as wished.

• If P
a,T,E
7−−−→

b̃
P ′, then by Lemma 17 there exists F,C such that T

a
−→ F ,

P
a
−→ C, b̃ = extr(C) and P ′ = F • E{C}. By definition there exists D,Q′

such that Q
a
=⇒ D, F • E{D}

τ
=⇒ Q′ and F • E{C} ≈ Q′. By Lemma 21

we have extr(D) = extr(C) = b̃. By Lemma 19 we have Q Z
a,T,E
===⇒

b̃
Q′, and

we have P ′ ≈ Q′ as required.

51

Appendix A.2. Howe’s Method

We now prove the soundness of ≈m using Howe’s method. We remind that
λ
7−→ ranges over

τ
7−→,

a,R
7−−→, and

a,Q,E
7−−−→

b̃
, and Z

λ
=⇒ ranges over the weak transitions.

Lemma 22. If P
a,Q,E
−֒−−→

b̃
P ′, then nbh(E) ∩ b̃ = ∅.

Proof. Easy by induction on P
a,Q,E
−֒−−→

b̃
P ′.

Lemma 23. If P ≈m Q and P
a,T,E
−֒−−→

b̃
P ′, then there exists T ′, Q′ such that

T Z
τ
=⇒ T ′, Q Z

τ
=⇒

a,T ′,E
−֒−−−→

b̃
Z
τ
=⇒ Q′, and P ′ ≈m Q′.

Proof. Since we have P
a,T,E
−֒−−→

b̃
P ′, we have P

a,T,E
7−−−→

b̃
P ′ by rule CFreepo,

and we have nbh(E) ∩ b̃ = ∅ by Lemma 22. By bisimilarity, there exists Q′

such that Q Z
a,T,E
===⇒

b̃
Q′, and P ′ ≈m Q′. By definition there exists T ′ such that

Q Z
τ
=⇒

a,T ′,E
7−−−−→

b̃
Z
τ
=⇒ Q′. Because nbh(E) ∩ b̃ = ∅, context E is capture-free w.r.t. to

b̃, so the output transition comes from rule CFreepo. Consequently we have

Q Z
τ
=⇒

a,T ′,E
−֒−−−→

b̃
Z
τ
=⇒ Q′ as wished.

Lemma 24. Let P ≈m Q

• If P Z
λ
=⇒ P ′ then there exists Q′ such that Q Z

λ
=⇒ Q′ and P ′ ≈m Q′.

• If there exists T ′ such that T Z
τ
=⇒ T ′ and P Z

τ
=⇒

a,T ′,E
−֒−−−→

b̃
Z
τ
=⇒ P ′, then there

exists T ′′, Q′ such that T Z
τ
=⇒ T ′′, Q Z

τ
=⇒

a,T ′′,E
−֒−−−→

b̃
Z
τ
=⇒ Q′, and P ′ ≈m Q′

Proof. If P Z
τ
=⇒ P ′, we proceed by induction on the number of τ -steps. For

0 step, the result holds (chose Q′ = Q). Suppose the result holds for n. If

P (
τ
7−→)nPn

τ
7−→ P ′, then by induction there exists Q′

n such that Q Z
τ
=⇒ Q′

n and

P ′
n ≈m Q′

n. By bisimulation definition, there exists Q′ such that Q′
n Z

τ
=⇒ Q′ and

P ′ ≈m Q′. Since we have Q Z
τ
=⇒ Q′, we have the required result.

If P Z
τ
=⇒ P1

a,R
7−−→ P2 Z

τ
=⇒ P ′, then by the first result there exists Q′

1 such

that Q Z
τ
=⇒ Q′

1 and P1 ≈m Q′
1. By bisimulation definition there exists Q′

2 such

that P Z
a,R
==⇒ Q′

2 and P2 ≈m Q′
2. By the first result there exists Q′

2 Z
τ
=⇒ Q′ and

P ′ ≈m Q′. We have Q Z
a,R
==⇒ Q′ hence the result holds.

If P Z
τ
=⇒ P1

a,T ′,E
7−−−−→

b̃
P2 Z

τ
=⇒ P ′ with T Z

τ
=⇒ T ′, then by the first result there

exists Q′
1 such that Q Z

τ
=⇒ Q′

1 and P1 ≈m Q′
1. By bisimulation definition there

exists Q′
2 such that Q′

1 Z
a,T ′,E
====⇒

b̃
Q′

2 and P2 ≈ Q′
2. By the first result there exists

52

Q′ such that Q′
2 Z

τ
=⇒ Q′ and P ′ ≈m Q′. We have Q Z

a,T,E
===⇒

b̃
Q′ as wished.

If P Z
τ
=⇒ P1

a,T ′,E
−֒−−−→

b̃
P2 Z

τ
=⇒ P ′ with T Z

τ
=⇒ T ′, then by the first result there

exists Q′
1 such that Q Z

τ
=⇒ Q′

1 and P1 ≈m Q′
1. By Lemma 23 there exists T ′′, Q′

2

such that T ′
Z
τ
=⇒ T ′′, Q′

1 Z
τ
=⇒

a,T ′′,E
−֒−−−→

b̃
Z
τ
=⇒ Q′

2 and P2 ≈ Q′
2. By the first result there

exists Q′ such that Q′
2 Z

τ
=⇒ Q′ and P ′ ≈m Q′. We have Q Z

τ
=⇒

a,T ′′,E
−֒−−−→

b̃
Z
τ
=⇒ Q′ with

T Z
τ
=⇒ T ′′, as wished.

We recall the definitions of open extension and Howe’s closure of weak bisim-
ilarity ≈m.

Definition 21. Let P and Q be two open processes. We have P ≈◦
m Q iff

Pσ ≈m Qσ for all substitutions that close P and Q.

Definition 22. The Howe’s closure ≈•
m is the smallest relation verifying:

• ≈◦
m⊆≈•

m.

• ≈•
m≈◦

m⊆≈•
m.

• For all operators op of the language, if P̃ ≈•
m Q̃, then op(P̃) ≈•

m op(Q̃).

Lemma 25. ≈•
m is reflexive.

Proof. Because ≈m is reflexive.

Lemma 26. If P ≈•
m Q, then fn(P) = fn(Q).

Proof. By induction on the derivation of P ≈•
m Q.

• If P ≈m Q, then we have fn(P) = fn(Q) by definition.

• If P ≈•
m T ≈m Q, then we have fn(P) = fn(T) by induction, and fn(T) =

fn(Q) by bisimulation definition. Consequently we have fn(P) = fn(Q).

• If P̃ ≈•
m Q̃, we have fn(Pi) = fn(Qi) for each item on the list by induction,

hence using definition of free names we have fn(op(P̃)) = fn(op(Q̃)).

Lemma 27. If R ≈•
m R′, then P{R/X} ≈•

m P{R′/X}.

If P
a,R
7−−→ P ′ and R ≈•

m R′, then there exists P ′′ such that P
a,R′

7−−−→ P ′′ and
P ′ ≈•

m P ′′.

Proof. The first item is done by structural induction on P :

• P = 0: the result holds.

• P = X: P{R/X} = R ≈•
m R′ = P{R′/X}, hence the result holds.

53

• P = Y 6= X: the result holds.

• P = P1 | P2: by induction P1{R/X} ≈•
m P1{R

′/X} and P2{R/X} ≈•
m

P2{R
′/X} hold. Since≈•

m is a congruence we have P{R/X} = P1{R/X} |
P2{R/X} ≈•

m P1{R
′/X} | P2{R

′/X} = P{R′/X}, as required.

• The locality, message input, message output, and replication cases are
similar to the case above.

• P = νa.P1. By induction we have P1{R/X} ≈•
m P1{R

′/X}. Since ≈•
m is

a congruence, we have P{R/X} = νa.(P1{R/X}) ≈•
m νa.(P1{R

′/X}) =
P{R′/X}, as required.

The second item is proved by induction on the derivation of P
a,R
7−−→ P ′:

• Rule In
p
i : we have P = a(X)P1

a,R
7−−→ P1{R/X}. Using first item we have

P1{R/X} ≈•
m P1{R

′/X}, and by rule In
p
i we have P

a,R′

7−−−→ P1{R
′/X} ,

as required.

• Rule Par
p
iτ : we have P = P1 | P2 with P1

a,R
7−−→ P ′

1 and P ′ = P ′
1 | P2. By

induction there exists P ′′
1 such that P1

a,R′

7−−−→ P ′′
1 and P ′

1 ≈•
m P ′′

1 . By rule

Par
p
iτ , we have P

a,R′

7−−−→ P ′′
1 | P2 = P ′′, and since ≈•

m is a congruence, we
have P ′ ≈•

m P ′′, as required.

• Rules Locp
iτ and Replic

p
iτ : similar to the case above.

• RuleRestr
p
iτ : we have P = νb.P1 with P1

a,R
7−−→ P ′

1, b 6= a, and P ′ = νb.P ′
1.

By induction there exists P ′′
1 such that P1

a,R′

7−−−→ P ′′
1 and P ′

1 ≈•
m P ′′

1 . By

rule Restr
p
iτ we have P

a,R
7−−→ νb.P ′′

1 = P ′′, and since ≈•
m is a congruence

we have P ′ ≈•
m P ′′, as required.

Lemma 28. For all P ≈•
m Q and all R ≈•

m R′, we have P{R/X} ≈•
m

Q{R′/X}.

Proof. By induction on the derivation of P ≈•
m Q.

• P ≈◦
m Q: by Lemma 27, we have P{R/X} ≈•

m P{R′/X}. Let σ be a sub-
stitution which closes R′ and P,Q except for X. By open extension defini-
tion we have P{R′σ/X}σ ≈m Q{R′σ/X}σ, i.e. we have P{R′/X}σ ≈m

Q{R′/X}. Consequently we have P{R′/X} ≈◦
m Q{R′/X}, so we have

P{R/X} ≈•
m≈◦

m Q{R′/X}, i.e. P{R/X} ≈•
m Q{R′/X}, as required.

• P ≈•
m T ≈◦

m Q: by induction we have P{R/X} ≈•
m T{R′/X}, and using

the same technique as in the first case we have T{R′/X} ≈◦
m Q{R′/X},

hence we have P{R/X} ≈•
m Q{R′/X}, as required.

