
HAL Id: hal-00906117
https://inria.hal.science/hal-00906117

Submitted on 19 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

List Scheduling in Embedded Systems under Memory
Constraints

Paul-Antoine Arras, Didier Fuin, Emmanuel Jeannot, Arthur Stoutchinin,
Samuel Thibault

To cite this version:
Paul-Antoine Arras, Didier Fuin, Emmanuel Jeannot, Arthur Stoutchinin, Samuel Thibault. List
Scheduling in Embedded Systems under Memory Constraints. SBAC-PAD’2013 - 25th International
Symposium on Computer Architecture and High-Performance Computing, Federal University of Per-
nambuco & Federal University of Minas Gerais, Oct 2013, Porto de Galinhas, Brazil. pp.152-159,
�10.1109/SBAC-PAD.2013.22�. �hal-00906117�

https://inria.hal.science/hal-00906117
https://hal.archives-ouvertes.fr

List Scheduling in Embedded Systems under

Memory Constraints

Paul-Antoine Arras∗†‡, Didier Fuin†, Emmanuel Jeannot∗, Arthur Stoutchinin†, Samuel Thibault∗‡

∗ Inria Bordeaux Sud-Ouest, Talence, France, first.last@inria.fr
† STMicroelectronics, Grenoble, France, first.last@st.com

‡University of Bordeaux, France

Abstract—Video decoding and image processing in embedded
systems are subject to strong resource constraints, particularly in
terms of memory. List-scheduling heuristics with static priorities
(HEFT, SDC, etc.) being the oft-cited solutions due to both their
good performance and their low complexity, we propose a method
aimed at introducing the notion of memory into them. Moreover,
we show that through appropriate adjustment of task priorities
and judicious resort to insertion-based policy, speedups up to
20% can be achieved. Lastly, we show that our technique allows
to prevent deadlock and to substantially reduce the required
memory footprint compared to classic list-scheduling heuristics.

Keywords—Task graphs, scheduling, memory, system on chip,
video decoding.

I. INTRODUCTION

At a time when the convergence of digital terminals is
pushing the limits of multimedia integration, including for
features once reserved to ad hoc devices, it is no longer
uncommon to come across mobile phones capable of play-
ing streaming video received wirelessly from the Internet.
Nonetheless, it does not mean that the operation consisting
in decoding a video stream has become a trivial job suitable
for sequential processing by any low-end, general-purpose
embedded processor. Actually, the complexity [14] of recent
video-coding algorithms, such as the H.264/AVC [20] and its
successor HEVC [17], makes the use of a single processing
element impractical unless poor-quality reproduction is ad-
missible. Instead, the solution consists in resorting to parallel
processing with specialized hardware accelerators for a number
of performance-demanding tasks.

In this paper, we study parallel scheduling of video-coding
and image-quality-improvement applications in an embedded
parallel heterogeneous computing environment. In particular,
traditional list-scheduling heuristics exhibit good performance
while remaining of relatively low complexity, and therefore
lend themselves well to the lightweight embedded systems.
However, existing parallel scheduling algorithms are mostly
geared towards high-performance computing with no particular
constraints on memory size, whereas in embedded environ-
ments reducing memory footprint is of major concern. That is
what motivates our work.

We used a model of an embedded platform from STMicro-
electronics called STHORM (formerly P2012) [3], [13] for
conducting our study. STHORM is a system on chip (SoC)
consisting of a number of general-purpose processing elements
and specialized hardware accelerators, all sharing a limited
amount of level-one memory. In order to take into account the

limited level-one memory size of STHORM, we extended the
previously proposed list-scheduling heuristics by introducing
additional memory constraints to the scheduling process. The
main contribution of the paper is the following: as the raw
enforcement of memory constraints yields poor schedules or
even deadlocks, we devised a scheme that ensures the absence
of deadlock and helps find the best trade-off between memory
footprint and makespan.

The remainder of this paper is organized as follows:
Section II discusses some related work; Section III describes
the computation model being used; Section IV formally defines
and discusses the problem; Section V presents the core contri-
bution, which is a method to adapt priority of list-scheduling
heuristics accounting for memory consideration; Section VI
shows our results using a STHORM simulation environment;
and finally, Section VII summarizes our contributions and
proposes future directions.

II. RELATED WORK

In embedded systems, the problem of executing an appli-
cation on a SoC is often modeled by scheduling a dataflow
graph. However, even recent models derived from synchronous
dataflow (SDF [11]) like schedulable parametric dataflow
(SPDF [6]), do not take into account all the dynamics of the
application, like varying execution time of tasks. Moreover,
most SoC’s are heterogeneous with general-purpose processors
coupled with accelerators (hardware processing element). Such
heterogeneity is not captured by these modern dataflow models
of computation.

