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Abstract

==
LASZLO

We address the problem of learning a joint model of
actors and actions in movies using weak supervision pro-
vided by scripts. Speci cally, we extract actor/action pairs
from the script and use them as constraints in a discrimi-
native clustering framework. The corresponding optimiza-
tion problem is formulated as a quadratic program under
linear constraints. People in video are represented by au-
tomatically extracted and tracked faces together with cor- SIT DOWN
responding motion features. First, we apply the proposed Rick sits down again and stares off In their
framework to the task of learning names of characters in direction. llsa and Laszlo leave the cafe.

the movie and demonstrate signi cant improvements over

previous methods used for this task. Second, we exploré:igure 1: Result of our automatic detection and annotation
the joint actor/action constraint and'show its ’advantage of characters and their actions in the movie Casablanca. The

for weakly supervised action learning. We validate our aut_om_atically resolved correspondence between video and
method in the challenging setting of localizing and recog- script is color-coded.

nizing characters and their actions in feature length movies
Casablanca and American Beauty.

vide no spatial localization of people and objects, and the

temporal localization of events inferred from the subtitles is

often imprecise.

1. Introduction Previous work on weakly supervised learning in im-
ages b, 13, 19 and video b, 8, 18, 20, 22, 23] has ex-

The recognition of actions, scenes and objects in videosplored redundancy to resolve ambiguity of textual annota-
is a dif cult task due to the Iarge Varlablllty of their visual tion. For examp|e’ mu|t|p|e images known to contain a per-
appearance. Modeling such a variability typically requires son X could help identifying X by intersecting sets of peo-
manually annotating large numbers of training samples for ple from each image. Given the dif culty of identifying the
Iearning model parameters. Video annotation, however, iSSame person, action or object class in different images or
a very tedious process that does not scale well to the huge/ideos, the realization of the “intersection” idea, however,
number of existing events. is often non-trivial in practice.

Video scripts exist for thousands of movies and TV- Objects, people and actions often co-occur. Knowing
series and contain rich descriptions in terms of people, theirthat “Rick sits down” in a video can help annotating a sit-
actions, interactions and emotions, object properties, scenging down action if we can localize Rick and vice versa,
layouts and more. Previous work has explored video scriptssee Figurel. Action recognition can particularly help per-
to learn and automatically annotate characters in TV se-son identi cation for rare subjects and subjects facing away
ries [6, 22, 25]. Automatic learning of human actions from  from the camera (e.g., llsa walks away to the door). Rec-
scripts has also been attempted 18, 20]. The problem,  ognizing actors, on the other hand, can be most useful for
however, remains dif cult due to the lack of explicit corre- |earning rare events (e.g. hand shaking).
spondence between scene elements in video and their tex- \we follow this intuition and addregsint weakly super-
tual descriptions in scripts. In particular, video scripts pro- yised learning of actors and actions by exploiting their co-

WILLOW project-team, @partement d'Informatique de I'Ecole Nor- occurrence in movies. We follow previous work [ o

male Sugrieure, ENS/INRIA/CNRS UMR 8548, Paris, France. U 2s ] and use movie.scri_pts as a source of weak super-
YLEAR team, INRIA Grenoble Rbne-Alpes, Paris, France vision. Differently from this prior work, we use actor-action




co-occurrences derived from scripts to constrain the weakly corporating text annotations as constraints. The correspond-

supervised learning problem. ing optimization is formulated as a quadratic program under
As one of our main contributions, we formulate weakly linear constraints. Finally, we demonstrate the validity of

supervised joint learning of actors and actions as an opti-the model on two feature-length movies and corresponding

mization of a new discriminative cost function. We rst movie scripts, and demonstrate improvements over earlier

investigate weakly supervised learning of actors only and weakly supervised methods.

demonstrate the bene t of our learning method in compari- ) .

son with other weakly supervised techniques designed for2- J0int Model of Actors and Actions

tEIS'tQSk b 22, WE; then demonstrate the adv?ntage of " \We formulate the problem of jointly detecting actors and
the joint constraints for action recognition. We validate our ,cions as discriminative clustering, [L7]: grouping sam-

method in the challenging setting of localizing and recog- a5 into classes so that an appropriate loss is minimized.