54

• op(P̃ ′) ≈•
m op(Q̃′) with P̃ ′ ≈•

m Q̃′. By induction we have ˜P ′{R/X} ≈•
m

˜Q′{R′/X}, hence we have op(˜P ′{R/X}) ≈•
m op(˜Q′{R′/X}) since ≈•

m is
congruence. Consequently we have P{R/X} ≈•

m Q{R′/X}, as required.

We write (≈m)•c the restriction of ≈•
m to closed processes.

Lemma 29. Let P ≈•
m Q. For every substitution σ, we have Pσ ≈•

m Qσ using
a derivation of the same size.

Proof. By induction on P ≈•
m Q. Most cases are immediate by induction. The

base case is P ≈◦
m Q. We show that Pσ ≈◦

m Qσ. Let σ′ a substitution that
closes Pσ and Qσ, then σσ′ closes P and Q, thus Pσσ′ ≈m Qσσ′.

Lemma 30. Let P (≈m)•c Q. If P
a,R
7−−→ P ′, then for all R′ such that R (≈m)•c

R′, there exists Q′ such that Q Z
a,R
==⇒ Q′ and P ′ (≈m)•c Q′.

Proof. By induction on the size of the derivation of P (≈m)•c Q.

• P ≈◦
m Q. Since P,R are closed, P ′ is closed. By Lemma 27 there exists

P ′′ such that P
a,R′

7−−−→ P ′′ and P ′ ≈•
m P ′′. Since P,Q are closed, we have

P ≈m Q; by bisimulation definition there exists Q′ such that Q Z
a,R′

==⇒ Q′

and P ′′ ≈m Q′. Let σ be a substitution that closes P ′′. Since Q,R′ are
closed, Q′ is closed and we have P ′′σ ≈m Q′ by Lemma 28. Consequently,
we have P ′ ≈•

m≈◦
m Q′, and since P ′, Q′ are closed, we have P ′ (≈m)•c Q′,

as required.

• P ≈•
m T ≈◦

m Q. Let σ be a substitution that closes T ; since P is closed
and by lemma 29, we have P ≈•

m Tσ. By induction there exists T ′ such

that Tσ Z
a,R′

==⇒ T ′ and P ′ (≈m)•c T ′. By open extension definition and since
Q is closed, we have Tσ ≈m Q. By Lemma 24 there exists Q′ such that

Q Z
a,R′

==⇒ Q′ and T ′ ≈•
m Q′. Consequently we have P ′ ≈•

m≈◦
m Q′, and since

P,Q,R,R′ are closed, P ′, Q′ are closed too. Finally we have P ′ (≈m)•c Q′

as required.

• op(P̃) ≈•
m op(Q̃) with P̃ ≈•

m Q̃. By case analysis on op.

– P = P1 | P2 and Q = Q1 | Q2 with P1
a,R
7−−→ P ′

1. By induction there

exists Q′
1 such that Q1 Z

a,R′

==⇒ Q′
1 and P ′

1 ≈•
m Q′

1. Using rules Par
p
iτ

for τ -actions and Par
p
iτ for the observable action, we have Q Z

a,R′

==⇒
Q′

1 | Q2. Since ≈•
m is a congruence, we have P ′

1 | P2 ≈•
m Q′

1 | Q2.
Since P,Q,R,R′ are closed, all the involved processes are closed and
we have P ′

1 | P2 (≈m)•c Q′
1 | Q2, as required.

– Locality, replication: similar to the case above.

55

– P = a(X)P1, Q = a(X)Q1 with P
a,R
7−−→ P1{R/X}. By Lemma

28, we have P1{R/X} ≈•
m Q1{R

′/X}. Using rule In
p
i , we have

Q
a,R′

7−−−→ Q1{R
′/X}. Since the involved processes are closed, we have

P1{R/X} (≈m)•c Q1{R/X} as required.

– P = νb.P1 and Q = νb.Q1. Similar to the parallel case.

We inductively define E ≈•
m F as:

• ✷ ≈•
m ✷

• If E ≈•
m F and P ≈•

m Q then E | P ≈•
m F | Q and P | E ≈•

m Q | F.

• If E ≈•
m F then νa.E ≈•

m νa.F.

• If E ≈•
m F then a[E] ≈•

m a[F].

Lemma 31. If E ≈•
m F, P ≈•

m Q, and E′ ≈•
m F′ then E{P} ≈•

m F{Q} and
E{E′} ≈•

m F{F′}.

Proof. By induction on E ≈•
m F.

• ✷ ≈•
m ✷: the result holds.

• E1 | P1 ≈•
m F1 | Q1 by induction we have E1{P} ≈•

m F1{Q} and E1{E
′} ≈•

m

F1{F
′}. By congruence we have E1{P} | P1 ≈•

m F1{Q} | Q1 and E1{E
′} |

P1 ≈•
m F1{F

′} | Q1, hence the result holds.

• Restriction, locality: similar to the parallel case.

We define fn(E) = fn(E{0}).

Lemma 32. If E ≈•
m F then fn(E) = fn(F).

Proof. By induction on the derivation of E ≈•
m F.

Lemma 33. If E ≈•
m F then nbh(E) = nbh(F).

Proof. By induction on the derivation of E ≈•
m F.

Corollary 3. Let E ≈•
m F and P ≈•

m Q. We have E{✷ | P} ≈•
m F{✷ | Q},

E{νa.✷} ≈•
m F{νa.✷}, and E{a[✷]} ≈•

m F{a[✷]}.

Lemma 34. If E ≈•
m F and E = E1{νc.E2}, then there exists F1,F2 such that

E1 ≈•
m F1, E2 ≈•

m F2, and F = F1{νc.F2}.

Proof. By induction on E ≈•
m F

56

• E = E′ | P , F = F′ | Q with E′ ≈•
m F′ and P ≈•

m Q. There exists E′
1

such that E′ = E′
1{νc.E2} and E1 = E′

1 | P . By induction there exists
F′
1, F′

2 such that F′ = F′
1{νc.F

′
2}, F′

1 ≈•
m E′

1, and F′
2 ≈•

m E2. We have
F = F1{νc.F

′
2} | Q with F′

1 | Q ≈•
m E′

1 | P by congruence, hence the result
holds.

• E = νa.E′, F = νa.F′ with E′ ≈•
m F′. If c = a, then we have E1 = ✷ and

E2 = E′. We define F1 = ✷ and F2 = F′. We have the required result. If
c 6= a, we use the same scheme as in the parallel case.

• Locality: similar to the parallel case.

Lemma 35. Let P
a,T,E
−֒−−→

b̃
P ′, T ≈•

m T ′, and E ≈•
m F, then there exists T ′′, P ′′

such that T ′
Z
τ
=⇒ T ′′, P Z

τ
=⇒

a,T ′′,F
−֒−−−→

b̃
Z
τ
=⇒ P ′′ and P ′ ≈•

m P ′′.

Proof. By induction on the derivation of P
a,T,E
−֒−−→

b̃
P ′.

• P = a〈R〉S with fn(R) = b̃, T
a,R
7−−→ T0, nbh(E)∩b̃ = ∅, and P ′ = T0 | E{S}.

By Lemma 30 there exists T ′′ such that T ′
Z
a,R
==⇒ T ′′ and T0 ≈•

m T ′′. There

exists T1, T2 such that T ′
Z
τ
=⇒ T1

a,R
7−−→ T2 Z

τ
=⇒ T ′′. Because E ≈•

m F, we

have nbh(E) = nbh(F) by Lemma 33, therefore we have nbh(F) ∩ b̃ = ∅.

By rule Outp
o, we have P

a,T1,F
−֒−−−→

b̃
T2 | F{S}. With T2 Z

τ
=⇒ T ′′, we have

T2 | F{S} Z
τ
=⇒ T ′′ | F{S} by rule Par

p
iτ , so finally we have P

a,T1,F
7−−−−→

b̃
T ′′ |

F{S} = P ′′ with T ′
Z
τ
=⇒ T1. Since ≈•

m is a congruence, we have P ′ ≈•
m P ′′,

as required.

• P = b[P1] and passivation occurs: similar to the case above.

• P = b[P1] with P1

a,T,E{b[✷]}
−֒−−−−−−→

b̃
P ′
1. By induction there exists T ′′, P ′′

1 such

that P1 Z
τ
=⇒

a,T ′′,F{b[✷]}
−֒−−−−−−−→

b̃
Z
τ
=⇒ P ′′

1 with T ′
Z
τ
=⇒ T ′′, and P ′

1 ≈•
m P ′′

1 . By rules

Loc
p
iτ and Locp

o, we have P Z
τ
=⇒

a,T ′′,F
−֒−−−→

b̃
Z
τ
=⇒ P ′′

1 with P ′
1 ≈•

m P ′′
1 as wished.

• Parallel, replication: similar to the case above.

• P = νc.P1 with P1
a,T,E{νy.✷}
7−−−−−−−−→

b̃
P ′
1, y /∈ b̃. Similar to the case above.

• P = νc.P1 with P1
a,T,E
7−−−→

c∪b̃
P ′
1. By induction there exists T ′′, P ′′

1 such

that P1 Z
τ
=⇒

a,T ′′,F
−֒−−−→

c∪b̃
Z
τ
=⇒ P ′′

1 , T
′
Z
τ
=⇒ T ′′, and P ′

1 ≈•
m P ′′

1 . Using Restr
p
iτ for

silent actions and Extrp
o, we have P Z

τ
=⇒

a,T ′′,F
−֒−−−→

b̃
Z
τ
=⇒ νc.P ′′

1 . Since ≈•
m is a

congruence, we have νc.P ′
1 ≈•

m νc.P ′′
1 , as required.

57

Lemma 36. Let P (≈m)•c Q. If P
a,T,E
−֒−−→

b̃
P ′, T (≈m)•c T ′, and E (≈m)•c F,

then there exists T ′′, Q′ such that T ′
Z
τ
=⇒ T”, Q Z

τ
=⇒

a,T ′′,F
−֒−−−→

b̃
Z
τ
=⇒ Q′ and P ′ (≈m)•c Q′.

Proof. We proceed by induction on the size of the derivation of P (≈m)•c Q.

