
HAL Id: hal-00904409
https://hal.inria.fr/hal-00904409

Submitted on 17 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Remodularization Analysis Using Semantic Clustering
Gustavo Santos, Marco Tulio Valente, Nicolas Anquetil

To cite this version:
Gustavo Santos, Marco Tulio Valente, Nicolas Anquetil. Remodularization Analysis Using Seman-
tic Clustering. 1st CSMR-WCRE Software Evolution Week, Feb 2014, Antwerp, Belgium. 2014,
<10.1109/CSMR-WCRE.2014.6747174>. <hal-00904409>

https://hal.inria.fr/hal-00904409
https://hal.archives-ouvertes.fr

Remodularization Analysis Using
Semantic Clustering

Gustavo Santos
and Marco Tulio Valente

Department of Computer Science
UFMG, Brazil

{gustavojss, mtov}@dcc.ufmg.br

Nicolas Anquetil
RMoD Team

INRIA, Lille, France
nicolas.anquetil@inria.fr

Abstract—In this paper, we report an experience on using
and adapting Semantic Clustering to evaluate software remod-
ularizations. Semantic Clustering is an approach that relies on
information retrieval and clustering techniques to extract sets
of similar classes in a system, according to their vocabularies.
We adapted Semantic Clustering to support remodularization
analysis. We evaluate our adaptation using six real-world remod-
ularizations of four software systems. We report that Semantic
Clustering and conceptual metrics can be used to express and
explain the intention of the architects when performing common
modularization operators, such as module decomposition.

Index Terms—Software Architecture; Software Maintenance;
Remodularization; Text Processing; Information Retrieval.

I. INTRODUCTION

As a software evolves, its structure inevitably gets more
complex and harder to understand and modifications become
more difficult to implement [1]. Remodularization tasks are
then recommended to reduce the effort required in future main-
tenance and to restore the original architecture. More specif-
ically, we define as remodularization a major restructuring in
the system’s architecture, with the central goal of improving
its internal quality and therefore without adding new features
or fixing bugs. In most cases, remodularizations are guided by
structural aspects, like static dependencies between architec-
tural entities [2]. For example, a common recommendation is
that cohesion should be maximized and coupling should be
minimized, which can be followed manually or with the help
of semi-automatic remodularization tools [3].

Despite that general recommendation, the fact is that there
is no solid agreement on what constitutes a good architecture.
Architectural quality is a subjective concept that is difficult
to measure by conventional quality metrics. For example, re-
cent work started to question the structural cohesion/coupling
dogma, stating that “coupling and cohesion do not seem to
be the dominant driving forces when it comes to modular-
ization” [2, 4]. Other work showed that structural cohesion
metrics usually present divergent results when used to evaluate
the same refactoring actions [5]. On the other hand, there
is also recent research proposing a new set of metrics for
both cohesion and coupling, named conceptual quality metrics.
Such metrics are calculated considering lexical information as
described in source code identifiers and comments [6, 7, 8]. In
fact, by just reading the identifiers and comments in a block

of code even an unfamiliar software maintainer can usually
get an initial understanding of its semantics and intention [9].
The terms extracted from identifiers and comments are usually
referred as the system’s vocabulary.

In this paper, our goal is to investigate an approach for
evaluating architectural quality using conceptual metrics. More
specifically, we report an experiment on using and adapting
Semantic Clustering to evaluate software remodularizations.
Semantic Clustering is an approach that relies on information
retrieval and clustering techniques to extract sets of similar
classes in a system according to their vocabularies [9, 10].
We adapted Semantic Clustering to extract different numbers
of clusters, depending on the variability in the vocabulary. We
also adapted the technique to support the comparison of two
versions of a system before and after a given remodularization
effort, regarding their vocabularies.

We evaluate our adaptation of Semantic Clustering using
six real-world remodularizations of four different systems.
We extracted clusters for each remodularization and evaluated
them using a set of metrics that measure conceptual cohesion,
spread, and focus [11]. Recent work presented modularization
operators that are likely to occur in any remodularization.
We also map major changes in conceptual quality with these
modularization operators. As already reported in other stud-
ies [2, 12], we show that module decomposition is a common
operation in these remodularizations. In this case, the new
packages are usually more cohesive than the original package
(in conceptual terms) and they also exhibit a higher degree of
focus (i.e., usually there is a major and dominant concept in
the new packages). On the other hand, the values of spread
usually increase, because there are more packages associated
to the concept.

The contributions of this paper are:

• We propose a methodology to evaluate software
remodularization using Semantic Clustering. We address
the configuration of the approach in order to obtain
better clusters and we also present a tool that supports
our adapted methodology.

• We analyze the occurrence of modularization operators
in four systems, by correlating major changes in
conceptual quality to operators that were applied. We

found that module decompositions are the operations
with the highest impact on semantic clusters. This
operation tends to increase both the spread and focus of
the semantic clusters and to derive new packages with
higher conceptual cohesion (> 0.40).

The remainder of this paper is organized as follows. Sec-
tion II presents a catalog of common modularization operators
in software maintenance. Section III describes the original
Semantic Clustering technique. Section IV describes an appli-
cation of the technique to remodularization analysis. Section V
describes the conceptual metrics we used in our analysis.
Section VI presents the study on the remodularizations of
JHotDraw and Section VII discuss threats to validity. Finally,
Section VIII presents related work and Section IX concludes.

II. REMODULARIZATION DEFINITION AND OPERATORS

Remodularization, or Large Scale Refactoring in Fowler’s
definition, is a major change in design and implementation
restrict to architecture [13]. It is performed in order to organize
the architectural entities in modules, with well-defined inter-
faces, and preserving the code’s behavior. The new organiza-
tion might consider different aspects of relationship: common
change, high coupling or functional aggregation [14, 15].