hizing actors and their act|0|?s n movufas Caslablgﬂcafan e incorporate text-based knowledge as a suitable set of
American Beauty. An example output of our algorithm for constraints on the cluster membership.

a short movie clip and the associated script section is illus- _
trated in Figurel. 2.1. Notation

Let us suppose that we have two label $&tandA and
Related Work. Learning from images and text has been thatjPj = P andjAj = A. In practice, one can think of

addressed in the context of automatic annotation of imageshese as person and action classes.

with keywords {, 11, 25] or labeling faces with names in Our data is organized into sets, that we refer to as bags,
news collectionst]. Berget al. [5] label detected faces in  g3nd which are indexed by 2 |. Every bag has a set of
news photographs with names of people obtained from textsampledN; and a set of annotations . In our application,
captions. Recent work has looked at learning spatial rela-N; is the group of person tracks appearing in a scene while
tions (such as “on top of”) from prepositionsd or gen- i can be thought of as a set of sentenceg, specifying who is
erating entire sentence-level captions for images P1]. doing what. In the following, we writdl = ., jN;j.
A generative model of faces and poses (such as “Hit Back-  For every samplen 2 N; we have a feature vector
hand”) was learnt from names and verbs in manually pro-x = 2 R1 d and some latent variables detailed next. Every
vided captions for news photographis]. While the goalof  sample belongs to a classBand a class ii. For each
this work is related to ours, we focus on learning from video sample we therefore de ne a pair of latent variaktgsin
with sparse, noisy and imprecise annotations extracted from¢ o: 191 P andt, in f0;1g' A indicating to which person
scripts. To deal with the ambiguity of annotations, we de- gnd action class it belongs. We de deto be aN  d data
velop a new discriminative weakly supervised clustering matrix with rowsx,, Z isaN P matrix with person la-
model of video and text. bels in rowsz, andT isaN A matrix with action labels

In video, manually provided text descriptions have been in rowst, . The p-th element of a vectay, is writtenzy, .
used to learn a causal model of human actions in the con-  Gjyen weak supervision in the form of constraints®n
strained domain of sports evenfs/]. Others have looked gndT (more on these in the next section), we want to re-
at learning from videos with readily-available text, but cqyer latent variables, , t, for every samples, and learn
names, 9, 27l and actions§, 15] have been so far consid-  two multi-class classier$ : R9! RP andg:RY! RA
ered separately. The ambiguity and errors of readily avail- (for persons and actions respectively). Because the two sets
able annotations present a major challenge for any learningof classes correspond to very different aspects of the data,
algorithm. These problems have been addressed by designye de ne two feature mapsand that will be respectively
ing appropriate loss functions][or explicitty nding the  taken as input fof andg. With a slight abuse of notations,

corresponding instances in video using multiple instance e will represent with (X ) (respectively (X )) the matrix
learning []. Others have looked at convex relaxations of \whose rows are the(x,) (respectively (xn)).

discriminative clustering with hidden variables for image )
co-segmentationifs, 17]. 2.2. Problem Formulation

Our problem can be decomposed as a sum of two cost
Contributions.  First, we consider a richer use of textual functions (for person names and actions) that are linked by
information for video and learn from pairs of names and joint constraints. To avoid repetitions, we will rst derive
actions co-occurring in the text. Second, we formulate the equations for one of the two cases only. Let us consider a
problem of nding characters and their actions as weakly multi-class loss function: R° RP ! R, and denote by
supervised structured classi cation of pairs of action and : F ! R some regularization function over the $ebof
name labels. Third, we develop a new discriminative clus- prediction functions under consideration. We formulate the
tering model jointly learning both actions and names and in- recovery of the latent variables and the construction of the



classi er as the following optimization problem:

1 X
min —
zf

(zosf C )+ (F)

i21 n2N;

@)

under some constraints de ned in secti®®. We de ne”
to be a square loss, the regularization tefnfi) is de ned
by a squared., norm, and is a linear classi er:

fC (xn)) =

The optimization problem now becomes:

(Xn)W+b;w2RYP:pb2R! P:

min —kz X)w b2+ ;Tr(w" w):  (2)
zwb N

Following [2], we note that Z) admits a closed form so-
lution in w andb for xed Z. Using this solution, we re-
write (2) as:

min Tr(ZZTAX; 1)); (3)
whereA(X; p)isaN N matrix that depends on the data
X and the regularization parameter.