• Suppose P ≈◦
m Q. Since P,Q are closed, we have P ≈m Q. By Lemma

35, there exists T ′′, P ′′ such that T ′
Z
τ
=⇒ T ′′, P Z

τ
=⇒

a,T ′′,F
−֒−−−→

b̃
Z
τ
=⇒ P ′′ and P ′ ≈•

m

P ′′. By Lemma 24, there exists Q′ such that Q Z
τ
=⇒

a,T ′′,F
7−−−−→

b̃
Z
τ
=⇒ Q′ and

P ′′ ≈m Q′. Since the involved processes are closed, P” is closed, so we
have P ′ ≈•

m≈◦
m Q′, and since the involved processes are closed, we have

P ′ (≈m)•c Q′ as required.

• Suppose P ≈•
m R ≈◦

m Q. Let σ be a substitution that closes R. Since P
is closed, we have P ≈•

m Rσ by Lemma 29. Since Q is closed, we have
Rσ ≈m Q by open extension definition. By induction, there exists T”, R′

such that T ′
Z
τ
=⇒ T”, Rσ Z

τ
=⇒

a,T ′′,F
−֒−−−→

b̃
Z
τ
=⇒ R′ and P ′ (≈m)•c R′. By Lemma

24, there exists Q′ such that Q Z
τ
=⇒

a,T ′′,F
−֒−−−→

b̃
Z
τ
=⇒ Q′ and P ′ (≈m)•c Q′ and

R′ ≈m Q′. Since R′, Q′ are closed, we have R′ ≈◦
m Q′, consequently we

have P ′ ≈•
m≈◦

m Q′. The involved processes are closed, hence we have
P ′ (≈m)•c Q′ as wished.

• If P = op(P̃) and Q = op(Q̃) with P̃ (≈m)•c Q̃.

– P = a〈P1〉P2 and Q = a〈Q1〉Q2 with T
a,P1
7−−−→ U , b̃ = fn(P1), and

P ′ = U | E{P2}. Since P1 (≈m)•c Q1, we also have fn(Q1) = b̃. By

Lemma 30 there exists U ′ such that T ′
Z
a,Q1
===⇒ U ′ and U (≈m)•c U ′.

There exists U1, U2 such that T ′ τ
=⇒ U1

a,Q1
7−−−→ U2 Z

τ
=⇒ U ′. Consequently

we haveQ
a,U1,F
−֒−−−→

b̃
U2 | F{Q2}. We have T ′

Z
τ
=⇒ U1 andQ Z

τ
=⇒

a,U1,F
−֒−−−→

b̃
Z
τ
=⇒

U ′ | F{Q2} = Q′. We have P2 (≈m)•c Q2 and E (≈m)•c F, so we have
E{P2} (≈m)•c F{Q2} by Lemma 31, hence we have P ′ (≈m)•c Q′, as
required.

– P = b[P1] with passivation: similar to the case above.

– P = P1 | P2 with P1

a,T,E{✷|P2}
−֒−−−−−−−→

b̃
P ′. Since P2 (≈m)•c Q2 we have

E{✷ | P2} (≈m)•c F{✷ | Q2}. By induction there exists T”, Q′ such

that T ′
Z
τ
=⇒ T”, Q1 Z

τ
=⇒ Z

a,T”,F{✷|Q2}
=========⇒

b̃
Z
τ
=⇒ Q′ and P ′ (≈m)•c Q′. By rules

Par
p
iτ and Parp

o we have Q Z
τ
=⇒

a,T”,F
−֒−−−→

b̃
Z
τ
=⇒ Q′, as required.

– P = b[P1] without passivation: similar to the case above.

– P =!P1: similar to the case above.

– P = νc.P1 with P1
c,f,a
7−−−→T E{νc.✷}b̃P ′

1 and c /∈ b̃. Similar to the case
above.

58

– P = νc.P1 with P1
a,T,E
−֒−−→

c∪b̃
P ′
1. By induction there exists T”, Q′

1

such that T ′
Z
τ
=⇒ T”, Q1 Z

τ
=⇒

a,T ′,F
−֒−−−→

c∪b̃
Z
τ
=⇒ Q′

1 and P ′
1 (≈m)•c Q′

1. By rules

Par
p
iτ and Extrp

o we have Q Z
τ
=⇒

a,T”,F
−֒−−−→

b̃
Z
τ
=⇒ νc.Q′

1. Since ≈
•
m is a con-

gruence and the involved processes are closed, we have νc.P ′
1 (≈m)•c

νc.Q′
1, as required.

Lemma 37. Let P (≈m)•c Q. If P
a,T,E
7−−−→

b̃
P ′, T (≈m)•c T ′, and E (≈m)•c F,

then there exists Q′ such that Q Z
a,T ′,F
====⇒

b̃
Q′ and P ′ (≈m)•c Q′.

Proof. We proceed by induction on the number of names in b̃ ∩ nbh(E).

If this number is zero, the transition P
a,T,E
7−−−→

b̃
P ′ comes from rule CFreepo;

we have P
a,T,E
−֒−−→

b̃
P ′. By Lemma 36, there exists T”, Q′ such that T ′

Z
τ
=⇒ T”,

Q Z
τ
=⇒

a,T”,F
−֒−−−→

b̃
Z
τ
=⇒ Q′, and P ′ (≈m)•c Q′. Using ruleCFreepo we haveQ Z

τ
=⇒

a,T”,F
7−−−−→

b̃
Z
τ
=⇒

Q′, so we have Q Z
a,T ′,F
====⇒

b̃
Q′, as wished.

Otherwise, the derivation comes from rule Captp
o: we have E = E1{νc.E2},

c ∈ b̃, P ′ = νc.P ′
1 and P

a,T,E1{E2}
7−−−−−−−→

b̃
P ′
1. By Lemma 34 there exists F1,F2

such that F = F1{νc.F2}, F1 ≈•
m E1, and F2 ≈•

m E2. By induction there

exists Q′
1 such that Q Z

a,T ′,F1{F2}
=======⇒

b̃
Q′

1 and P ′
1 ≈•

m Q′
1. By rule Captp

o we have

Q Z
a,T ′,F
====⇒

b̃
νc.Q′

1 = Q′. By congruence, we have P ′ (∼m)•c Q′, as wished.

Lemma 38. Let P (≈m)•c Q. If P
τ
7−→ P ′ then there exists Q′ such that Q Z

τ
=⇒ Q′

and P ′ (≈m)•c Q′.

Proof. We proceed by induction on the size of the derivation of P (≈m)•c Q.

• Suppose P ≈◦
m Q. Since P,Q are closed, we have P ≈m Q. The result

holds by bisimilarity definition (and since the processes are closed).

• Suppose P ≈•
m R ≈◦

m Q. Let σ be a substitution that closes R. Since P
is closed, we have P ≈•

m Rσ by Lemma 29. Since Q is closed, we have
Rσ ≈m Q by open extension definition. By induction, there exists R′

such that Rσ Z
τ
=⇒ R′ and P ′ (≈m)•c R′. By Lemma 24, there exists Q′ such

that Q Z
τ
=⇒ Q′ and R′ ≈m Q′. Since R′, Q′ are closed, we have R′ ≈◦

m Q′,
consequently we have P ′ ≈•

m≈◦
m Q′. The involved processes are closed,

hence we have P ′ (≈m)•c Q′ as wished.

• If P = op(P̃) and Q = op(Q̃) with P̃ (≈m)•c Q̃.

– P = P1 | P2 with P1
τ
7−→ P ′

1. By induction there exists Q′
1 such that

Q1 Z
τ
=⇒ Q′

1 and P ′
1 (≈m)•c Q′

1. Using rule Parp
iτ , we have Q Z

τ
=⇒ Q′

1 | Q2

and since ≈•
m is a congruence and the involved processes are closed,

we have P ′
1 | P2 (≈m)•c Q′

1 | Q2 as required.

59

– Locality, restriction, replication without communication: similar to
the case above.

– Communication: P = P1 | P2 with P1
a,P2,✷
7−−−−→

b̃
P ′. Since P1 (≈m)•c

Q1 and P2 (≈m)•c Q2, there exists Q′ such that Q1 Z
a,Q2,✷
====⇒

b̃
Q′ and

P ′ (≈m)•c Q′ by Lemma 37. We have Q1 Z
τ
=⇒ Q′

1

a,Q′

2,✷7−−−−→
b̃
Z
τ
=⇒ Q′ and

Q2 Z
τ
=⇒ Q′

2. By Par
p
iτ , we have Q Z

τ
=⇒ Q′

1 | Q′
2; by HOp

τ and Par
p
iτ , we

have Q′
1 | Q′

2 Z
τ
=⇒ Q′. Hence we have Q Z

τ
=⇒ Q′ and P ′ (≈m)•c Q′, as

required.

– Replication with communication: similar to the case above.

Notice that Lemmas 38, 37, and 30 show that (≈m)•c is a weak complemen-
tary simulation.

Lemma 39. If P (≈m)•c Q and P Z
λ
=⇒ P ′, there exists Q′ such that Q Z

λ
=⇒ Q′ and

P ′ (≈m)•c Q′.

Proof. Similar to the one of Lemma 24, using Lemmas 38, 37, and 30.

Lemma 40. Let (≈•
m)∗ be the reflexive and transitive closure of ≈•

m.

• (≈•
m)∗ is symmetric.

• ((≈m)•c)
∗ is a weak complementary bisimulation.

Proof. We prove that (≈•
m)−1 ⊆ (≈•

m)∗ by induction on the derivation of P (≈•
m

)−1Q.

• If we have Q ≈◦
m P , then we have P ≈◦

m Q, i.e. we have P (≈•
m)∗Q, as

required.

• If we have Q ≈•
m T ≈◦

m P , by induction we have T (≈•
m)∗Q. We have

P ≈◦
m T , i.e. we have P ≈•

m T , so by transitivity we have P (≈•
m)∗Q, as

required.

• If we have Q = Q1 | Q2, P = P1 | P2 with Q1 ≈•
m P1 and Q2 ≈•

m P2. By
induction we have P1(≈

•
m)∗Q1 and P2(≈

•
m)∗Q2. Since ≈

•
m is a congruence,

we have P1 | P2(≈
•
m)∗Q1 | P2 and Q1 | P2(≈

•
m)∗Q1 | Q2, consequently we

have P (≈•
m)∗Q by transitivity. The cases for other operators are similar.