Although the importance of remodularization is quite well-
known, it is a time and personnel demanding task. It requires
a lot of program comprehension in order to point the changes
to be made. Unlike small scale refactoring, there are no
fast refactoring examples or some variety of tools to apply
refactoring [12, 16]. Indeed, because of it, remodularization is
often applied in an advanced stage of architectural erosion [2].
There are few guidelines, lessons learned or patterns to follow
when starting to modularize a legacy system.

Rama and Patel formalized six elementary operators most
likely to occur in any remodularization [12]. They validated
these operators in three remodularization cases, discussing
specific situations to which every operator was applied. A
short description of each operator is given as follows:

• Module Decomposition (MD): The most common
operator basically consists in separating a module into
new smaller modules.

• Module Union (MU): The opposite operator of Module
Decomposition consists in creating a bigger module
from smaller ones.

• File Transferal (FT): Typically, a file is transfered to
another module. This is similar to Move Class [13].

• Function Transferal (FuT): Similar to Move Method,
this operator moves one function from one file to
another [13].

• Promote Function to API (PF): In OO systems, this
operator increases the visibility of a method (from
private to public, for example).

• Data Structure Transferal (DT): Basically, this operator
moves one attribute to another file.

Our study maps major conceptual changes in the
architecture with these operators. We focus on architectural
changes, thus it is expected that the first three operators
(Module Decomposition, Module Union and File Transferal)
must be the most occurring operators in our evaluation. In fact,
when creating modules or moving classes from modules, we
are actually re-defining the module’s vocabulary. Moreover,
we consider one more operator, restrict to conceptual analysis
and defined in Fowler’s refactoring catalog [13]:

• Rename (RN): Changes the name of an entity, when its
former name is not intuitive for developers.

Although we apply these modularization operators to four
systems, we do not propose a methodology to identify refactor-
ing opportunities. We focus on how these operators actually
impact the conceptual quality after a remodularization. This
study is presented in Section VI.

III. SEMANTIC CLUSTERING

Semantic Clustering is an Architecture Recovery technique
originally proposed by Kuhn et al. [9, 10] to extract sets of
similar classes in a system, according to the lexical similarity
of their vocabularies.1 It also supports a visualization on how
these sets are scattered in the system’s package structure. Four
main functions are proposed to generate semantic clusters:
text extraction and weighting from source code, term indexing
with Latent Semantic Indexing, clustering classes with similar
vocabularies and visualization of how the proposed clusters
are distributed over the package structure. In the following
paragraphs, we detail these functions.

Extraction and Weighting: Semantic Clustering views classes
as documents, and the vocabulary of a class is extracted
from identifiers and comments. Thus, keywords from the
programming language are discarded. Terms are obtained
by splitting identifiers with the camel case and underscore
naming convention. For example, ClassName is separated
into class and name. Common words that do not add meaning
to the text, called stopwords, are excluded. A stemming
function is then applied to remove affixes and suffixes.
For example, generation, generate, and generated have
the same stem generat. As a result of this preprocessing
task, a term-document matrix is created. Each row of this
matrix represents a distinct term in the vocabulary, and each
column represents a class. Terms are weighted using a tf-idf
function to punish words that appear in many documents [17].

Indexing: Given a term-document matrix, Semantic Clustering
relies on Latent Semantic Indexing (LSI), an information
retrieval technique widely used in many applications, such as
feature location and program comprehension [18, 19]. LSI is
used to represent the term-document matrix in a smaller num-
ber of terms and with minimal loss of information [20, 21].
Clustering: The clustering function works on this compacted
matrix, in which each document is represented as a vector

1In this paper, we decide to use the original name of the technique, as
proposed by Kuhn et al. However, we acknowledge that the term semantic in
this case denotes lexical-based relations.

and the similarity of a pair of documents is calculated by the
cosine of the smallest angle formed by such vectors. After
calculating the similarity between each pair of documents, an
agglomerative hierarchical clustering algorithm is executed.
Each class is assigned to a single cluster that represents a
domain concept. The technique also generates a small set of
relevant terms, called semantic topics, which represents the
meaning (or intention) of each cluster.

Visualization: The clusters resulted of Semantic Clustering
are visualized through the use of Distribution Maps [11].
A Distribution Map is a visualization in which packages
are displayed as boxes, with filled squares representing the
package’s classes (Figure 2). The color of a class represents
the cluster to which the class belongs. In a Distribution Map,
two kinds of information are displayed: (i) the structural
information denotes how the classes are organized in packages;
(ii) the conceptual information relates to the distribution of
semantic clusters through classes’ colors.

A. Semantic Clustering Stop Criterion

Kuhn et al. presented a case study in which they propose
a fixed number of nine clusters for Semantic Clustering [9].
However, in our initial experiments with the technique, we
observed that the number of clusters depends on the size of
the system. Otherwise, for large systems with hundreds of
classes, the generated clusters will contain many classes and
therefore they will be difficult to analyze. To address this
issue, we propose to stop the hierarchical clustering using a
similarity threshold.

The proposed agglomerative hierarchical clustering ap-
proach starts with each class in an unitary cluster. At each step
of the algorithm, the pair of clusters with the highest similarity
is merged. After that, all similarities are recalculated, until a
given number of clusters is obtained. In this case, we replaced
the stop criteria to be based on a threshold: pairs of clusters
will be merged until all pairs have similarity lower than a
given threshold. Thus, the algorithm stops with the current
configuration of clusters.

This strategy ensures that different number of clusters can
be extracted from different systems, depending on how the
systems’ vocabularies are similar to each other. Despite that,
we still have to define this threshold. Particularly, a high
threshold should not be used in systems whose classes are
loosely similar, since the algorithm will stop early with a
large number of clusters. To address this issue, we propose to
execute the clustering algorithm several times, changing the
threshold value. Finally, we select the threshold that produces
highly cohesive clusters (according to CCCluster metric in
Section V) and in a plausible number. Section VI-B presents
the thresholds we selected for our dataset.