Using (), we next de ne a joint optimization problem
over action label§ and person labelg as:

min Tr(ZZTAX; 1))+ Tr(TT'B(X; 2): (4)
MatricesA; B will be explicitly de ned in Sectiorn2.6.

Note that the above formulation does not contain any
coupling betweeZ andT per se We will use information

mined from scripts to coupl& andT by joint constraints
as described below.

2.3. Annotations as Constraints on Latent Variables

We would like to constrain solutions of our problem by
coupling person and action labels. We do this using infor-
mation mined from movie scripts. After aligning scripts
with videos P], we extract person-action paifp; a) and
their approximate temporal locations. Given a fgra)
found in the script, we assume a pergoperforms an ac-
tion a at the corresponding temporal location in the video.
We model this assumption by constraints de ned on the la-

tent variables. To make the best use of the textual data, wélNe de ne a vector of length

distinguish three kinds of extracted paigp; a), (p;? ) and
(?;a), leading to three types of constraints.

In scene descriptions found in scripts, we observe
subject-verb pairs and associate those with eifpea) or
(?; @) pairs. The distinction comes from the fact that some

subjects may be pronouns and therefore not designate any

speci ¢ charactes priori.
The(p;?) pairs come from another source of textual in-

formation: movie scripts contain both scene descriptions

and dialogues with speaker identities speci ed. We there-
fore use this information to suggest speaker presence in the
surrounding video.

For every person-action pafp;a) we construct a bag
i containing samplebl; corresponding to person tracks in
the temporal proximity ofp; a). If multiple pairs have sim-
ilar position in time, we group them, producing bags with
several(p; a) pairs ;. Once the bags are de ned, we use
annotations to constrain the latent variables of person tracks
in the bag. What we want to model is the following: “if a
person-action pair is mentioned in the script, it should ap-
pear at least once in the bag”. This can be translated in
the form of constraints on sums of latent variables of tracks
within a bag as:

X
8i21; 8(p;a)2 i; Zptha L (5)
n%&\l i
8(p;?)2 i Zp L
nﬁN i
8(?;a)2 i; tha L

n2N

Constraints based ofp; a) provide coupling between the
two sub-parts of our problem. Paip;?) and(? ;a) de-

ne independent constraints on the person and action latent
classes respectively.

Since we have partial knowledge about class member-
ship of samples in bags, our problem is related to multiple
instance learning (MIL)44]. MIL, however, is not clearly
de ned for the multi-class case. In the binary case it con-
sists in learning a binary classi er given bags containing
samples of both classes and bags containing only negatives.
When considering an analogous problem in the multi-class
case, it is unclear what the bag assumptions would be.

2.4. Slack Variables

In practice, person-action pairs in scripts may not al-
ways have corresponding person tracks in the video. This
can happen due to failures of automatic person detection
and tracking as well as due to possible mismatches between
scripts and video tracks. To cope with these issues, we intro-
duce slack variables allowing }pe constraints to be violated.
i ] il and rewrite our
problem as:

mn TrZZTAX; )+ Tr(TTTB(G 2)+ |

st.8i21;8J2 ;:
8p

Ep non; Zop tha 1 5 if I =(p;a);
>Pn2Nian 1 J |f‘]:(pa’>)1 (6)
’ n2Nitna 1 J |fJ:(?,a).



2.5. Optimization

WhenZ andT take binary values, solving the problem
de ned by eq. 6) is NP hard. We thus relax it by consider-

therefore, replacX X T by the Gram matrix of any kernel,
yielding in our case:

1
. _ + .
ing real-valued positive matricé T such thaZ 1p =1, AlKa3 1) 1N (nKan # Nl .V
Z O0andT1,=1,T O. B(K2; 2) = 2 n( nKz v+ N 2In) 7 N
The relaxed problem is not jointly convexznandT be- ) o ) B 1 T
cause of the coupling constraint in eg).(Once we xone ~ WNeré n is the projection matrix n = In  g1n1y
of the two matrices, the coupling constraint becomes linear@nd
in the other latent variable. We, therefore, perform a block -
P 8(i;j) 2L NG (Ko = Ke( (xi); (%)));

coordinate descent and alternate optimization by solving for
one of the matriceZ; T while xing the other. Each of
the two steps is a convex quadratic program under linear

(K2)ij = Ka( (xi); (x)):

constraints sinc& andB are positive-semide nite by con-
struction.