We now prove that ((≈m)•c)
∗ is a weak complementary bisimulation. Since

(≈•
m)∗ is symmetric, it is enough to prove that ((≈m)•c)

∗ is a weak complemen-
tary simulation. Let P ((≈m)•c)

∗Q; there exists k such that P ((≈m)•c)
kQ. We

proceed by induction on k. The result holds for k = 0, suppose it holds for
l ≤ k, we prove for k + 1. Let P ((≈m)•c)

kPk (≈m)•c Q.

• fn(P) = fn(Pk) = fn(Q)

60

• If P
λ
7−→ P ′, then by induction there exists a process P ′

k such that Pk Z
λ
=⇒ P ′

k

and P ′((≈m)•c)
∗P ′

k. By Lemma 39, there exists Q′ such that Q Z
λ
=⇒ Q′ and

P ′
k (≈m)•c Q′. The result then holds by transitivity.

Theorem 17 (Theorem 8). ≈m is a congruence.

Proof. We have ≈m⊆ ((≈m)•c)
∗ ⊆≈m, hence ((≈m)•c)

∗ =≈m, and ((≈m)•c)
∗ is

a congruence.

Appendix A.3. Completeness

We now prove the completeness of ≈m on image-finite processes. The
method is standard [39] and relies on a decomposition of ≈m into a family
of relations (≈k

m)k≥0.

Definition 23. We define (≈k
m)k≥0 as:

• we have P ≈0
m Q iff fn(P) = fn(Q);

• we have P ≈k+1
m Q iff fn(P) = fn(Q) and for all P

λ
7−→ P ′, there exists Q′

such that Q Z
λ
=⇒ Q′ and P ′ ≈k

m Q′, and conversely for Q
λ
7−→ Q′.

The relation ≈ω
m is defined as ≈ω

m

∆
=

⋂
k∈N ≈k

m.

Roughly, we have P ≈k
m Q iff P and Q can mimic each others on k transition

steps. Note that for all k, we have ≈k+1⊆≈k by definition.

Lemma 41. We have ≈m=≈ω
m on image-finite processes.

Proof. By definition of ≈ω
m, we have ≈m⊆≈ω

m. We prove the reverse inclusion
on image-finite processes by showing that ≈ω

m is an early weak complementary
bisimulation.

Suppose P
λ
7−→ P ′. For all k, there exists Q′

k such that Q Z
λ
=⇒ Q′

k and P ′ ≈k
m

Q′
k. Because Q is image-finite, there exists Q′ such that Q Z

λ
=⇒ Q′ and Q′ = Qk

for an infinite set of k. We have then P ′ ≈k
m Q′ for an infinite set of k, therefore

we have P ′ ≈ω
m Q′.

Lemma 42. If R
a,P
7−−→ R′′, then there exists E and a(X)R′ such that R ≡

E{a(X)R′} and R′′ = E{R′{P/X}}.

Proof. Easy by induction on R.

The following result adds observable actions to a transition P
a,R,E
7−−−→

b̃
P ′.

Lemma 43. For all P
a,R,E
7−−−→

b̃
P ′, there exists Rc = F{R′} | c.0 such that

R ≡ F{a(X)R′} and

61

• P
a,a(X)Rc,E
7−−−−−−−→

b̃
≡ P ′ | c.0;

• for all Q such that Q Z
a,R,E
===⇒

b̃
, there exist Q′, Qc such that Q Z

a,a(X)Rc,E
=======⇒

b̃

Qc, Q Z
a,R,E
===⇒

b̃
Q′ and Qc ≡ Q′ | c.0.

Proof. We prove that R′ exists and the first item by induction on P
a,R,E
7−−−→

b̃
P ′.

For rule CFreepo, we have P
a,R,E
−֒−−→

b̃
P ′; we prove by induction on P

a,R,E
−֒−−→

b̃
P ′

that there exists Rc such that P
a,a(X)Rc,E
−֒−−−−−−→

b̃
≡ P ′ | c.0.

For rule Outp
o, we have P = a〈P1〉P2

a,R,E
−֒−−→

b̃
R1 | E{P2} = P ′ with

R
a,P1
7−−−→ R1. There exists F, a(X)R′ such that R ≡ F{a(X)R′} and R1 =

F{R′{P1/X}}. Let Rc = F{R′} | c.0. We have a(X)Rc
a,P1
7−−−→ R1 | c.0, hence we

have P
a,a(X)Rc,E
−֒−−−−−−→

b̃
R1 | c.0 | E{P2} ≡ P ′ | c.0, as required. The case Passivp

o

is treated similarly.

For rule Parp
o, we have P = P1 | P2

a,R,E
−֒−−→

b̃
P ′ with P1

a,R,E{✷|P2}
−֒−−−−−−−→

b̃
P ′. By

induction, there exists Rc such that P1

a,a(X)Rc,E{✷|P2}
−֒−−−−−−−−−−−→

b̃
≡ P ′ | c.0. We have

then P
a,a(X)Rc,E
−֒−−−−−−→

b̃
≡ P ′ | c.0, as wished. The cases Restrp

o, Replicp
o, and

Locp
o are treated similarly.

For rule Extrp
o, we have P = νd.P1

a,R,E
−֒−−→

b̃
νd.P ′

1 = P ′ with P1
a,R,E
−֒−−→

b̃
P ′
1.

By induction, there exists Rc such that P1

a,a(X)Rc,E
−֒−−−−−−→

b̃
≡ P ′

1 | c.0. We have

P
a,Rc,E
−֒−−−→

b̃
≡ νd.(P ′

1 | c.0) ≡ (νd.P ′
1) | c.0 = P ′ | c.0, hence the result holds.

We now go back to the caseCFreepo of the induction on P
a,R,E
7−−−→

b̃
P ′. By the

intermediary result on P
a,R,E
−֒−−→

b̃
P ′, there exists Rc such that P

a,a(X)Rc,E
−֒−−−−−−→

b̃
≡

P ′ | c.0. Therefore, we have P
a,a(X)Rc,E
7−−−−−−−→

b̃
≡ P ′ | c.0 by rule CFreepo.

For rule Captp
o, we have P

a,R,E1{νd.E2}
7−−−−−−−−−→

b̃
νd.P ′

1 = P ′ with P
a,R,E1{E2}
7−−−−−−−→

b̃

P ′
1. By induction, there exists Rc such that P

a,a(X)Rc,E1{E2}
7−−−−−−−−−−−→

b̃
≡ P ′

1 | c.0. For

rule Captp
o, we have P

a,a(X)Rc,E1{νd.E2}
7−−−−−−−−−−−−−→

b̃
≡ νd.(P ′

1 | c.0) ≡ (νd.P1) | c.0 =
P ′ | c.0, as required.

Let Q such that Q Z
a,R,E
===⇒

b̃
; by definition there exist R1, Q1 such that R Z

τ
=⇒ R1

and Q Z
τ
=⇒ Q1

a,R1,E
7−−−−→

b̃
Z
τ
=⇒. We prove by induction on Q1

a,R1,E
7−−−−→

b̃
that there exist

Q′, Q′
c such that Q1

a,a(X)Rc,E
7−−−−−−−→

b̃
Q′

c, Q1
a,R,E
7−−−→

b̃
Q′, and Qc ≡ Q′ | c.0.

If the transition comes from CFreepo, we have Q
a,R1,E
−֒−−−→

b̃
. We prove by

induction on Q1
a,R1,E
−֒−−−→

b̃
that there exists Q′, Q′

c such that Q1

a,a(X)Rc,E
−֒−−−−−−→

b̃
Q′

c,

Q1
a,R,E
−֒−−→

b̃
Q′ and Qc ≡ Q′ | c.0.

62

For rule Outp
o, we have Q1 = a〈Q1〉Q2 a,R1,E

−֒−−−→
b̃
R′

1 | E{Q2} with R1
a,Q1

7−−−→

R′
1. We haveRc = F{R′} | c.0 andR ≡ F{a(X)R′}, hence we have a(X)Rc

a,Q1

7−−−→

R′
c and R

a,Q1

7−−−→ R′′ with R′
c = R′′ | c.0. Therefore we have Q1

a,a(X)Rc,E
−֒−−−−−−→

b̃
R′

c |

E{Q2}
∆
= Qc and Q1

a,R,E
−֒−−→

b̃
R′′ | E{Q2}

∆
= Q′. Hence we have Qc ≡ Q′ | c.0, as

required. The case Passivp
o is treated similarly.

For rule Parp
o, we have Q1 = Q1 | Q2 a,R1,E

−֒−−−→
b̃
with Q1

a,R1,E{✷|P2}
−֒−−−−−−−→

b̃
. By in-

duction, there exist Q′, Qc such that Q1
a,a(X)Rc,E{✷|Q2}
7−−−−−−−−−−−−→

b̃
Qc, Q1

a,R,E{✷|Q2}
7−−−−−−−−→

b̃

Q′, and Qc ≡ Q′ | c.0. We have Q
a,a(X)Rc,E
−֒−−−−−−→

b̃
Qc and Q

a,R,E
−֒−−→

b̃
Q′, as wished.

The cases Restrp
o, Loc

p
o, and Replicp

o are treated similarly.

For rule Extrp
o, we have Q1 = νd.Q1 a,R1,E

−֒−−−→
b̃\d avec Q1 a,R1,E

−֒−−−→
b̃
. By

induction, there exist Q1
c , Q

′1 such that Q1
a,a(X)Rc,E
7−−−−−−−→

b̃
Q1

c , Q1
a,R,E
7−−−→

b̃
Q′1,

and Q1
c ≡ Q′1 | c.0. Therefore we have Q

a,a(X)Rc,E
7−−−−−−−→

b̃\d νd.Q1
c

∆
= Qc and

Q
a,R,E
−֒−−→

b̃
νd.Q′1 ∆

= Q′. We have Qc = νd.Q1
c ≡ νd.(Q′1 | c.0) ≡ (νd.Q′1) |

c.0 = Q′ | c.0, hence the result holds.