IV. SEMANTIC CLUSTERING FOR REMODULARIZATION
ANALYSIS

In this section, we present our application of Semantic
Clustering in order to support remodularization analysis. First,
we present in Section IV-A the algorithm to compare two

versions of a given system with a conceptual point of view.
Next, Section IV-B presents the use of Distribution Maps to
support visual analysis. And finally, we report a prototype
tool that supports our improvements to Semantic Clustering
in Section IV-C.

A. Semantic Clusters Comparison
As described in Section III, we visualize the clusters that

Semantic Clustering generates for a system in a Distribution
Map. However, in this work we want to compare the semantic
clusters before and after a remodularization. For this purpose,
a naive solution would be to apply Semantic Clustering sepa-
rately for each version and to compare the generated clusters.
However, these clusters might not be comparable. The creation
and deletion of classes might change the vocabulary and create
new similarities, which can lead to new clusters. Thus, the
number of clusters before and after might not be the same.

We propose an algorithm to support the comparison of
clusters computed by Semantic Clustering, regarding different
versions of a system. By using this algorithm, Semantic
Clustering is applied only to the first version (before the
remodularization), and then we map every class in the newer
version to a previously calculated cluster. The algorithm is
presented in Figure 1. Basically, it receives as input the
clusters extracted for the version before the modularization
(Clustersbefore) and the classes in the version after the modu-
larization effort. The algorithm generates as output a new list
of clusters (Clustersafter). In this list, each class in the newer
version is mapped to one of the original clusters.

Input: Clustersbefore, Cafter

Output: Clustersafter
1: Clustersafter = ∅
2: for c ∈ Cafter do
3: bestSimilarity = −∞
4: bestCluster = −1
5: for cluster ∈ Clustersbefore do
6: ~vclass = classAsV ector(c)
7: ~vcluster = clusterAsV ector(cluster)
8: s = cosineSimilarity(~vcluster, ~vclass)
9: if s > bestSimilarity then

10: bestSimilarity = s
11: bestCluster = cluster.index
12: end if
13: end for
14: assign(Clustersafter(bestCluster), c)
15: end for

Fig. 1. Distribution Map Comparison Algorithm

As discussed in Section III, a column of the term-document
matrix represents a class. Thus, for each class of the newer
version of the system, we extract its representing column of the
matrix (line 6). A cluster is not represented in the matrix, so
we compute its vector as the sum of the vectors of its classes
(line 7). Then, the algorithm tests the similarity of a class and
cluster candidates. This similarity is calculated as the cosine
similarity of their respective vectors (line 9). Each class is then
assigned to the cluster that returns the best similarity in the
computed tests (line 14).

B. Visualization Support

The result of the comparison algorithm is used to gen-
erate two Distribution Maps, as presented in Figure 2. In
this figure, classes added after the remodularization are dis-
played as blank squares in the first Distribution Map. Sim-
ilarly, classes removed after the remodularization are dis-
played as blank squares in the second Distribution Map.
For example, by analyzing the Distribution Maps, it is
possible to visualize that eleven classes were created in
org.jhotdraw.app package, and twelve classes were re-
moved. As another example, the org.jhotdraw.tool pack-
age was created with twenty classes. Similarly, the package
org.apache.batik.ext.awt was removed.

(a) Before (b) After

Fig. 2. Distribution Maps before and after remodularization in JHotDraw

C. Tool Support

We implemented a prototype tool, called TopicViewer2, that
supports our improvements to Semantic Clustering (as de-
scribed in Section IV-A). TopicViewer’s architecture includes
components for text extraction from source code, Semantic
Clustering operations and Distribution Map displaying. The
tool is a desktop application and was designed to allow its
use with other textual documents, like bug reports, external
documentation, task definitions, and commits.

V. CONCEPTUAL METRICS

This section presents the conceptual metrics we used in our
case studies. In this work, we do not make use of coupling
metrics. As stated by Taube-Schock et al. [22], high coupling
is not avoidable, and even natural, during the evolution of a
software. In addition to the cohesion metrics, we also used
two metrics for measuring the concentration and scattering of

2http://code.google.com/p/topic-viewer.

semantic clusters across the package structure. Both metrics
were proposed by Ducasse et al. and can be applied to
Distribution Maps [11].

• Conceptual Cohesion of a Cluster (CCCluster): This
metric is a straightforward extension of the Conceptual
Cohesion of a Class (C3) metric, proposed by Marcus
and Poshyvanyk [6]. C3 is calculated as the average
cosine similarity of each pair of methods in a given class.
Similarly, CCCluster is the average cosine similarity of
each pair of classes in a cluster. Moreover, the internal
cohesion of a clustering is the average CCCluster of all
generated clusters.

• Conceptual Cohesion of a Package (CCP): This metric
is similar to CCCluster metric, but it is average cosine
similarity of each pair of classes in a given package.
Bavota et al. [15, 23] extract groups of classes by their
coupling, both structural and conceptual. In other words,
the cohesion of a package is measured by the average
coupling of every method of its classes. CCP is a related
metric, and it calculates coupling at the level of classes.
Also, note that CCP and CCCluster measure cohesion
of different groups of classes: packages and clusters,
respectively. The classes of a package can be covered
by different clusters, as well as one cluster can cover
classes of different packages. We apply this metric to
evaluate the cohesion of packages between two versions
of a system, before and after remodularization.

• Spread: Basically, it computes the number of packages
in which at least one class in covered by a given
cluster. We expect a decrease in this metric after a
remodularization. This is related to change impact, in
the sense that a concept must be less scattered to reduce
future maintenance work.