In the rst step we freeze th& variable and optimize
overZ and . We initialize T with the uniform assignment
matrix T = AilN 1) . Since the two steps are separately
convex, the initialization oZ does not matter.

Rounding. Given estimates of real-valued matric&s

Kt andK, are the two kernels that we use for faces and
actions as described in more details in Secion

3. Features and Dataset

In this section we describe features extracted from the
text and the video, and give details about the used dataset.

Text processing. We extract person-action pairs from text

and T, we have to choose classes for every sample. Tousing a semantic role labeling parser. Semantic role labeling

do so we compute the orthogonal projection according to

L, norm on the set of indicator matriced = fZ 2
fO;lgN P jZ1p = 1y 0:
argminkZ  Zky: (7)

22z

This amounts to taking maximum values along row« of
andT. For each row the arguments of the maximum de-
ne classes of corresponding samples while the maximum
values are used as con dence values in our evaluation.

Relation to Diffrac [2]. Our problem formulation in4)
is closely related to the discriminative clustering approach
Diffrac [2, 17]. When latent classes are treated equally, the
minimization of a convex relaxation o) results in a trivial
solution [LZ]. To overcome this issue one can perform a lift-
ing and optimize 4) with respect to the equivalence matrix
M = ZZT instead (under a suitable set of constraints).
Working with M is problematic in our case since our
constraints in %) are de ned on the elements & rather
than onM . Class-dependent constraints in our case, how-
ever, break the symmetry in class labels and enaf)léo(
be solved directly foZ . In practice we found that modify-
ing the value ofl to a larger constant on the right sides of
inequalities ) leads to a more stable solution @ (

2.6. Use of Kernels

As mentioned in], the optimization problem3) allows
the use of kernels. Using the matrix inversion lemma, one
can derive an expression fér and B that depends only
on the Gram matrix of the linear kernéXX 7). We can,

consists of identifying arguments (agent, instrument, man-
ner, cause) to a predicate (for example a verb). Intuitively,
this amounts to answering questions such as “Who” “What”
“When” “Where” “Why”. Several statistical parsers are
available on-line. We use SEMAFOR][ which is trained

on the FrameNet databasd.[We focus on two frames that
appear often enough in the script and have an associated
agent: “ChangePosture” and “SelfMotion”. From each de-
tected occurrence of the frame in the text we use the “agent”
and the “target verb” as the name and action pair.

Video features. The aim here is to design a representation
of video that can be related to the name and action structures
extracted from the text. This is achieved by automatically
extracting tracks of people from video. Each person is then
represented by its face appearance to capture identify and
motion features to represent the action. See gure

To extract person tracks, we run the multi-view face de-
tector of 6] and associate detections across frames using
point tracks in a similar manner t@,[22]. To represent
faces we follow P2], and extract facial features and rectify
each face into a canonical frame using a similarity trans-
formation. We then re-compute facial feature positions in
the recti ed image and extract SIFT descriptors at multiple
scales from each facial feature. The descriptor for each face
is formed by the concatenation of all SIFT descriptors. Fi-
nally, each track is represented by the set of descriptors, one
for each face in the track.

To represent actions, we compute bag-of-features on
dense trajectorie2[] extracted from each person track. We
take the trajectories that fall into the spatio-temporal volume
de ned by the upper-body bounding box in each frame. The



ples as follows. For faces, we collect additional 300 ran-
dom faces from the Labeled Faces In The Wild datasdt
For actions, we randomly sample 500 person tracks from
the Hollywood?2 datase?[)] using the corresponding movie
scripts to discard actions considered in this work. For all
“background” samples, we constrain latent variables to take
values corresponding to the “background” class. We found
that including this additional data helps resolving confusion
in label assignment for our target classes.