We now go back to the case CFreepo of the induction on Q1
a,R1,E
7−−−−→

b̃
. By the

intermediary result on Q
a,R1,E
−֒−−−→

b̃
, there exist Q′, Q′

c such that Q1

a,a(X)Rc,E
−֒−−−−−−→

b̃

Q′
c, Q1

a,R,E
−֒−−→

b̃
Q′ et Qc ≡ Q′ | c.0. By rule CFreepo, we have Q1

a,a(X)Rc,E
7−−−−−−−→

b̃

Q′
c and Q1

a,R,E
7−−−→

b̃
Q′, hence the result holds.

In the case of rule Captp
o, we have Q

a,R1,E
7−−−−→

b̃
with Q

a,R1,E1{E2}
7−−−−−−−−→

b̃
and E =

E1{νd.E2}. By induction, there exist Q′′, Q′′
c such that Q1

a,a(X)Rc,E1{E2}
7−−−−−−−−−−−→

b̃
Q′′

c ,

Q1

a,R,E1{E2}
−֒−−−−−−→

b̃
Q′′ and Q′

c ≡ Q′′ | c.0. By rule Captp
o, we have Q1

a,a(X)Rc,E
7−−−−−−−→

b̃

νd.Q′′
c

∆
= Q′

c and Q1
a,R,E
−֒−−→

b̃
νd.Q′′ ∆

= Q′. We have Q′
c ≡ νd.(Q′′ | c.0) ≡

(νd.Q′′) | c.0 = Q′ | c.0, as wished.
We are now done with the induction; there exist Q′ and Q′

c such that

Q1
a,a(X)Rc,E
7−−−−−−−→

b̃
Q′

c, Q1
a,R,E
7−−−→

b̃
Q′, and Qc ≡ Q′ | c.0. We have Q Z

τ
=⇒

a,a(X)Rc,E
7−−−−−−−→

b̃

Q′
c and Q Z

τ
=⇒

a,R,E
7−−−→

b̃
Q′, i.e., Q Z

a,a(X)Rc,E
=======⇒

b̃
Q′

c and Q Z
a,R,E
===⇒

b̃
Q′, as wished.

In the following, we omit the trailing 0; in particular, we write a for a.0. We
define an operator ⊕ as:

n⊕

j=1

Pj
∆
= νa.(a〈P1〉0 | . . . | a〈Pn〉0 | a(X)X |

n∏

j=2

a(Xj)0)

The operator ⊕ is a choice operator; once a process Pi is chosen (i.e., received
by a(X)X), the process

∏n
j=2 a(Xj)0 destroys the remaining processes Pj for

63

j 6= i. It is necessary to remove the free names of the processes (Pj)j 6=i, in order
to obtain P ′ such that P ′ ≈m Pi.

The operator ⊕ has the following property:

• P ⊕ a ↓a;

• for all i ∈ {1 . . . n}, we have
⊕n

j=1 Pj Z
τ
=⇒≈m Pi.

Lemma 44. Let P,Q be image-finite processes. For all k, if P 6≈k
m Q, then

there exist C, e such that C{P}⊕ e 6≈b C{Q}⊕ e.

Proof. We proceed by induction on k. For k = 0, we have fn(P) 6= fn(Q);
suppose we have a ∈ fn(P) \ fn(Q). We define

C
∆
= b[νa.(c〈✷〉0 | a | a.a.d)] | c(X)b(Y)(Y | Y)

with b, c, d not free in P and Q. Let e be a fresh name; assume C{P}⊕ e ≈b

C{Q}⊕ e holds. By communication on c, we have

C{P}⊕ e Z
τ
=⇒ νa.(b[a | a.a.d] | b(Y)(Y | Y))

∆
= P1

Because a is free in P , the scope of νa is extended outside b. The name b is
observable in P1 but c is not, therefore this transition can only be matched by

C{Q}⊕ e Z
τ
=⇒ b[νa.Ra] | b(Y)(Y | Y)

∆
= Q1

with Ra = a | a.a.d ou Ra = a.d. We have

P1
τ
7−→ νa.(a | a.a.d | a | a.a.d)

∆
= P2

by passivation of b. Because b is no longer observable in P2, this can only be
matched by

Q1 Z
τ
=⇒ (νa.R′

a) | (νa.R
′′
a)

∆
= Q2

with Ra Z
τ
=⇒ R′

a et Ra Z
τ
=⇒ R′′

a . The transition P2 Z
τ
=⇒ νa.(d | a.a.d) cannot be

matched by Q2, because processes R′
a and R′′

a have their own copy of a and
cannot synchronize themselves to make d observable. Hence we have a contra-
diction, and C⊕ e distinguishes P and Q.

Assume that the result holds for l ≤ k. Let P 6≈k+1 Q; we distinguish three
cases.

If P
τ
7−→ P ′, then for all Q′ such that Q Z

τ
=⇒ Q′, we have P ′ 6≈k

m Q′. Because

Q is image-finite, the set {Qi, Q Z
τ
=⇒ Qi} is finite. By induction, there exist Ci, ei

such that Ci{P
′}⊕ ei 6≈b Ci{Qi}⊕ ei for all i. Let

C
∆
= a[✷] | a(X)(b⊕

⊕

j

Cj{X}⊕ ej)

64

with a, b fresh for P,Q. Let e be a fresh name. Suppose C{P}⊕ e ≈b C{Q}⊕ e.
We have

C{P}⊕ e Z
τ
=⇒≈m a[P ′] | a(X)(b⊕

⊕

j

Cj{X}⊕ ej)
∆
= P1

The name a is observable in P1, but t is not, therefore this can only be matched
by

C{Q}⊕ e Z
τ
=⇒≈m a[Q′

l] | a(X)(b⊕
⊕

j

Cj{X}⊕ ej)
∆
= Q1

for some l. We have

P1
τ
7−→ b⊕

⊕

j

Cj{P
′}⊕ ej

∆
= P2

Because b is observable in P2, this can only be matched by

Q1 Z
τ
=⇒ b⊕

⊕

j

Cj{Q
′
j}⊕ ej

∆
= P2

with Q′
l Z

τ
=⇒ Q′

i. We have P2 Z
τ
=⇒≈m Ci{P

′}⊕ ei
∆
= P3; because P3 ↓ei holds, this

can only be matched by Q2 Z
τ
=⇒≈m Ci{Q

′
i}⊕ ei

∆
= Q3. We have Ci{P

′}⊕ ei 6≈b

Ci{Q
′
i}⊕ ei, hence a contradiction.

If P
a,R
7−−→ P ′, then for all Q′ such that Q Z

a,R
==⇒ Q′, we have P ′ 6≈k

m Q′.

Because Q is image-finite, the set {Qi, Q Z
a,R
==⇒ Qi} is finite. By induction, there

exist Ci, ei such that Ci{P
′}⊕ ei 6≈b Ci{Qi}⊕ ei for all i. Let

C
∆
= c[✷ | a〈R〉d.0] | d.c(X)(f ⊕

⊕

j

Cj{X}⊕ ej)

with c, d, f not free in P,Q,R. Let e be a fresh name; we have

C{P}⊕ e Z
τ
=⇒≈m c[P ′ | d.0] | d.c(X)(f ⊕

⊕

j

Cj{X}⊕ ej)
∆
= P1

With observable d, we are sure that the communication between P and R took
place. Because we have P1 ↓d, this can only be matched with

C{Q}⊕ e Z
τ
=⇒≈m c[Q′

l | d.0] | d.c(X)(f ⊕
⊕

j

Cj{X}⊕ ej)
∆
= Q1

for some l. We have

P1
τ
7−→ c[P ′] | c(X)(f ⊕

⊕

j

Cj{X}⊕ ej)
∆
= P2

65

Because P2 ↓c holds, this can only be matched with

Q1 Z
τ
=⇒ c[Q′

i] | c(X)(f ⊕
⊕

j

Cj{X}⊕ ej)
∆
= Q2

with Q′
l Z

τ
=⇒ Q′

i. From there, the proof is the same as in the previous case.

If P
a,R,E
7−−−→

b̃
P ′, then for all Q′ such that Q Z

a,R,E
===⇒

b̃
Q′, we have P ′ 6≈k

m Q′.

Because Q is image-finite, the set {Qi, Q Z
a,R,E
===⇒

b̃
Qi} is finite. By induction there

exist Ci, ei such that Ci{P
′}⊕ ei 6≈b Ci{Qi}⊕ ei for all i. Let d /∈ fn(P,Q,R,E).

By Lemma 43, there exists Rd such that P
a,a(X)Rd,E
7−−−−−−−→

b̃
≡ P ′ | d.0. Let

C
∆
= c[✷ | a(X)Rd] | d.c(X)(f ⊕

⊕

j

Cj{X}⊕ ej)

with c, f not free in P,Q,R,E. Let e be a fresh name; we have

C{P}⊕ e Z
τ
=⇒≈m c[P ′ | d.0] | d.c(X)(f ⊕

⊕

j

Cj{X}⊕ ej)
∆
= P1

With observable d, we are sure that the communication between P and R took
place. Because we have P1 ↓d, the process Q communicates with a(X)Rd, and
the result of this communication is a process Q′

l, by Lemma 43. Therefore we
have

C{Q}⊕ e Z
τ
=⇒≈m c[Q′

l | d.0] | d.c(X)(f ⊕
⊕

j

Cj{X}⊕ ej)
∆
= Q1.

We have
P1

τ
7−→ c[P ′] | c(X)(f ⊕

⊕

j

Cj{X}⊕ ej)
∆
= P2

Because P2 ↓c holds, this can only be matched by

Q1 Z
τ
=⇒ c[Q′

i] | c(X)(f ⊕
⊕

j

Cj{X}⊕ ej)
∆
= Q2

with Q′
l Z

τ
=⇒ Q′

i. From there, the proof is the same as in the previous cases.

Theorem 18 (Theorem 10). Let P , Q be image finite processes. If P ≈b Q,
then P ≈m Q.

Proof. We prove that P 6≈m Q implies P 6≈b Q. Suppose P 6≈m Q. Because
≈m=≈ω (Lemma 41), there exists k such that P 6≈k

m Q. By Lemma 44, there
exist C, e such that C{P}⊕ e 6≈b C{Q}⊕ e. Therefore, we have P 6≈b Q.

