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Abstract—This paper is concerned with the problem of
stabilization for continuous-time systems with distributed
time delays. Using an extended form of the Lyapunov-
Krasovskii functional the controller design conditions are
derived with respect to application of structured matrix
variables in linear matrix inequalities. The result giving a
sufficient condition for stabilization of the system with dis-
tributed time delays is illustrated with a numerical example
to note reduced conservatism in the system structure.
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I. INTRODUCTION

Control systems are used in many industrial applica-

tions, where time delays can take a deleterious effect

on both the stability and the dynamic performance in

open and closed-loop systems. Therefore the stability and

control of the dynamical systems involving distributed

time delays is a problem of large practical interest where

intensive activity are done to develop control laws for

systems stabilization.

During the last decades, considerable attention has been

devoted to the problem of stability analysis and con-

troller design for systems with time-delay. The existing

stabilization results for time-delay systems can be de-

lay independent or delay-dependent. The delay-dependent

stabilization is concerned with the size of the delay and

usually provides an upper bound of the delay such that

the closed loop system is stable for any delay less than

the given upper bound. On the other side, the delay-

independent stabilization provides a controller, which can

stabilize given system irrespective of the size of the delay.

The use of Lyapunov method for stability analysis of

the time delay systems has been ever growing subject of

interest, starting with the pioneering works of Krasovskii

[9], [10]. Usually nowadays for the stability issue some

modified Lyapunov-Krasovskii functionals are used (e.g.

see [4], [5]) to obtain delay-independent stabilization and

the results based on these functionals are applied to

controller synthesis and observer design. This time-delay

independent methodology and the bounded inequality

techniques are sources of a conservatism that can cause

higher norm of the state feedback gain. Progres review in

this research field can be found e.g. in [18], [19], and the

references therein.

Despite the significance, as the controllers are usually

digitally implemented, systems with distributed time de-

lays have not been paid due attention, and in contradiction

to results given e.g. in [13], [15] there didn’t exist

much structures to solve this problem, formulated with

respect to LMI ([1], [6], [8], [16]). However, standard

schemes are not applicable to systems with distributed

time delays and new design conditions have to be derived

[7]. By introducing triple integral terms into Lyapunov-

Krasovskii functional [17], the conservatism of condi-

tions is further reduced but the design task still state

singular. The presented LMI approach is based on the

form of Lyapunov-Krasovskii functional used in [2] but

the stability conditions as well as the controller design

condition are reformulated with respect the application

of structured matrix variables in LMI solution. Generally,

since Lyapunov-Krasovskii functional is used only suf-

ficient conditions for system stability are obtained. Used

modification was motivated by [3], in here presented form

enables to design systems with standard structures. It

seems, another applications based on the bounded real

lemma are immediate.

II. SYSTEM MODEL

The systems under consideration are understood as

multi-input and multi-output linear (MIMO) dynamic

systems with distributed time delay. Without lose of

generalization this class of systems can be represented

in a state-space form by the set of equations

q̇(t) = Aq(t) +Ah

t
∫

t−h

q(s)ds+Bu(s) (1)

y(t) = Cq(t) +Du(t) (2)

with the initial condition

q(θ) = ϕ(θ), ∀θ ∈ 〈−(h+
h

m
), 0〉 (3)

where h > 0 represents the system distributed delay,

m > 0 is a partitioning factor, q(t) ∈ IRn, u(t) ∈ IRr,

and y(t) ∈ IRp are vectors of the state, input and

output variables, respectively, and matrices A ∈ IRn×n,

Ah ∈ IRn×n, B ∈ IRn×r, C ∈ IRp×n, and D ∈ IRp×r

are real matrices. Throughout the paper it is assumed that

the couple (A,B) is controllable.



Using a linear memoryless state feedback controller

u(t) = −Kq(t) (4)

where the matrix K ∈ IRr×n is the gain matrix, problem

of the interest is to design K such that the closed-loop

system

q̇(t) = (A−BK)q(t) +Ah

t
∫

t−h

q(s)ds (5)

is asymptotically stable for given h.