4. Experiments

In this section we experimentally demonstrate the bene-
ts of the proposed approach. We rst test the sensitivity

Figure 2: Representing video. Top: face track together to parameter choices in a controlled character identi cation
with extracted facial features. Bottom: Motion features SEWUP- Second, we show that even for learning names alone

based on dense point trajectories extracted from tracked up{Without actions) the proposed method outperforms other
per body bounding boxes. state-of-the-art weakly supervised learning techniques de-

signed for the same task. Finally, we demonstrate bene ts

) . ) of learning names and actions jointly compared to resolving
upper-body bounding box is de ned here by simply extrap- 1,qih tasks independently.

olating the face bounding-box using a linear transformation.
This assures that in every frame we have a corres:pondinq_earning names: controlled set-up. Here we wish to as-

face as w_ell as an upper-body region. Qur discriminative sess the sensitivity of the proposed method to the follow-
cost function allows the use o‘f‘ kgrnel_s. For facie tracks, Weing four important parameters: the number of bigsthe
follow [27] and use the sum of “min-min kernels” computed number of classeB, the number of samples per bpg;j
separately for. each famgl feature as well as frontal and pro- and the number of annotations per tagj. We will use
le faces. This results in a total of 38 face track kernels

24 for frontal feat d14f le foat that real data — 1,273 face tracks and their descriptors from the
(24 for rontatieatures an or proie fea ures)_ atare movie Casablanca — but group the tracks into bags in a con-
summed with uniform weights. For action descriptors we

. . trolled manner. Each track is labeled with a ground truth
use the exponentiated chi-square kerae] [ name from the set of 18 main characters (or other). To cre-
ate each bag, we rst sample a track from a uniform distri-
Dataset. We report results for movies Casablanca and bution over characters and then complete the bag with up
American Beauty. For both movies we extract person tracksto jN;j tracks by randomly sampling tracks according to the
and associated descriptors. We discard person tracks withrue distribution of the characters in the movie. Each bag is
unreliable facial features based on the landmark localizationannotated according to the rst sample. Given this data, we
score. For Casablanca, we obtain 1,273 person tracks consolve the sub-problem related to faces, i.e. no joint action
taining 124,423 face detections while for American Beauty labels are used in this experiment.
we use 1,330 person tracks containing 131,741 face detec- As discussed in Sectioh, each face track is assigned
tions. to a class by maximizing the rows @&. Classied face

By processing corresponding movie scripts, we extract tracks are then sorted by their con dence values and the per-
17 names for the main characters in Casablanca and lkentage of correctly classi ed tracks (i.e., the per-sample
names for the main characters in American Beauty. Foraccuracy) is evaluated for each con dence value. Follow-
each movie we select two most frequent action classes, i.e.ing [9, 27] we measure performance by plotting a curve of
walking, sit downfor Casablanca andialking, open door  per-sample accuracy vs. proportion of labeled tracks. Ide-
for American Beauty. For Casablanca we obtain 42 ac- ally, the accuracy would be one for all con dence values,
tion/name pairs and 359 occurrences of names with no asdut in practice the accuracy drops for samples with lower
sociated actions. For American Beauty the correspondingcon dence. We illustrate results for different bag layouts in
numbers are 31 and 330, respectively. The dataset is availFigure3.
able at [].

To explicitly model non-named characters in the movie Comparison with other weakly supervised methods.
(side characters and extras) as well as non-considered ad-lere we compare our method with other weakly supervised
tion classes we introduce an additional “background” classface identi cation approaches. We use the code adapted
for both faces and actions. We collect background exam-from [27] and an on-line available implementation &f.[
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Figure 3:Performance for different bag layouts in a controlled set-up. (a)First, we vary the number of bags while xing

3 samples and 1 annotation per bag, and the number of classes to 5. As expected, performance improves with (ijre bags.
Keeping 150 bags in total, we increase the number of classes. The effects of this modi cation are mixed. By adding more
classes, the problem is harder but the per bag confusion is snfe)lEeeping 7 classes, we increase the number of samples
per bag showing that more samples per bag increase confusion resulting in a lower perfofajakeeping 5 samples per

bag, we increase the number of annotations per bag, clearly showing the bene ts of having more annotations.