• Focus: Measures the distance between the distribution
of a cluster and the package structure. Given a cluster,
if its focus is close to one, then it covers the majority
of the classes of the packages it touches. We expect an
increase in this metric. The rationale is also related to
change analysis: if we have a concept that is concentrated
in a few packages, then it will be easy to maintain it.

VI. CASE STUDY

The goal of our study is to verify whether conceptual
aspects, as expressed by the clusters retrieved by Semantic
Clustering, actually reflect an increasing in quality after real
remodularizations. Thereby, we focus on identifying major
changes in conceptual quality properties and explain these
changes under the perspective of typical remodularization
operations. More specifically, we intend to provide answers
and insights for the following research questions:

• RQ #1: What is the impact of remodularizations in the
clusters generated by Semantic Clustering? Basically, we
aim to compare for example the clusters before and after
remodularizations, using focus and spread.

• RQ #2: What are the remodularization operations
that have more impact in the clusters generated by
Semantic Clustering? With this research question, we
intend to identify and classify the refactoring operations
responsible by the major impacts in spread and focus,
detected when answering the first question.

• RQ #3: What is the impact of recurrent modularization
operators in terms of conceptual cohesion? With this
research question, we intend to establish correlations
between recurrent remodularization operators—specially
those with a relevant impact in the clusters generated by
Semantic Clustering—and conceptual cohesion metrics.

We describe our study as follows. Section VI-A presents
the remodularization dataset and Section VI-B describes the
preparation and cleaning of this dataset. After that, Sec-
tions VI-C to VI-D present the study results.

A. Target Systems

Our evaluation relies on six remodularization cases,
concerning four Java-based systems:

• Eclipse went through a substantial remodularization
to integrate the OSGi technology. Existing features of
Eclipse were separated into new components during two
remodularizations, from versions 2.0.1 to 2.1, and from
versions 2.1 to 3.0. The Eclipse case consists in a major
and global remodularization.

• JHotDraw also had two remodularizations, from
versions 7.3.1 to 7.4.1, and from versions 7.4.1 to 7.5.1.
The first one is global, regarding the number of created
packages; and the last one is local, i.e., it impacted a
few number of packages.

• NextFramework is a web-based development
framework.3 The system’s remodularization is very
similar to Eclipse, since it also happened to move to the
OSGi technology. The remodularization was globally
applied to the system’s architecture.

• Vivo is an open-source researcher networking and
collaborative platform.4 The remodularization we
considered was restricted to the subsystem Vitro, from
version 1.4.1 to 1.5. This remodularization is similar
to JHotDraw’s: a local restructuring changing a small
number of packages.

Table I provides descriptive statistics of these systems and
their versions. For each one, we calculated the vocabulary con-
sidering identifiers, i.e., class, attributes, and method names,
and also comments and documentation (|Vall|). Moreover, we
calculated the average number of terms per class (|Vall| /
NOC). An average number of terms per class around two
increases the performance of LSI, since this technique relies
on high dimensional data. Based on our experience, the lower

3http://www.nextframework.org.
4http://vivoweb.org.

the number of terms per class, the more likely we obtain larger
clusters and many small (even unitary) clusters.

TABLE I
VOCABULARY DATA (NOC= # OF CLASSES; NOP= # OF PACKAGES)

System KLOC NOP NOC Vall Vall/NOC
Eclipse 2.0.1 420 104 2,331 3,414 1.46
Eclipse 2.1 494 110 2,620 3,771 1.44
Eclipse 3.0 599 142 3,138 3,741 1.19
JHotDraw 7.3.1 126 46 715 1,878 2.63
JHotDraw 7.4.1 125 62 715 1,807 2.53
JHotDraw 7.5.1 134 64 748 1,856 2.48
Next 12-08-07 56 52 536 1,449 2.70
Next 12-08-22 67 73 607 1,487 2.45
Vivo 1.4.1 142 91 899 1,902 2.12
Vivo 1.5 147 95 940 1,920 2.04

B. Methodology

This section details the steps we followed in the evaluation
of each system of our dataset.

Isolating the remodularization: In order to attend the
definition of remodularization proposed in Section II, we
first isolated the remodularization work from enhancements
or functional additions. The rationale is that new features
typically introduce new terms to the vocabulary, which
may result in the creation of new clusters. To tackle this
issue, we manually examined the packages created after the
remodularization, including their documentation. Packages
that introduce new features or packages created specifically
to support a new technology (e.g.,a package in which classes
provide integration to OSGi technology, for example) were
discarded from our analysis. Test classes were discarded as
well. The data presented in Table I refers to the systems after
discarding the aforementioned packages.

Semantic clustering: After preparing the dataset, we executed
the semantic clustering algorithm several times for each
version before the considered remodularizations, changing
only the similarity thresholds in increments of 0.05. Table II
presents the thresholds that generated the highest cluster
cohesion and a reasonable number of clusters, as discussed
in Section III-A. For example in Eclipse-3.0 a similarity
threshold of 0.65 resulted in the best cluster cohesion, but
also in 247 clusters. In this case, we chose the second
best threshold, 0.60, which resulted in 175 clusters. Finally,
to compare the versions before and after the considered
remodularizations, we relied on the algorithm described in
Section IV-A.

Computing conceptual metrics: For each remodularization, we
calculate the conceptual metrics presented in Section V, in-
cluding a metric applied to packages (Conceptual Cohesion of
a Package); and two metrics measuring properties of semantic
clusters (Spread and Focus).