III. BASIC PRELIMINARIES

Proposition 1: If N is a positive definite symmetric

matrix, and M is a square matrix of the same dimension

then

M−TNM−1 ≥ M−1 +M−T −N−1 (6)

Proof: Since N is positive definite then it yields

(M−1−N−1)TN(M−1−N−1) ≥ 0 (7)

M−TNM−1 −M−T −M−1 +N−1 ≥ 0 (8)

respectively, and evidently (8) implies (6). This concludes

the proof.

Proposition 2: (Schur Complement) Let S, Q=QT ,

R = RT , detR 6= 0 are real matrices of appropriate

dimensions, then the next inequalities are equivalent
[

Q S

ST R

]

> 0 ⇔
[

Q− SR−1ST 0

0 R

]

> 0

m
Q− SR−1ST > 0, R > 0

(9)

Proof: (see e.g. [11]) Let the linear matrix inequality

takes form
[

Q S

ST R

]

> 0 (10)

then using Gauss elimination principle it yields
[

I −SR−1

0 I

][

Q S

ST R

][

I 0

−R−1ST I

]

=

=

[

Q− SR−1ST 0

0 R

]

(11)

Since

det

[

I −SR−1

0 I

]

= 1 (12)

it is evident that this transform doesn’t change positivity

of (10), and so (11) implies (9). This concludes the proof

(compare e.g. [11]).

Proposition 3: (Symmetric upper-bounds inequalities)

Let f(x(p)), x(p) ∈ IRn, X = XT > 0, X ∈ IRn×n is

a real positive definite and integrable vector function of

the form

f(x(p)) = xT (p)Xx(p) (13)

such that there exist well defined integrations as following
∫ 0

−b

∫ t

t+r

f(x(p))dp dr > 0 (14)

∫ t

t−b

f(x(p))dp > 0 (15)

with b > 0, b ∈ IR, t ∈ 〈0,∞), then

0
∫

−b

t
∫

t+r

xT (p)Xx(p)dp dr ≥

≥ 2
b2

0
∫

−b

t
∫

t+r

xT (p)dp drX
0
∫

−b

t
∫

t+r

x(p)dp dr

(16)

t
∫

t−b

xT (p)Xx(p)dp ≥ 1

b

t
∫

t−b

xT (p)dpX

t
∫

t−b

x(p)dp (17)

Proof: (see e.g. [12]) Since with (13) it can be written

xT (p)Xx(p)− xT (p)Xx(p) = 0 (18)

and according to Schur complement (9) it is true that
[

xT (p)Xx(p) xT (p)
x(p) X−1

]

= 0 (19)

then the double integration of (19) leads to










0
∫

−b

t
∫

t+r

xT(p)Xx(p)dp dr
0
∫

−b

t
∫

t+r

xT(p)dp dr

0
∫

−b

t
∫

t+r

x(p)dpdr
0
∫

−b

t
∫

t+r

X−1dp dr











≥ 0 (20)

Using the equalities

∫ t

t+r

X−1dp = −rX−1,

0
∫

−b

−rX−1dr =
r2

2
X−1 (21)

inequality (20) can be rewritten as










0
∫

−b

t
∫

t+r

xT(p)Xx(p)dp dr
0
∫

−b

t
∫

t+r

xT(p)dp dr

0
∫

−b

t
∫

t+r

x(p)dpdr r2

2 X
−1











≥ 0 (22)

It is evident, that (22) implies (16).

Analogously using (19) it yields










t
∫

t−b

xT(p)Xx(p)dp
t
∫

t−b

xT(p)dp

t
∫

t−b

x(p)dp
t
∫

t−b

X−1dp











≥ 0 (23)

and since
∫ t

t−b

X−1dp = bX−1 (24)

the following is obtained










t
∫

t−b

xT(p)Xx(p)dp
t
∫

t−b

xT(p)dp

t
∫

t−b

x(p)dp bX−1











≥ 0 (25)

which implies (17). This concludes the proof.