66

Appendix B. Abstraction Equivalence in HOπP

In this section, we prove that the families of abstractions (Fn)n≥0, (Gn)n≥0,
defined in Section 6.3, are counter-examples to show that testing using finite
processes is not enough to guarantee bisimilarity in HOπP.

Lemma 45. For all PF such that d(PF) = 0, we have F0 ◦ PF ∼ G0 ◦ PF .

Proof. Since d(PF) = 0, PF and PF | PF cannot perform any transition. We
have fn(PF) = fn(PF | PF), so we have F0 ◦ PF ∼ G0 ◦ PF .

Lemma 46. Let n > 0. For all PF such that d(PF) ≤ n, we have Fn ◦ PF ∼
Gn ◦ PF .

Proof. We prove that relation

Rn
∆
= {(C{P{ ˜Fk ◦ P k

F , R̃
1
l ◦ P l

F /X̃}},C{P{G̃k ◦ P k
F ,

˜S1
l ◦ P l

F /X̃}}),

d(P k
F) ≤ k ≤ n ∧ d(P l

F) ≤ l − 1 ≤ n}

is a strong early context simulation.
Let P1 Rn P2. We proceed by case analysis on the transition initiated by P1.

If the transition comes from P or C without any interaction with the pro-
cesses Fk ◦ P k

F , then P2 matches with the same transition.

The transition comes from a process Fk0
◦ P k0

F , in which passivation of locality
ak0

has been triggered. We have

P1
τ
−→ C{P{νak0

.(Fk0−1 ◦ P k0

F)/Xk0
}{ ˜Fk ◦ P k

F , R̃
1
l ◦ P l

F /(X̃ \Xk0
)}}

∆
= P ′

1.

We distinguish two cases; suppose first that we have d(P k0

F) ≤ k0 − 1. Process

P2 matches with passivation of ak0
in Gk0

◦ P k0

F , i.e.

P2
τ
−→ C{P{νak0

.(Gk0−1 ◦ P k0

F)/Xk0
}{G̃k ◦ P k

F ,
˜S1
l ◦ P l

F /(X̃ \Xk0
)}}

∆
= P ′

2.

Let P ′ ∆
= P{νak0

.Xk0
/Xk0

}. Processes P ′
1 and P ′

2 can be written

P ′
1 = C{P ′{ ˜Fk ◦ P k

F , Fk0−1 ◦ P k0

F , R̃1
l ◦ P l

F /X̃}}

P ′
2 = C{P ′{G̃k ◦ P k

F , Gk0−1 ◦ P k0

F , ˜S1
l ◦ P l

F /X̃}}

and since we have d(P k0

F) ≤ k0 − 1 ≤ n, we have P ′
1 Rn P ′

2, as required.

In the case d(P k0

F) = k0, process P2 matches with the τ -action in the sub-

process Sk0
of Gk0

◦ P k0

F . We have then

P2
τ
−→ C{P{νak0

.(Fk0−1 ◦ P k0

F)/Xk0
}{G̃k ◦ P k

F ,
˜S1
l ◦ P l

F /(X̃ \Xk0
)}}

∆
= P ′

2

67

Let P ′ ∆
= P{νak0

.(Fk0−1 ◦ P k0

F)/Xk0
}; P ′

1 and P ′
2 can be written

P ′
1 = C{P ′{ ˜Fk ◦ P k

F , R̃
1
l ◦ P l

F /(X̃ \Xk0
)}}

P ′
2 = C{P ′{G̃k ◦ P k

F ,
˜S1
l ◦ P l

F /(X̃ \Xk0
)}}

Hence we have P ′
1 Rn P ′

2 as required.

The transition from P1 comes from a process R1
l0
◦ P l0

F , in which passivation of

locality al0 is triggered. By definition, we haved(P l0
F) ≤ l0 − 1, hence this case

is similar to first sub-case of the previous case.

Suppose that the transition from P1 comes from the τ -action of a process
Rk0

inside a process Fk0
◦ P k0

F . We have then

P1
τ
−→ C{P{νak0

.(Gk0−1 ◦ P k0

F)/Xk0
}{ ˜Fk ◦ P k

F , R̃
1
l ◦ P l

F /(X̃ \Xk0
)}}

∆
= P ′

1.

Process P2 matches with passivation of ak0
inside process Gk0

◦ P k0

F , i.e.

P2
τ
−→ C{P{νak0

.(Gk0−1 ◦ P k0

F)/Xk0
}{G̃k ◦ P k

F ,
˜S1
l ◦ P l

F /(X̃ \Xk0
)}}

∆
= P ′

2

Let P ′ ∆
= P{νak0

.(Gk0−1 ◦ P k0

F)/Xk0
}; we rewrite P ′

1 and P ′
2 in

P ′
1 = C{P ′{ ˜Fk ◦ P k

F , R̃
1
l ◦ P l

F /(X̃ \Xk0
)}}

P ′
2 = C{P ′{G̃k ◦ P k

F ,
˜S1
l ◦ P l

F /(X̃ \Xk0
)}}

hence we have P ′
1 Rn P ′

2.

The transition comes from a process Fk0
◦ P k0

F , in which P k0

F performs an action

P k0

F

τ
−→ P ′k0

F . We have then

P1
τ
−→ C{P{R1

k0
◦ P ′k0

F /Xk0
}{ ˜Fk ◦ P k

F , R̃
1
l ◦ P l

F /(X̃ \Xk0
)}}

∆
= P ′

1.

Process P2 matches with a similar transition

P2
τ
−→ C{P{S1

k0
◦ P ′k0

F /Xk0
}{G̃k ◦ P k

F ,
˜S1
l ◦ P l

F /(X̃ \Xk0
)}}

∆
= P ′

2.

By the definition of depth, we have d(P ′k0

F) ≤ d(P k0

F) − 1 ≤ k0 − 1 ≤ n, hence
we have P ′

1 Rn P ′
2.

The transition from P1 comes from a process Fk0
◦ P k0

F , in which P k0

F performs

an input P k0

F

a
−→ F . We have then

P1
a
−→ C{P{R1

k0
◦ F/Xk0

}{ ˜Fk ◦ P k
F , R̃

1
l ◦ P l

F /(X̃ \Xk0
)}}

∆
= F1.

68

Let C = νb̃.〈T 〉U . Process P2 matches with a similar transition

P2
a
−→ C{P{S1

k0
◦ F/Xk0

}{G̃k ◦ P k
F ,

˜S1
l ◦ P l

F /(X̃ \Xk0
)}}

∆
= F2.

We have

F1 • C = νb̃.(C{P{R1
k0

◦ (F ◦ T)/Xk0
}{ ˜Fk ◦ P k

F , R̃
1
l ◦ P l

F /(X̃ \Xk0
)}} | U)

F2 • C = νb̃.(C{P{S1
k0

◦ (F ◦ T)/Xk0
}{G̃k ◦ P k

F ,
˜S1
l ◦ P l

F /(X̃ \Xk0
)}} | U)

Let C′ ∆
= νb̃.(C | U); F1 • C and F2 • C can be written

F1 • C = C
′{P{R1

k0
◦ (F ◦ T)/Xk0

}{ ˜Fk ◦ P k
F , R̃

1
l ◦ P l

F /(X̃ \Xk0
)}}

F2 • C = C
′{P{S1

k0
◦ (F ◦ T)/Xk0

}{G̃k ◦ P k
F , R̃

1
l ◦ P l

F /(X̃ \Xk0
)}}

By definition of depth, we have d(F ◦ T) = d(F) ≤ d(P k0

F) − 1 ≤ k0 − 1 ≤ n,
hence we have F1 • C Rn F2 • C.

The transition from P1 comes from a process Fk0
◦ P k0

F , in which P k0

F performs

an output P k0

F

a
−→ C = νb̃.〈T 〉U . We have

P1
a
−→ νb̃, b̃′.〈T 〉C′{P{R1

k0
◦ U/Xk0

}{ ˜Fk ◦ P k
F , R̃

1
l ◦ P l

F /(X̃ \Xk0
)}}

∆
= C1

where b̃′ is the set of names captured by C, and C′ is the context resulting from
C after removing the name restrictions on b̃′. Let F be an abstraction and E be
an evaluation context. Process P2 matches with the transition

P2
a
−→ νb̃, b̃′.〈T 〉C′{P{S1

k0
◦ U/Xk0

}{G̃k ◦ P k
F ,

˜S1
l ◦ P l

F /(X̃ \Xk0
)}}

∆
= C2.

We have

F • E{C1} =

νb̃, b̃′, b̃”.(F ◦ T | E
′{C′{P{R1

k0
◦ U/Xk0

}{ ˜Fk ◦ P k
F , R̃

1
l ◦ P l

F /(X̃ \Xk0
)}}})

F • E{C2} =

νb̃, b̃′, b̃”.(F ◦ T | E
′{C′{P{S1

k0
◦ U/Xk0

}{G̃k ◦ P k
F ,

˜S1
l ◦ P l

F /(X̃ \Xk0
)}}})

where b̃” and E′ are defined the ame way as b̃′ and C′.

Let C”
∆
= νb̃, b̃′, b̃”.(F ◦ T | E′{C′}); F • E{C1} and F • E{C2} can be

written

F • E{C1} = C”{P{R1
k0

◦ U/Xk0
}{ ˜Fk ◦ P k

F , R̃
1
l ◦ P l

F /(X̃ \Xk0
)}}

F • E{C2} = C”{P{S1
k0

◦ U/Xk0
}{G̃k ◦ P k

F , R̃
1
l ◦ P l

F /(X̃ \Xk0
)}}

69

By definition of depth we have d(U) = d(C) ≤ d(P k0

F)− 1 ≤ k0 − 1 ≤ n, hence
we have F • E{C1} Rn F • E{C2}.