C. Impact of Remodularizations on Semantic Clusters (RQ #1)

To foster comparison, our approach generates the same
semantic clusters for the versions before and after a remod-

TABLE II
THRESHOLDS (THR) SELECTION (CLU= # CLUSTERS)

System Thr Clu CCCluster NOC / Clu
Eclipse 2.0.1 0.60 132 0.71 18
Eclipse 2.1 0.55 109 0.68 25
Eclipse 3.0 0.60 175 0.68 18
JHotDraw 7.3.1 0.60 44 0.79 17
JHotDraw 7.4.1 0.60 43 0.80 17
JHotDraw 7.5.1 0.65 57 0.78 14
Next 12-08-07 0.60 27 0.80 20
Next 12-12-11 0.60 22 0.83 28
Vivo 1.4.1 0.55 34 0.75 27
Vivo 1.5 0.65 75 0.76 13

ularization (although the classes in the clusters may change).
For each cluster, we then calculate its spread and focus,
considering the versions before and after the remodularization,
as presented in Figures 3 and 4. We restricted this analysis to
global remodularizations (see Section VI-B). Each point in
the scatterplots represent a concept, as extracted by Semantic
Clustering. The horizontal axis shows the metric values before
the remodularization, and the vertical axis shows the values
after the remodularization work. A point above the diagonal
means that the metric value for its representing concept
increased after the remodularization. Similarly, a point below
the diagonal line means that the metric value decreased.

For most clusters, the spread values increased after the
remodularization, as most of the points are above the diagonal
line. In fact, since the concepts are the same before and
after a remodularization and considering that new packages
were created (as can be figured out in Table I), the existing
concepts will appear in more packages after the remodular-
ization. Concerning focus, we can observe in Figure 4 that
the distributions are not clear, since we have a considerable
number of clusters both above and below the diagonal line in
all presented remodularizations.

We also applied a nonparametric Wilcoxon test to compare
the remodularizations under analysis, according to the spread
and focus of the extracted clusters. Thereby, after the Wilcoxon
test, if the p-value is lower than 0.05, then the clusters are
statistically nonidentical and we can claim that the remod-
ularization actually changed the conceptual structure of the
systems, in terms of focus or spread.

Table III presents the Wilcoxon test results (values in
bold are statistically significant). The results show that
the increasing of spread is statistically significant in the
entire dataset. On the other hand, confirming our previous
observation, we can not assure the same regarding focus.
Although we have some increasing in most remodularizations,
the Wilcoxon results only provide statistic support to the last
remodularization of Eclipse and the first remodularization
of JHotDraw. Most clusters of thr first remodularization of
JHotDraw increased their focus.

Summary: Remodularizations tend to consistently increase
the spread of the existing concepts among the new package
structure. Regarding focus, there is no clear tendency, and it

(a) Eclipse2.0.1→2.1 (b) Eclipse2.1→3.0

(c) JHotDraw7.3.1→7.4.1 (d) Next12-08-07→12-12-11

Fig. 3. Spread results (the spread of the concepts above the diagonal increased
after the remodularization)

(a) Eclipse2.0.1→2.1 (b) Eclipse2.1→3.0

(c) JHotDraw7.3.1→7.4.1 (d) Next12-08-07→12-12-11

Fig. 4. Focus results (the focus of the concepts above the diagonal increased
after the remodularization)

is possible to have clusters both with an increase or with a
decrease in focus. Focus is not an appropriate quality metric
in this setting.

TABLE III
WILCOXON TEST RESULTS FOR SPREAD AND FOCUS OF CLUSTERS (MEAN

INCR.= MEAN INCREASE)

Metric Remodularization Mean Incr. p-value

Spread

Eclipse 2.0.1→2.1 1.61 <0.001
Eclipse 2.1→3.0 2.82 <0.001
JHotDraw 7.3.1→7.4.1 0.98 <0.001
Next-12-08-07→12-12-11 2.04 0.001

Focus

Eclipse 2.0.1→2.1 0.01 0.408
Eclipse 2.1→3.0 0.02 <0.001
JHotDraw 7.3.1→7.4.1 0.09 0.008
Next 12-08-07→12-12-11 -0.02 0.518

D. Remodularization Operators with Highest Impact in Se-
mantic Clusters (RQ #2)

To address this research question, we focused on the mod-
ularization operators proposed by Rama and Patel [12] (see
Section II). For each remodularization, we collected the three
clusters with the highest increase and decrease in spread and
focus, separately. We carefully analyzed the source code of the
classes in each selected cluster, before and after the remodu-
larizations, aiming to identify the operations that explain the
change in focus or spread. To reduce the amount of manual
analysis, we decided to inspect one remodularization of each
system. For this reason, we removed two remodularizations:
(a) Eclipse 2.0.1→2.1, because it presented the highest p-
value regarding the global results, as showed in Table III; (b)
JHotDraw 7.4.1→7.5.1, because it consisted in just local and
minor remodularizations.

Table IV summarizes the results of our analysis of 47
clusters (2 metrics x 6 clusters x 4 systems). We only found
two clusters with bottom results for spread in JHotDraw, i.e.,
the spread of the other clusters remained constant or increased
after the remodularization. For each cluster, we present a
brief description of the concepts behind the cluster and the
remodularization operator responsible for the change under
analysis, when it was possible to identify such operator. For
example, we were not able to explain the bottom results for
focus in JHotDraw in terms of modularization operators.

We applied Pearson chi-squared test to analyze the associ-
ation of (a) the occurrence of a modularization operator and
(b) an increase or decrease in one metric, considering the 47
cases in Table IV. After the test, if the p-value is lower than
0.05, these two descriptive variables a and b are dependent.
We only applied this test for Module Decomposition, because
it was the most frequent operator in the experiment.