IV. STABILITY OF THE AUTONOMOUS SYSTEM

Theorem 1: The autonomous system of (1) is asympto-

tically stable if for given h > 0, m > 0 there exist

symmetric positive definite matrices P ,U ,V ∈ IRn×n,

W ∈ IRmn×mn such that

P=P T>0, U=UT>0, V=V T>0, W=W T>0 (26)

P ◦ = T T
APTI + T T

I PTA+

+T T
U U◦TU + T T

V V ◦TV + T T
WW ◦TW < 0

(27)

where

TU =

[√

h
m
In

√

m
h
In

][

In 0
[

0 · · · 0
]

0

0 In

[

0 · · · 0
]

0

]

(28)

TV=

[

h√
2m

In
√
2m
h

In

][

A Ah

[

Ah · · ·Ah

]

0

h
m
In −In

[

0 · · · 0
]

0

]

(29)

TW =

[

0w

[

Imn 0w

]

0w

[

0w Imn

]

]

(30)

U◦=

[

U

−U

]

, V ◦=

[

V

−V

]

, W ◦=

[

W

−W

]

(31)

TA =
[

A Ah

[

Ah · · · Ah

]

0
]

(32)

TI =
[

In 0
[

0 · · · 0
]

0
]

(33)

In ∈ IRn×n, Imn ∈ IRmn×mn are identity matrices, 0 ∈
IRn×n, 0w ∈ IRmn×n are zero matrices, respectively, and

U◦,V ◦ ∈ IR2n×2n, W ◦ ∈ IR2mn×2mn are structured

matrix variables.

Proof: Defining Lyapunov-Krasovskii functional candi-

date as follows

v(q(t)) =
t
∫

t− h

m

pT (s)Wp(s)ds+

+qT (t)Pq(t) +
0
∫

− h

m

t
∫

t+ϑ

qT (s)Uq(s)dsdϑ+

+
0
∫

− h

m

0
∫

ϑ

t
∫

t+λ

q̇T(s)V q̇(s)dsdλdϑ+

(34)

with

pT(s) =
[

pT
1(s) pT

2(s)
]

(35)

pT
1(s) =

∫ t

t− h

m

qT(s)ds (36)

pT
2(s) =

[

t− h

m
∫

t− 2h

m

qT(s)ds · · ·
t−(m−1) h

m
∫

t−h

qT(s)ds

]

(37)

then evaluating the derivative of v(q(t) along a solution

of (1) it can be obtained

v̇(q(t)) = v̇1(q(t)) + v̇2(q(t))+

+q̇T(t)Pq(t) + qT(t)P q̇(t)+

+pT(t)Wp(t)− pT (t− h
m
)Wp(t− h

m
)

(38)

where

v̇1(q(t)) =

=
0
∫

− h

m

{

t
∫

t

qT(s)Uq(s)dϑ−
t
∫

t+ϑ

qT(s)Uq(s)dϑ

}

ds =

=
0
∫

− h

m

qT (t)Uq(t)ds−
0
∫

− h

m

t
∫

t+ϑ

qT (s)Uq(s)dϑds =

= h
m
qT (t)Uq(t)−

t
∫

t− h

m

qT (s)Uq(s)ds

(39)

v̇2(q(t)) =

=
0
∫

− h

m

0
∫

ϑ

{

t
∫

t

q̇T(s)V q̇(s)dλ−
t
∫

t+λ

q̇T(s)V q̇(s)dλ

}

dsdϑ =

=
0
∫

− h

m

−ϑq̇T(t)V q̇(t)dϑ−
0
∫

− h

m

t
∫

t+ϑ

q̇T(s)V q̇(s)dsdϑ =

= 1
2

(

h
m

)2
q̇T(t)V q̇(t)−

0
∫

− h

m

t
∫

t+ϑ

q̇T(s)V q̇(s)dsdϑ

(40)

and subsequently, using (16), (17), it yields

v̇1(q(t)) ≤
≤ h

m
qT(t)Uq(t)− m

h

t
∫

t− h

m

qT(s)ds U
t
∫

t− h

m

q(s)ds =

= h
m
qT(t)Uq(t)− m

h
pT
1(t)Up1(t)