The transition from P1 comes from the communication between two finite pro-
cesses, between a finite process and P , or between a finite process and C. We
only deal with communication between finite processes, the other cases are sim-

ilar. Suppose we have P k0

F

a
−→ F and P k1

F

a
−→ C = νb̃.〈T 〉U . Then we have

P1
τ
−→ C{P ′{ ˜Fk ◦ P k

F , R̃
1
l ◦ P l

F , R
1
k0

◦ (F ◦ T), R1
k1

◦ U/X̃,Xk0
, Xk1

}}
∆
= P ′

1

where P ′ is obtained from P by scope extrusion of names b̃. Process P2 matches
with the following transition:

P2
τ
−→ C{P ′{G̃k ◦ P k

F ,
˜S1
l ◦ P l

F , S
1
k0

◦ (F ◦ T), S1
k1

◦ U/X̃,Xk0
, Xk1

}}
∆
= P ′

2

We have d(F ◦ T) = d(F) ≤ d(P k0

F) − 1 ≤ k0 − 1 ≤ n and d(S) = d(C) ≤
d(P k1 − 1)− 1 ≤ k1 − 1 ≤ n, hence we have P ′

1 Rn P ′
2, as required.

Similarly, we can prove that R1
n is a strong early context bisimilarity.

Let (mk) be a sequence of pairwise distinct fresh names. Let Q1
∆
= m1.0

and Qk+1
∆
= mk+1.Qk for all k > 1.

Lemma 47. For all n, we have Fn ◦ Qn+1 ≁ Gn ◦ Qn+1.

Proof. We proceed by induction on n. For n = 0, we have F0 ◦ m1.0 = m1.0 ≁

m1.0 | m1.0 = G0 ◦ m1.0, as wished.
Let n > 0. We have

Fn ◦ Qn+1
mn+1

−−−−→ νan.(an[Qn] | an.Fn−1)
∆
= P1,

and Gn ◦ Qn+1 can match only with transition

Gn ◦ Qn+1
mn+1

−−−−→ νan.(an[Qn] | an.Gn−1)
∆
= P2.

After passivation of locality an, we have

P1
τ
−→ νan.(Fn−1 ◦ Qn),

and P2 can match only with

P2
τ
−→ νan.(Gn−1 ◦ Qn).

Since we have an /∈ fn(Fn−1 ◦ Qn) (respectively an /∈ fn(Gn−1 ◦ Qn)), we have
νan.(Fn−1 ◦ Qn) ∼ Fn−1 ◦ Qn (respectively νan.(Gn−1 ◦ Qn) ∼ Gn−1 ◦ Qn).
By induction, we have Fn−1 ◦ Qn ≁ Gn−1 ◦ Qn, hence we have Fn ◦ Qn+1 ≁

Gn ◦ Qn+1.

70

Appendix C. Normal Bisimilarity in HOP

In this section, we prove the main theorem (Theorem 14) of Section 7.2:
testing processes using a trigger is enough to establish bisimilarity in HOP.

Lemma 48. Let E be an evaluation context and P
α
−→ A. Then E{P}

α
−→ E′{A}

and the hole in E′ is not under a replication or choice operator.

Proof. Immediate by induction on E, and considering the rules Par, Loc,
Replic, Sum.

Lemma 49 (Lemma 14). Let P,Q such that fv(P,Q) ⊆ {X} and m,n two
names which do not occur in P,Q. Suppose we have P{m.n.0/X}

.
∼l Q{m.n.0/X}

and P{m.n.0/X}
m
−→ P ′{m.n.0/X}{n.0/Y } = Pn matched by Q{m.n.0/X}

m
−→

Q′{m.n.0/X}{n.0/Y } = Qn with Pn
.
∼l Qn. One of the following holds:

• There exists P1, Q1 such that Pn ≡ n.0 | P1, Qn ≡ n.0 | Q1 with P1
.
∼l Q1.

• There exists a1, . . . ak, P1 . . . Pk+1, Q1 . . . Qk+1 such that

Pn ≡ a1[. . . ak−1[ak[n.0 | Pk+1] | Pk] | Pk−1 . . .] | P1

and
Qn ≡ a1[. . . ak−1[ak[n.0 | Qk+1] | Qk] | Qk−1 . . .] | Q1

and for all 1 ≤ j ≤ k + 1, Pj
.
∼l Qj.

Proof. Since Pn can only perform one
n
−→ transition, we can detect if n.0 is in a

locality or not: if there exists a transition Pn
a
−→ 〈R′n〉S′

n for some a such that

R′
n may perform a transition

n
−→, then the transition is a passivation and the

process n.0 is in a locality in Pn. Otherwise, n.0 is not in a locality.
By lemma 48, n.0 is only under localities and parallel compositions in Pn

and Qn.
We show that if n.0 is not under a locality in Pn, it is also not under a

locality in Qn. Suppose n.0 is not in a locality in Pn and is in a locality in

Qn. We have Qn
a
−→ 〈E{n.0}〉Q′′ for some a,E, Q′′. These transitions can only

be matched by a passivation of n.0 in Pn, which is impossible by hypothesis,
hence a contradiction. We have the same reasoning if n.0 is in a locality in Pn

and not in a locality in Qn. Therefore if n.0 is not in a locality in Pn, it is
not in a locality in Qn. Consequently in this case, there exists P1, Q1 such that
Pn ≡ n.0 | P1 and Qn ≡ n.0 | Q1. Hence we have Pn

n
−→ P1, which can only be

matched by Qn
n
−→ Q1, so we have P1

.
∼l Q1.

We suppose now that n.0 is under a locality in Pn and Qn. We prove that
n.0 is under the same hierarchy of localities in Pn, Qn, and the existence of
the pairwise bisimilar processes defined in the lemma. Suppose n.0 is under
k localities a1, . . . ak in Pn and under l localities b1, . . . bl in Qn, with k >

l. We have Pn
a1−→ 〈P ′

1{n.0/Xi}〉P1, so there exists Q1, Q
′
1 such that Qn

bi−→

71

〈Q′
1{n.0/Xj}〉Q1 with a1 = bi and P ′

1{n.0/Xi}
.
∼l Q

′
1{n.0/Xj}. The process is

under k − 1 localities in P ′
1 and under l − i localities in Q′

1, with i ≥ 1. After l
passivation, we have P ′

l such that the process n.0 is under k− l localities, and a
process Q′

l such that the process n.0 is not under a locality and with P ′
l

.
∼l Q

′
l,

which is not possible (same proof as in the first case). If k < l, we have a similar
contradiction by reasoning on Q, consequently we have k = l.

Therefore there exists a1 . . . ak, P1 . . . Pk, Q1 . . . Qk, such that Pn ≡
a1[. . . ak−1[ak[n.0 | Pk+1] | Pk] | Pk−1 . . .] | P1 and Qn ≡ a1[. . . ak−1[ak[n.0 |
Qk+1] | Qk] | Qk−1 . . .] | Q1. Let P ′

i (resp Q′
i) be the process inside the lo-

cality ai in Pn (resp Qn). We have Pn
a1−→ 〈P ′

1〉P1, with P ′
1

n
−→, which is

matched by a passivation Qn
ai−→ 〈Q′

i〉Q
′ such that P1

.
∼l Q′, P ′

1
.
∼l Q′

i and

Q′
i

n
−→. If i 6= 1, we have the process under k − 1 localities in P ′

1 and in
k − i < k − 1 localities in Q′

i, with P ′
i

.
∼l Q′

i: contradiction. Hence we have
i = 1, P1

.
∼l Q′ = Q1 and P ′

1
.
∼l Q′

1. By induction on 1 ≤ j ≤ k, we have
Pj

.
∼l Qj and P ′

k ≡ n.0 | Pk+1
.
∼l n.0 | Qk+1 ≡ Q′

k. Since the reduction

P ′
k

n
−→ Pk+1 can only be matched Q′

k

n
−→ Qk+1, we have Pk+1

.
∼l Qk+1, conse-

quently we have the required result.

In the following, we write Xi the i-th occurrence of X in a process P .

Lemma 50. Let P,Q two open processes such that fv(P,Q) ⊆ {X} and m,n
two names which do not occur in P,Q. Let R,R′ two closed processes such that
R

.
∼l R

′. Suppose we have P{m.n.0/X}
.
∼l Q{m.n.0/X} and P{m.n.0/X}

m
−→

P ′{m.n.0/X}{n.0/Xi} = Pn is matched by the transition Q{m.n.0/X}
m
−→

Q′{m.n.0/X}{n.0/Xj} = Qn (with Pn
.
∼l Qn). Then we have the relation

P ′{m.n.0/X}{R/Xi}
.
∼l Q

′{m.n.0/X}{R′/Xj}.

Proof. By lemma 49, we have two cases to consider:

• Suppose we have Pn = n.0 | P1, Qn = n.0 | Q1 with P1
.
∼l Q1. Since

P1
.
∼l Q1, R

.
∼l R

′ and
.
∼l is a congruence we have R | P1

.
∼l R

′ | Q1 by
transitivity, consequently the result holds.

• Suppose we have Pn = a1[. . . ak−1[ak[n.0 | Pk+1] | Pk] | Pk−1 . . .] | P1

and Qn = a1[. . . ak−1[ak[n.0 | Qk+1] | Qk] | Qk−1 . . .] | Q1 and for all
1 ≤ j ≤ k + 1, Pj

.
∼l Qj . Since Pk+1

.
∼l Qk+1, R

.
∼l R′,

.
∼l is a

congruence and is transitive, we have R | Pk+1
.
∼l R

′ | Qk+1. So we have
ak[R | Pk+1] | Pk

.
∼l ak[R

′ | Qk+1] | Qk. By induction on 1 ≤ j ≤ k, we
have aj [. . . ak[R | Pk+1] | Pk . . .] | Pj

.
∼l aj [. . . ak[R

′ | Qk+1] | Qk . . .] | Qj ,
so we have the required result with j = 1.

