G. Lavee, E. Rivlin, and M. Rudzsky, Understanding Video Events: A Survey of Methods for Automatic Interpretation of Semantic Occurrences in Video, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol.39, issue.5, pp.489-504, 2009.
DOI : 10.1109/TSMCC.2009.2023380

V. Kellokumpu, G. Zhao, and M. Pietik?inen, Human Activity Recognition Using a Dynamic Texture Based Method, The British Machine Vision Conference, 2008.

L. Chen, C. D. Nugent, and H. Wang, A Knowledge-Driven Approach to Activity Recognition in Smart Homes, IEEE Transactions on Knowledge and Data Engineering, vol.24, issue.6, pp.961-974, 2012.
DOI : 10.1109/TKDE.2011.51

D. Xu and S. Chang, Visual Event Recognition in News Video using Kernel Methods with Multi-Level Temporal Alignment, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.1985-1997, 2008.
DOI : 10.1109/CVPR.2007.383226

A. S. Ogale, A. Karapurkar, G. Guerra-filho, and Y. Aloimonos, View Invariant Identification of Pose Sequences for Action Recognition, Presented ate the Video Analysis Contect Extraction Workshop (VACE), 2004.

S. Zaidenberg, B. Boulay, and F. Bremond, A Generic Framework for Video Understanding Applied to Group Behavior Recognition, 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance, 2012.
DOI : 10.1109/AVSS.2012.1

URL : https://hal.archives-ouvertes.fr/hal-00702179

S. Sadanand and J. J. Corso, Action bank: A high-level representation of activity in video, 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.1234-1241, 2012.
DOI : 10.1109/CVPR.2012.6247806

D. Summers-stay, C. L. Teo, Y. Yang, C. Fermller, and Y. Aloimonos, Using a minimal action grammar for activity understanding in the real world, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.4104-4111, 2012.
DOI : 10.1109/IROS.2012.6385483

T. Banerjee, M. Rantz, M. Li, M. Popescu, E. Stone et al., Monitoring Hospital Rooms for Safety Using Depth Images, Gerontechnology. AI for Gerontechnology, 2012.

C. Pramerdorfer, Evaluation of Kinect Sensors for Fall Detection, Computer Graphics and Imaging / 798: Signal Processing, Pattern Recognition and Applications, 2013.
DOI : 10.2316/P.2013.798-120

S. Bak, E. Corvee, F. Bremond, and M. Thonnat, Multiple-shot human re-identification by Mean Riemannian Covariance Grid, 2011 8th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2011.
DOI : 10.1109/AVSS.2011.6027316

URL : https://hal.archives-ouvertes.fr/inria-00620496

J. Badie, S. Bak, S. Serban, and F. Bremond, Recovering People Tracking Errors Using Enhanced Covariance-Based Signatures, 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance, 2012.
DOI : 10.1109/AVSS.2012.90

URL : https://hal.archives-ouvertes.fr/hal-00761322

T. Vu, F. Bremond, and M. Thonnat, Automatic Video Interpretation : A Novel Algorithm for Temporal Scenario Recognition, The Eighteenth International Joint Conference on Artificial Intelligence (IJCAI'03), pp.9-15, 2003.

J. F. Allen, Maintaining knowledge about temporal intervals, Communications of the ACM, vol.26, issue.11, pp.832-843, 1983.
DOI : 10.1145/182.358434

A. T. Nghiem, F. Bremond, and M. Thonnat, Controlling background subtraction algorithms for robust object detection, 3rd International Conference on Imaging for Crime Detection and Prevention (ICDP 2009), 2009.
DOI : 10.1049/ic.2009.0273

URL : https://hal.archives-ouvertes.fr/inria-00502932

D. P. Chau, F. Bremond, and M. Thonnat, A multi-feature tracking algorithm enabling adaptation to context variations, 4th International Conference on Imaging for Crime Detection and Prevention 2011 (ICDP 2011), 2011.
DOI : 10.1049/ic.2011.0127

URL : https://hal.archives-ouvertes.fr/inria-00632245