(41)

v̇2(q(t)) ≤ 1
2

(

h
m

)2
q̇T(t)V q̇(t)−

−2
(

m
h

)2
0
∫

− h

m

t
∫

t+ϑ

q̇T(s)dsdϑ V
0
∫

− h

m

t
∫

t+ϑ

q̇(s)dsdϑ =

= 1
2

(

h
m

)2
q̇T(t)V q̇(t)−

−2
(

m
h

)2
0
∫

− h

m

t
∫

t+ϑ

q̇T(s)dsdϑ V











h
m
q(t)−

−
t
∫

t− h

m

q(s)ds











=

= 1
2

(

h
m

)2
q̇T(t)V q̇(t)−

−2
(

m
h

)2
( h
m
qT (t)− pT

1(t))V ( h
m
q(t)− p1(t))

(42)

Thus, using the notation

q◦T(t) =
[

qT(t) pT
1(t) pT

2(t) pT
3(t)

]

(43)

pT
3(t) =

∫ t−h

t−h− h

m

qT(s)ds (44)

then with (32), (33) it can be written

Aq(t) +Ah

t
∫

t−h

q(s)ds = TAq
◦(t) (45)

q(t) = TIq
◦(t) (46)

and
q̇T(t)Pq(t) + qT(t)P q̇(t) =

= q◦T (t)(T T
APTI + T T

I PTA)q
◦(t)

(47)

In the same sense using (28)–(31) it can be obtained

pT(t)Wp(t)− pT (t− h
m
)Wp(t− h

m
) =

= q◦T (t)T T
WW ◦TWq◦(t)

(48)



h
m
qT(t)Uq(t)− m

h
pT
1(t)Up1(t) =

= q◦T (t)T T
U U◦TUq

◦(t)
(49)

1
2

(

h
m

)2
q̇T(t)V q̇(t)−

−2
(

m
h

)2
( h
m
qT(t)− pT

1(t))V ( h
m
q(t)− p1(t)) =

= q◦T (t)T T
V V ◦TV q

◦(t)

(50)

Thus, with P ◦ given in (27) it yields

v̇(q(t)) ≤ q◦T (t)P ◦q◦(t) < 0 (51)

and it is obvious that P ◦ has to be negative definite.

V. CONTROL LAW PARAMETER DESIGN

Theorem 2: The closed-loop system (1) controlled by

the control law (4) is asymptotically stable if for given

h > 0, m > 0 there exist symmetric positive definite

matrices Y ,U•,V • ∈ IRn×n, W • ∈ IRmn×mn, and a

matrix Z ∈ IRr×n such that

Y = Y T > 0

U•=U•T >0, V •=V •T >0, W •=W •T >0
(52)

[

P •
∗

TAY
⋄ −2

(

m
h

)2
V •

]

< 0 (53)

where
P • = Y ⋄TT •T

A TI+T T
I T •

A Y ⋄+

+T T
U U⋄TU + T T

V 2V
•
2TV 2 + T T

WW ⋄TW

(54)

U⋄=

[

U•

−U•

]

, W ⋄=

[

W •

−W •

]

, V •
2=V •− 2Y

(55)

TV 2=
√
2
m

h

[

h
m
In −In

[

0 · · · 0
]

0
]

(56)

T •
A =

[

[A −B] Ah

[

Ah · · · Ah

]

0
]

(57)

Y ⋄ = diag

[ [

Y

Z

]

Y
[

Y · · · Y
]

Y

]

(58)

Y ⋄ ∈ IR(n(m+2)+r)×n(m+2), W ⋄ ∈ IR2rn×2rn, U◦ ∈
IR2n×2n are structured matrix variables, and TU , TW ,

and TI are used as in (28), (30), (33), respectively.

Now, the control gain is given as

K = ZY −1 (59)

Hereafter, ∗ denotes the symmetric item in a symmetric

matrix.