Theorem 19 (Theorem 14). Let P,Q two open processes such that fv(P,Q) ⊆
{X} and m,n two names which do not occur in P,Q. If P{m.n.0/X}

.
∼l

Q{m.n.0/X}, then for all closed processes R, we have P{R/X}
.
∼l Q{R/X}

72

Proof. We show that the relation R= {(P{R/X}, Q{R/X}), P{m.n.0/X}
.
∼l

Q{m.n.0/X},m, n not in P,Q} is a strong bisimulation. Since the relation is
symmetrical, it is enough to prove that it is a simulation. We make a case
analysis on the transition from P{R/X}:

The transition comes only from P . We have P{R/X}
α
−→ A{R/X} with P

α
−→

A. Hence we have P{m.n.0/X}
α
−→ A{m.n.0/X}. We distinguish the three

cases for A:

• Process case P ′. Since P{m.n.0/X}
.
∼l Q{m.n.0/X}, there exists Q′ such

thatQ{m.n.0/X}
α
−→ Q′ and P ′{m.n.0/X}

.
∼l Q

′. Sincem does not occur

in P,Q, we have α 6= m, so the transition Q{m.n.0/X}
α
−→ Q′ comes only

from Q. Therefore Q′ can be written Q′ = Q′′{m.n.0/X} for some Q′′,

and we have Q{R/X}
α
−→ Q′′{R/X}. We have P ′{R/X} R Q′′{R/X},

hence the result holds.

• Abstraction case F . Since P{m.n.0/X}
.
∼l Q{m.n.0/X}, there exists

F ′ such that Q{m.n.0/X}
α
−→ F ′ and (F{m.n.0/X}) ◦ T

.
∼l F ′ ◦ T

for all processes T . Since the transition is on a higher-order name, we
have α 6= m, so the transition Q{m.n.0/X}

α
−→ F ′ comes only from Q.

Therefore F ′ can be written F ′ = F ′′{m.n.0/X} for some F ′′, and we have

Q{R/X}
α
−→ F ′′{R/X}. Since T is a closed process, we have (F{R/X}) ◦

T = (F ◦ T){R/X} R (F ′′ ◦ T){R/X} = (F ′′{R/X}) ◦ T , hence the
result holds.

• Concretion case C = 〈T 〉S. Since P{m.n.0/X}
.
∼l Q{m.n.0/X}, there

exists C ′ = 〈T ′〉S′ such that Q{m.n.0/X}
α
−→ C ′, T{m.n.0/X}

.
∼l

T ′ and S{m.n.0/X}
.
∼l S′. We have α 6= m, so the transition

Q{m.n.0/X}
α
−→ C ′ comes only from Q. Therefore T ′, S′ can be writ-

ten T ′ = T ′′{m.n.0/X} and S′ = S′′{m.n.0/X} for some T ′′, S′′, and we

have Q{R/X}
α
−→ (〈T ′′〉S′′){R/X}. We have T{R/X} R T ′′{R/X} and

S{R/X} R S′′{R/X}, hence the result holds.

The transition comes only from R. A copy of R is in an evaluation context
and perform a transition. We write Xi the occurrence of X where the copy
of R performs the transition. We have P{R/X}

α
−→ P ′{R/X}{A/Xi} with

R
α
−→ A. Since Xi is in an evaluation context, we have P{m.n.0/X}

m
−→

P ′{m.n.0/X}{n.0/Xi}. Since we have P{m.n.0/X}
.
∼l Q{m.n.0/X}, there

exists a transition Q{m.n.0/X}
m
−→ Q′{m.n.0/X}{n.0/Xj} (an occurrence of

X, noted Xj , is in an evaluation context in Q) with P ′{m.n.0/X}{n.0/Xi}
.
∼l

Q′{m.n.0/X}{n.0/Xj}. Consequently we have Q{R/X}
α
−→ Q′{R/X}{A/Xj}.

We distinguish three cases for A:

• Process caseR′. We have P ′{m.n.0/X}{R′/Xi}
.
∼l Q

′{m.n.0/X}{R′/Xj}
by lemma 50, so we have P ′{R/X}{R′/Xi} R Q′{R/X}{R′/Xj} as re-
quired.

73

• Abstraction case F . By lemma 50, we have P ′{m.n.0/X}{F ◦ T/Xi}
.
∼l

Q′{m.n.0/X}{F ◦ T/Xj} for all T . We have (P ′{R/X}{F/Xi}) ◦ T =
P ′{R/X}{F ◦ T/Xi} R Q′{R/X}{F ◦ T/Xi} = (Q′{R/X}{F/Xj}) ◦ T
as required.

• Concretion case 〈S〉T . By lemma 50, we have P ′{m.n.0/X}{T/Xi}
.
∼l

Q′{m.n.0/X}{T/Xj}, so we have P ′{R/X}{T/Xi} R Q′{R/X}{T/Xj}.
Moreover we have S

.
∼l S, and since

.
∼l⊆R (with P,Q closed processes),

we have S R S and P ′{R/X}{T/Xi} R Q′{R/X}{T/Xj} as required.

A higher-order communication takes place between R and P . A copy of R is in
an evaluation context and communicate with a sub-process P ′ of P . We have
two cases to consider.

The first possibility is R
a
−→ F and P ′ a

−→ 〈T{R/X}〉S{R/X} for some a.
We have the transition

P{R/X}
τ
−→ E1,R{E2,R{F ◦ (T{R/X})} | E3,R{S{R/X}}}

for some evaluation contexts E1,R,E2,R,E3,R (the subscript R means that oc-
currences of X in the context are filled with R). We have

P{m.n.0/X}
m
−→

a
−→

〈T{m.n.0/X}〉E1,m.n.0{E2,m.n.0{n.0} | E3,m.n.0{S{m.n.0/X}}}

so by bisimilarity hypothesis, there exists T ′,E′ such that we have

Q{m.n.0/X}
m
−→

a
−→ 〈T ′{m.n.0/X}〉E′

m.n.0{n.0}

and the messages and continuations are bisimilar, i.e. we have

T{m.n.0/X}
.
∼l T

′{m.n.0/X}

and

E1,m.n.0{E2,m.n.0{n.0} | E3,m.n.0{S{m.n.0/X}}}
.
∼l E

′
m.n.0{n.0}

From the relation on messages, we have

F ◦ (T{m.n.0/X})
.
∼l F ◦ (T ′{m.n.0/X})

Hence by lemma 50 and the relation on continuations, we have

E1,m.n.0{E2,m.n.0{F ◦ (T{m.n.0/X})} | E3,m.n.0{S{m.n.0/X}}}
.
∼l E

′
m.n.0{F ◦ (T ′{m.n.0/X})}

We have Q{R/X}
τ
−→ E′

R{F ◦ (T ′{R/X})} and

E1,R{E2,R{F ◦ (T{R/X})} | E3,R{S{R/X}}} R E
′
R{F ◦ (T ′{R/X})}

74

hence the result holds.

The second possibility is R
a
−→ 〈T 〉S and P ′ a

−→ F{R/X} for some a. We
have the transition

P{R/X}
τ
−→ E1,R{E2,R{S} | E3,R{(F{R/X}) ◦ T}}

for some evaluation contexts E1,R,E2,R,E3,R. We have the transitions

P{m.n.0/X}
m
−→

a
−→ E1,m.n.0{E2,m.n.0{n.0} | E3,m.n.0{F{m.n.0/X}}}

so there exists F ′ such that

Q{m.n.0/X}
m
−→

a
−→ E

′
1,m.n.0{E

′
2,m.n.0{n.0} | E

′
3,m.n.0{F

′{m.n.0/X}}}

for some contexts and we have

E1,m.n.0{E2,m.n.0{n.0} | E3,m.n.0{(F{m.n.0/X}) ◦ T}}
.
∼l E

′
1,m.n.0{E

′
2,m.n.0{n.0} | E

′
3,m.n.0{(F

′{m.n.0/X}) ◦ T}}

By lemma 50, we have the relation

E1,m.n.0{E2,m.n.0{S} | E3,m.n.0{(F{m.n.0/X}) ◦ T}}
.
∼l E

′
1,m.n.0{E

′
2,m.n.0{S} | E

′
3,m.n.0{(F

′{m.n.0/X}) ◦ T}}

We have Q{R/X}
τ
−→ E′

1,R{E
′
2,R{S} | E′

3,R{(F
′{R/X}) ◦ T}} and

E1,R{E2,R{S} | E3,R{(F{R/X}) ◦ T}}

R E
′
1,R{E

′
2,R{S} | E

′
3,R{(F

′{R/X}) ◦ T}}

hence the result holds.

A higher-order communication takes place between two copies of R. Two copies
of R are in evaluation contexts and communicate. There exists F, 〈T 〉S such

that R
a
−→ F and R

a
−→ 〈T 〉S for some a. We note Xi, Xj the two occurrences

of X in P where the transitions are performed: the transition can be written
P{R/X}

τ
−→ P ′′{R/X}{F ◦ T/Xi}{S/Xj}.

We have P{R/X}
a
−→ P ′{R/X}{F/Xi}. Since Xi is in an evaluation con-

text, we have P{m.n.0/X}
m
−→ P ′{m.n.0/X}{n.0/Xi}, so there exists Q′ such

that Q{m.n.0/X}
m
−→ Q′{m.n.0/X}{n.0/Xk} and P ′{m.n.0/X}{n.0/Xi}

.
∼l

Q′{m.n.0/X}{n.0/Xk}. Since F ◦ T
.
∼l F ◦ T , we have P ′{m.n.0/X}{F ◦

T/Xi}
.
∼l Q

′{m.n.0/X}{F ◦ T/Xk} by lemma 50.

Since Xj is in an execution context, we have P ′{m.n.0/X}{F ◦ T/Xi}
m
−→

P ′′{m.n.0/X}{F ◦ T/Xi}{n.0/Xj}. Consequently by the previous equivalence

there exists Q′′ such that Q′{m.n.0/X}{F ◦ T/Xk}
m
−→ Q′′{m.n.0/X}{F ◦

T/Xk}{n.0/Xl} and P ′′{m.n.0/X}{F ◦ T/Xi}{n.0/Xj}
.
∼l Q

′′{m.n.0/X}{F ◦

75

T/Xk}{n.0/Xl}. Since S
.
∼l S, by lemma 50 we have P ′′{m.n.0/X}{F ◦

T/Xi}{S/Xj}
.
∼l Q′′{m.n.0/X}{F ◦ T/Xk}{S/Xl}. We have Q{R/X}

τ
−→

Q′′{R/X}{F ◦ T/Xk}{S/Xl} and the relation P ′′{R/X}{F ◦ T/Xi}{S/Xj} R
Q′′{R/X}{F ◦ T/Xk}{S/Xl}, hence the result holds.

76