We run all methods on 1,273 face tracks from Casablanca

and 1330 face tracks from American Beauty using noisy |
name annotations obtained from movie scripts. To have V\\
a fair comparison, no action labels are used. While [

and 7] have been evaluated on television series, here we
address a more challenging setup of full-length movies. *
First, the training data within a Im is limited as it is not
possible to harvest face tracks across multiple episodes as
in TV series. Second, the cast of charactersina Im is often
larger than in TV series with many additional extras. Third, Ceor e
Ims often employ a wider set of cinematographic tech- (a) Casablanca (b) American Beauty
niques compared to often simpler structure of a TV show Figure 4: Results of automatic person naming in movies.
with many close-ups and “shot-reverse shot” dialogues.  Our method is compared with weakly supervised face iden-
Comparative results for the two movies in Figute  ti cation approaches of Cougt al.[6] and Sivicet al.[22].
demonstrate superior performance of our method. The
lower performance of {7] can be explained by its de- rst learning the name assignmen#s for all tracks. The
pendency on the visual speaker identi cation. While our name assignments are then xed and used as additional con-
adaptation of the code obtained from the authorsZG] [  straints when learning the likely action assignmehtfor
worked well on their data, we found that the speaker detec-each track. While this procedure can be iterated to improve
tion achieved only 64.2% and 50.2% accuracy (with about the assignment of actor names with the help of estimated ac-
25% speaker labeled tracks) on Casablanca and Americanion labels, we found that the optimization converges after
Beauty, respectively. The lower accuracy, compared to thethe rst iteration in our setup.
accuracy of more than 80% on the TV series data from [ The distribution of action classes in our data is heavily
could be possibly due to the challenging illumination con- npajanced with the “background” class corresponding to
ditions with strong shadows present in the two Ims. The mgre than 78% of person tracks. We therefore evaluate the
approach of{] assumes that correct labels are included into |5peling of each target action in each movie using a stan-
the set of “ambiguous” labels. This assumption is often vi- gard one-vs-all action precision-recall measure. We com-
olated in movies as side characters and extras are often Ngfare the following methodsNames+Actionscorresponds
mentioned in the script. In contrast, our approach suffersig oyr proposed method of learning person names and ac-
less from this problem since (a) it can handle multiple an- tions jointly. No Namesuses constraints on actions only
notations for bags of multiple tracks and (b) the noise in 1a- \yithout considering joint constraints on actions and names.
bels and person detections is explicitly modeled using slacktrye Names+Actionsuses the ground truth person names
variables. as constraints on actions instead of the automatic name as-
Learning names and actions. We next evaluate bene ts  signment. This provides an upper bound on the action clas-
of learning names and actions jointly. This is achieved by si cation performance provided perfect assignment of per-
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Figure 5: Results of action labeling in movies Casablanca and American Beauty. See &émtiomore details.

son names. Finally, we evaluate two “dummy” baselines rect person tracks yielding AP=0.36 and AP=0.63 for the
which blindly assign action labels based on person namessit downand walk actions, respectively. This emphasizes
and person-action pairs obtained from scripts. The purposethe need for better automatic person detection and tracking
of these baselines is to verify that visual action classi cation methods. Qualitative results for automatic labeling names
improves the performanctlames+Textearns face assign-  of actors and actions using our method (Names+Actions)
ments for each person track and assigns action labels usingre illustrated Figuré. More results are available af][
person-action pairsTrue Names+Textassigns action la- .

bels based on person-action pairs and ground truth persor?- Conclusion

names. This baseline, hence, does nqt “look” at image_ PiX-  \We have developed a new discriminative weakly super-
els at all. Note that the last two baselines produce a singléyjsed model jointly representing actions and actors in video.
point on the precision-recall plot as no con dence values \ye have demonstrated the model can be learnt from a fea-
are available when transferring action labels from scripts. e length movie together with its shooting script, and have
Precision-recall plots for the target action classes in two shown a signi cant improvement over other state-of-the-art
movies are shown in Figuie We rst observe that our full  weakly supervised methods. As actions are shared across
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