Our main findings when investigating this research question
are described as follows:

• Module Decomposition (MD) was the operator
responsible for most distinguished changes in spread
and focus, covering 24 out 47 clusters we selected for
analysis. The operator was responsible for an increase
in spread, in 9 out 12 clusters. Regarding focus, the
operator explains the observed increments in focus
in 10 out of 12 clusters we manually inspected. The

chi-squared test showed that the occurrence of module
decomposition (a) has statistic association with the
Top-3 increasing of spread (b1) and focus (b2), with
p-values 0.022 and 0.001, respectively.

• The transferal of files (FT) and data structures (DT)
was identified in five cases. In two of them, there
was a decrease in spread. This fact confirms the
motivation of these operators: moving one entity that
is misplaced in the architecture to a more similar module.

• Rename (RN) was performed in Next and Vivo to
correct typos, e.g., Sumary and PropStmt, to Summary
and PropertyStatement, respectively. There was a
decrease in focus in three out of four rename operations,
because new similarities were built with other classes in
which the terms are correctly spelled.

• Module Union (MU) occurred along with an increase
(with Module Decomposition) and decrease in Focus
(with Rename). Promote Function (PF) was applied
only once, with an increase in focus also with Module
Decomposition.

• We also identified other operations: file (FR) and module
(MR) removal in four cases. They were necessary to
provide a better interface for color gradients in JHotDraw
and code loaders in Next. In these specific cases, there
was a decrease in spread.

Summary: Module decomposition is commonly the operator
behind the increasing in spread and focus. For other operators,
we can not draw statistic relationship between the operator
and an improvement or decline of a metric.

E. Impacts of Package Decomposition in Conceptual Cohe-
sion (RQ #3)

With this question, we aim to investigate whether
the cohesion of the packages directly impacted by
remodularizations is greater than the cohesion of the
original packages. More specifically, we concentrate the
analysis in package decomposition operations, since it was
the remodularization operation responsible by the major
changes in semantic clusters, after remodularizations. In this
case, an original package P is decomposed in new packages
P1, P2, . . ., Pn, i.e., some of the classes in P are distributed
among the new packages and after that we have a restructured
package P ′, with fewer classes. We analyzed all 21 distinct
module decompositions (in Table IV one decomposition
can impact more than one cluster) in the dataset under two
dimensions:

• Paired Comparisons: We compared the original package
P with its restructured version P ′. Figure 5 reports two
boxplots. The first one (named Before) represents the
conceptual cohesion of the original packages P of the
collected module decompositions. Similarly, the second
boxplot represents the conceptual cohesion of the restruc-
tured packages P ′. We observe an improvement in most
packages.

TABLE IV
MODULARIZATION OPERATORS RESPONSIBLE FOR THE TOP-3 AND THE BOTTOM-3 CHANGES IN SPREAD AND FOCUS (MD= MODULE DECOMPOSITION;

MU= MODULE UNION; FT= FILE TRANSFERAL; DT= DATA STRUCTURE TRANSFERAL; RN= RENAME; PF= PROMOTE FUNCTION; MR= MODULE
REMOVAL; FR= FILE REMOVAL)

Metric Ranking System Cluster id Cluster Definition Operators

Spread

Top 3

Eclipse 2.1→3.0
105 Layout data structures MD

14 Workbenchs status and configuration MD, FT, DT
61 Command classes, undo and rewrite managers

JHotDraw 7.3.1→7.4.1
27 Connection Figures MD
34 File and text edition actions MD
40 Text undo and selection actions MD

Next 12-08-07→12-11
26 Data report MD
25 Special data types, SQL translators
12 Database operators, Javascript builders MD

Vivo 1.4.1→1.5
18 Individual management MD
16 Page and HTML requests and servlets MD
29 Servlet and request exceptions MD

Bottom 3

Eclipse 2.1→3.0
101 Text edition messages and actions FT, DT

54 Marker classes MD
38 JFace’s viewers, listeners and element data

JHotDraw 7.3.1→7.4.1
17 XML and IO utilities
38 Color Representation MR

Next 12-08-07→12-11
1 Bean data validation MD,FT
3 Core loaders FR
8 UI’s input components

Vivo 1.4.1→1.5
33 Action permission RN, FR
10 Web ontology management and permissions MU

5 Authorization and permission actions MU, MD

Focus

Top 3

Eclipse 2.1→3.0
51 Help queries and search results MU, MD
33 Registry for marker help contexts MD, FT
12 Annotation models MD, PF

JHotDraw 7.3.1→7.4.1
34 File and text edition actions MD
12 Figure manipulation MD
16 Line Drawing MD

Next 12-08-07→12-11
14 Core loaders MD

9 Properties and String manipulation
22 Loaders management MD

Vivo 1.4.1→1.5
18 Individual management MD

9 User authentication
22 Content filtering MD

Bottom 3

Eclipse 2.1→3.0
39 UI’s widget events FT, DT
94 Command’s data structures MD

6 Action classes

JHotDraw 7.3.1→7.4.1
20 Font chooser and preferences management
23 Palette functions
32 Drawing element attributes management

Next 12-08-07→12-11
4 Report aggregating functions RN

21 HTTP requests
16 Class compiling and loading RN, MU

Vivo 1.4.1→1.5
32 N3 edition FR
13 Data and object property permissions RN
28 Converter classes, Query generation

• New Packages: We compared the average cohesion of the
new packages P1, P2, . . ., Pn with the original package
P , as presented by the boxplot New Packages in Figure 5.
An improvement in such measure means that the classes
are typically more cohesive in the new packages than
in the original one. We also observed that 0.40 is a
good target cohesion measure to achieve after module
decompositions. Most of the packages we investigated
have their conceptual cohesion above this measure.