Proof: Using Schur complement property then (27) can

be rewritten as
[

P ⋄ T T
V 01

TV 01 −
(

2m
h

)2
V −1

]

=

[

P ⋄ T T
A

TA −
(

2m
h

)2
V −1

]

<0

(60)

where

P ⋄ = T T
APTI + T T

I PTA+

+T T
U U◦TU + T T

V 2V
◦TV 2 + T T

WW ◦TW

(61)

Then defining the congruence transform matrix

TC = diag
[

TC1 In

]

=

=diag
[

P−1 P−1
[

P−1 · · · P−1
]

P−1 In

] (62)

and pre-multiplying right-hand side and left-hand side of

(60) by (62) gives the next result
[

TC1P
⋄TC1 TC1T

T
A

TATC1 −
(

2m
h

)2
V −1

]

<0 (63)

Using notation P−1 = Y then (63) implies

TATC1 = TAY
⋄ (64)

Y ⋄ = T ⋄
C1 = diag

[

Y Y
[

Y · · · Y
]

Y
]

(65)

TC1(T
T
APTI+T T

I PTA)TC1 =

= Y ⋄T T
ATI+T T

I TAY
⋄

(66)

TC1T
T
U U◦TUTC1 = T T

U U⋄TU , U• = Y UY (67)

TC1T
T
WW ◦TWTC1 = T T

WW ⋄TW ,

W •= diag
[

Y · · · Y
]

W diag
[

Y · · · Y
] (68)

and denoting V −1 = V • then (6) implies

TC1T
T
V 2V TV 2TC1 ≤ T T

V 2V
•
2TV 2 (69)

Replacing the matrix A in (32) by the closed-loop

system matrix Ac = A−BK results in

AcY = AY −BKY (70)

and with the notation KY = Z (64) can be replaced by

T •
AY

⋄.

Writing now compactly P • = TC1P
⋄TC1 as given in

(54), then (63) implies (53). This concludes the proof.

VI. ILLUSTRATIVE EXAMPLE

To demonstrate the algorithm properties it was assumed

that system is given by (1), (2), where h = 6

A =





2.6 0.0 −0.8
1.2 0.2 0.0
0.0 −0.5 3.0



 , C =

[

1 2 1
1 1 0

]

Ah =





0.00 0.02 0.00
0.00 0.00 −1.00

−0.02 0.00 0.00



 , B =





1 3
2 1
1 1





Setting m = 3 and solving (52), (53) with respect the LMI

matrix variables Y , Z, U•, V •, and W • using Self-

Dual-Minimization (SeDuMi) package [14] for Matlab

[6], the gain matrix problem was solved as feasible giving

K =

[

−4.6371 −2.8106 19.8292
4.1418 1.9946 −12.9338

]

Ac =





−5.1883 −3.1732 18.1722
6.3324 3.8266 −26.7247
0.4953 0.3160 −3.8954





and the stable eigenvalue spectrum of the closed-loop

system matrix eig(Ac) = {−0.2110 −0.9606 −4.0855}.

To characterize the steady-state control properties the

extended closed-loop system matrix Ace = A+Ah−BK

was computed, where

Ace =





−5.1883 −3.1532 18.1722
6.3324 3.8266 −27.7247
0.4753 0.3160 −3.8954




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Fig. 1. Distributed delay state response of the system

This matrix eigenvalue spectrum is also stable since

eig(Ace) = {−0.2380 − 1.1129 − 3.9062}
In the presented Fig. 1 the example is shown of the

unforced closed-loop system state response, where the

initial state was qT
h (−6) = [0.1 0.0−0.1]. It is possible to

verify that closed-loop dynamic properties for this unsta-

ble autonomous time-delay system are less conservative.

VII. CONCLUDING REMARKS

Modified design conditions, explained with respect to

special forms of structured matrix variables and based

on an extended version of the Lyapunov-Krasovskii func-

tional, are given in the paper. Obtained formulation is

a convex LMI problem where the manipulation is ac-

complished in that manner that produces the closed-loop

system asymptotical stability. Presented illustrative exam-

ple confirms the effectiveness of proposed control design

techniques. In particular, with the use of an extended

version of Lyapunov-Krasovskii functional, it was shown

how to adapt the standard approach to design optimal

matrix parameters of state controller for systems with

distributed time delays.
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