As well as for the global results, JHotDraw 7.3.1→7.4.1
presented the best results in both comparisons. For example,
the package draw had the best improve in conceptual cohesion
(+0.111); moreover its ten new subpackages have an average
cohesion of 0.818, which is also a very good measure. A
similar case occurred in Eclipse, in which a decomposition in
the ui.ide plugin involved class transferal to the packages
in the ui.workbench plugin. As a result, these packages
increased their cohesion in 0.016 and 0.048, respectively.

Fig. 5. Average Conceptual Cohesion Results using CCP

Vivo was the only system with a decrease in conceptual
cohesion after module decompositions. For example, the
new dataGetter package is less cohesive than its original
package, pageDataGetter. This fact is explained by the
use of a new interface in the restructured package, which has
more utility classes and therefore a larger vocabulary. Thus,
the similarity between the classes changed to use this new
interface and the rest of the package has decreased.

Summary: After module decompositions, the new packages
have better conceptual cohesion than the original packages.
CCP is an adequate metric to express a quality improvement,
but some care must be taken in interpretation (e.g., the Vivo
case). Tipically, packages created after module decompositions
have internal cohesion greater than 0.40.

VII. THREATS TO VALIDITY

This section presents the limitations that can affect the
results of our work. As any information retrieval technique,
Semantic Clustering relies on vocabulary quality. Thus, we
assume that terms are well described in the system’s identifiers
and comments. Naming conventions other than camelCase and
under score will certainly compromise the vocabulary. The
representativeness of the terms in the vocabulary can also
impact on our results. We identified in previous studies the
existence of methods like “kaboom” or “nothing”. In this case,
the vocabulary is polluted with terms that do not often appear
and also do not have proper meaning. In this work, we selected
systems with considerable developer community. Therefore,
we consider these issues an exception in the vocabulary.

Concerning the remodularization analysis, we consider
our manual operations in package removal (Section VI-B)
and modularization operators identification (Section VI-D), a
thread to this study. We recognize that these operations are not
easy to automate. They also require an advanced knowledge of
each system, being a time spending task to perform manually.
However, we did make an effort to follow a methodology, and
also try to isolate the remodularizations from bug corrections
and other enhancements, in order to gather convincing results
from our study with conceptual metrics.

VIII. RELATED WORK

We organized related work in three groups: (i) Evaluation of
Structural Metrics; (ii) Conceptual Metrics; (iii) Application
of Information Retrieval Techniques in Reverse Engineering.

Evaluation of Traditional Metrics: Regarding architectural
quality, most of quality metrics consider static and structural
aspects, like method calls or use of attributes. For example,
Abreu and Goulão proposed a procedure do improve modular-
ity using clustering and coupling metrics [4]. They observed
that the improved modularization differed from the original
one in the number of modules. Therefore, they concluded that
practitioners do not seem to use cohesion and coupling as the
driving forces when it comes to modularization.

Moreover, there is a large variety of metrics that attempt to
measure the same aspect of quality. Ó Cinneide et al. describe
a comparative evaluation of five widely used, structural cohe-
sion metrics [5]. The goal was to verify whether the value
of these metrics evolve together, given a same refactoring
action. Considering eight systems and over three thousand
refactorings, in 38% of the cases one metric value increased
while the other value decreased. This fact is an indication
that the traditional cohesion metrics measure different and
conflicting aspects of the same property.

Concerning real remodularization cases, Anquetil and
Laval used structural cohesion and coupling metrics over
three remodularizations of Eclipse, in order to verify whether
the metrics follow the widely recommended quality guideline
of high cohesion and low coupling [2]. However, the coupling
values increased in most of the packages, and the cohesion
metric presented a flaw in the experiments. They concluded
that either the structural metrics or the cohesion/coupling
dogma fails in representing architectural quality.

Conceptual Metrics: On the other hand, a new set of
metrics has been proposed in recent work by Poshyvanyk
et al. [6, 7, 24]. Conceptual metrics were evaluated by
correlating them with number of faults, and in comparison to
existing structural metrics. Most of them were able to predict
faults in classes. However, they did not use their metrics
to evaluate architectural quality, and particularly to analyze
the benefits of remodularizations. In this work, we selected
the simpler metric (Conceptual Cohesion of a Class) of the set.

Application of Information Retrieval Techniques in Reverse
Engineering: Anquetil and Lethbridge [25] proposed one of
the first approaches to extract clusters from entity names. They
extracted information (n-grams) from file names, obtaining
clusters of files with n-grams in common. In comparison
with other clustering techniques, they concluded that the file
name criterion is more likely to discover subsystems in a
legacy system. Maletic and Marcus were among the first to
propose the use of LSI to extract clusters and also propose the
comparison between the system’s structure and the generated
clusters, at the level of procedures [26].

Recent work in architecture recovery comprise the combina-
tion of structural and conceptual aspects. Scanniello et. al [27]
proposed the use of structural links to derive architectural

layers. Lexical information is then analyzed to decompose
each layer into modules. Thus, module decomposition is
derived through clusters.

In a simpler approach, Bavota et al. proposed to identify
Module Decomposition opportunities [15, 23]. Given one
module, chains of classes with high coupling are found,
and a new package is proposed for each chain. Coupling is
measured by a combination of two kinds of metrics: structural
and conceptual. They applied the approach in five systems,
including JHotDraw, and concluded that the refactoring sug-
gestions are meaningful from the perspective of developers.
Our work complements this approach by reinforcing that
module decompositions are the operations with the highest
impact on semantic clusters.

IX. CONCLUSIONS AND FUTURE WORK

A common criticism raised on the disuse of quality metrics
is that they lack a proper validation. In this work, we presented
the evaluation of conceptual metrics regarding real remodu-
larization cases. We propose the use of Semantic Clustering
and conceptual metrics to check whether developers consider
the vocabulary of entities when reorganizing a system’s ar-
chitecture. In our study with four systems and six remodular-
izations, we gathered indicatives that state the consequences
of applying Module Decomposition. Conceptual metrics were
able to describe an improvement in most of the cases in
which this operation was performed. In general, the creation
of highly cohesive packages comes at a price of increasing
the concept spread over new packages. This fact reveals that
developers organize the system’s classes in packages according
to a common intent, or concept. Our findings encourage us to
extend this study at the point of designing a tool to recommend
modularization operations based on conceptual metrics.

REFERENCES

[1] M. M. Lehman, “Laws of software evolution revisited,” in 5th
European Workshop on Software Process Technology, pp. 108–
124, 1996.

[2] N. Anquetil and J. Laval, “Legacy software restructuring:
Analyzing a concrete case,” in 15th European Conference on
Software Maintenance and Reengineering, pp. 279–286, 2011.

[3] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner,
“Bunch: A clustering tool for the recovery and maintenance of
software system structures,” in 15th International Conference
on Software Maintenance, pp. 50–, 1999.

[4] F. B. Abreu and M. Goulão, “Coupling and cohesion as modu-
larization drivers: Are we being over-persuaded?,” in 5th Euro-
pean Conference on Software Maintenance and Reengineering,
pp. 47–, 2001.

[5] M. Ó Cinnéide, L. Tratt, M. Harman, S. Counsell, and
I. Hemati Moghadam, “Experimental assessment of software
metrics using automated refactoring,” in International Sympo-
sium on Empirical Software Engineering and Measurement,
pp. 49–58, 2012.

[6] A. Marcus and D. Poshyvanyk, “The conceptual cohesion of
classes,” in 21st International Conference on Software Mainte-
nance, pp. 133–142, 2005.

[7] B. Ujhazi, R. Ferenc, D. Poshyvanyk, and T. Gyimóthy, “New
conceptual coupling and cohesion metrics for object-oriented
systems,” in 10th International Working Conference on Source
Code Analysis and Manipulation, pp. 33–42, 2010.

[8] S. L. Abebe, S. Haiduc, A. Marcus, P. Tonella, and G. Antoniol,
“Analyzing the evolution of the source code vocabulary,” in 13th
European Conference on Software Maintenance and Reengi-
neering, pp. 189–198, 2009.

[9] A. Kuhn, S. Ducasse, and T. Gı̂rba, “Semantic clustering:
Identifying topics in source code,” Information & Software
Technology, vol. 49, no. 3, pp. 230–243, 2007.

[10] A. Kuhn, S. Ducasse, and T. Gı̂rba, “Enriching reverse engi-
neering with semantic clustering,” in 12th Working Conference
on Reverse Engineering, pp. 133–142, 2005.

[11] S. Ducasse, T. Gı̂rba, and A. Kuhn, “Distribution map,” in 22nd
International Conference on Software Maintenance, pp. 203–
212, 2006.

[12] G. M. Rama and N. Patel, “Software modularization operators,”
in 26th International Conference on Software Maintenance,
pp. 1–10, 2010.

[13] M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley, 1999.

[14] D. Beyer and A. Noack, “Clustering software artifacts based on
frequent common changes,” in 13th International Workshop on
Program Comprehension, pp. 259–268, 2005.

[15] G. Bavota, A. D. Lucia, A. Marcus, and R. Oliveto, “Using
structural and semantic measures to improve software mod-
ularization,” Empirical Software Engineering, vol. 18, no. 5,
pp. 901–932, 2013.

[16] S. Sarkar, S. Ramachandran, G. S. Kumar, M. K. Iyengar,
K. Rangarajan, and S. Sivagnanam, “Modularization of a large-
scale business application: A case study,” IEEE Software,
vol. 26, no. 2, pp. 28–35, 2009.

[17] G. Salton and M. J. McGill, Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., 1986.

[18] D. Poshyvanyk, M. Gethers, and A. Marcus, “Concept loca-
tion using formal concept analysis and information retrieval,”
ACM Transactions on Software Engineering and Methodology,
vol. 21, no. 4, p. 23, 2012.

[19] M. Gethers, T. Savage, M. D. Penta, R. Oliveto, D. Poshyvanyk,
and A. D. Lucia, “Codetopics: which topic am I coding now?,”
in 33rd International Conference on Software Engineering,
pp. 1034–1036, 2011.

[20] R. A. Baeza-Yates and B. A. Ribeiro-Neto, Modern Information
Retrieval, Second edition. Pearson Education Ltd., 2011.

[21] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft,
“When is “nearest neighbor” meaningful?,” in 7th International
Conference on Database Theory, pp. 217–235, 1999.

[22] C. Taube-Schock, R. J. Walker, and I. H. Witten, “Can we
avoid high coupling?,” in 25th European conference on Object-
oriented programming, pp. 204–228, 2011.

[23] G. Bavota, A. D. Lucia, A. Marcus, and R. Oliveto, “Software
re-modularization based on structural and semantic metrics,” in
17th Working Conference on Reverse Engineering, pp. 195–204,
2010.

[24] D. Poshyvanyk and A. Marcus, “The conceptual coupling
metrics for object-oriented systems,” in 22nd International
Conference on Software Maintenance, pp. 469–478, 2006.

[25] N. Anquetil and T. Lethbridge, “File clustering using naming
conventions for legacy systems,” in 1997 Conference of the
Centre for Advanced Studies on Collaborative research, pp. 2–,
1997.

[26] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An
information retrieval approach to concept location in source
code,” in 11th Working Conference on Reverse Engineering,
pp. 214–223, 2004.

[27] G. Scanniello, A. D’Amico, C. D’Amico, and T. D’Amico,
“Using the kleinberg algorithm and vector space model for
software system clustering,” in 18th International Conference
on Program Comprehension, pp. 180–189, 2010.