Scheduling task graphs on parallel machines is NP-hard
even in the case of homogeneous parallel machines [10].
This justifies using heuristics to address the problem. List
scheduling is a technique that is widely acknowledged for its
good trade-off between its complexity and the quality of the
solution [1]. The principle is to assign priorities to tasks and to
sort them in a list ordered by decreasing priority; thus, among
available tasks, the first to be executed is always the one having
the highest priority, that is the first in the list. As soon as a
task has been scheduled, it is removed from the list. Ties are
broken randomly, if any.

In the heterogeneous case, many heuristics have been
proposed in the literature (see [5] for a study of around 20 of
them). Among those, HEFT [18] is a popular list-scheduling
heuristics where task priorities are computed using the average
bottom level [9]. SDC [16] is another list-scheduling heuristics

aiming at addressing the resource-scarcity issue when only few
resources can execute a given subset of tasks.

Concerning memory constraints, preliminary work dates
back to register allocation [15]. There also exists work for
optimizing footprint for dataflow graphs [4] or for scheduling
jobs in batch schedulers [2]. It is also known that optimizing
the makespan under resource constraints is NP-Hard for almost
all non-trivial problems [10].

Therefore we see that, to the best of our knowledge, we
are lacking studies and solutions for scheduling applications
on embedded systems using a fast technique (e.g. list schedul-
ing) and dealing with memory constraints and variable task
execution times. The goal of the remainder of this paper is to
address this need.

III. DEFINITIONS AND MODELS

We here expose in further details the context of our work,
and the entailed model of the platform, the execution, and the
memory constraints.

A. Computing Environment

In the context of embedded image processing, a homo-
geneous solution based on general-purpose processors would
be too expensive and inefficient, while application-specific
integrated circuits (ASICs) exhibit very good performance,
but are too specialized and lack flexibility. A heterogeneous
platform integrated in a SoC comprising both specialized hard-
ware accelerators and general-purpose processors is therefore
a widely accepted solution [7], [8], [19].

The target of our research, the STHORM computing
platform, consists of both a number of general-purpose, pro-
grammable cores, namely software processing elements (SW-
PEs), and a number of specialized, hardwired accelerators,
namely hardware processing elements (HWPEs). Two levels
of memory are available. The first level is a local memory
tightly coupled to PEs, therefore it is more efficient and
more costly, thus present in limited amount expressed here
in number of slots: it only stores the data being currently
processed (e.g. a line of pixels or a macroblock from an
image). The second level is an external memory located farther
from the PEs, therefore suffering from an increased latency
while being cheaper and thus able to accommodate much
more data, including those already processed and those yet
to be processed. The transfers between these two levels are
conducted by a direct memory access (DMA) controller.

In order to be able to leverage classical scheduling heuris-
tics such as HEFT, while still being general enough to be ap-
plied to most real-world embedded architectures, we consider
some simplifications, and come up with the following model:

• The platform is composed of several independent
processing elements (PEs). For a given task, PEs have
differing efficiencies according to their type, or may
even not be able to execute it at all. For instance,
HWPEs can only execute the task they were designed
for, and memory-transfer tasks can only be run by the
DMA controller, which cannot execute any other kind
of task.

• Data originally lie in the external memory, and have
to be transferred to the local memory through DMA
in order to be worked on.

• To execute tasks, PEs access the data located in the
local memory. The latency and bandwidth costs of
this access are assumed to be contentionless, and are
comprised in the task duration.

The first assumption is not a simplication: it only states
how the STHORM platform works. The second one reflects
the way target applications (such as image-processing algo-
rithms) are typically implemented on similar architectures for
performance matters. The last assumption is the only real
simplification: contentionless accesses to the local memory
usually cannot be guaranteed on real platforms. Nevertheless,
the overhead incurred by contention can be neglected in most
cases. Lifting this assumption is left as future work.

B. Execution Model

In the STHORM environment, applications are usually
programmed following the dataflow model of computation. An
application is thus represented by a dataflow graph (DFG)
made of a set of parallel actors connected via a set of
FIFOs used for communicating data tokens1. An application
execution consists of multiple parallel firings of actors. Each
actor firing consumes some number of data tokens in the
actor’s input FIFOs, performs some computation based on
these input tokens, and produces some number of tokens on the
actor’s output FIFOs. To adapt this model for list scheduling,
we will assimilate the firing of an actor as a task. A single
actor thus usually generates multiple tasks, one per firing. This
results into a classical directed acyclic graph (DAG) to be
scheduled over the available PEs.

Transforming a DFG into a DAG consists in unrolling
several iterations of the DFG by simulating and building the
respective tasks and their dependencies. This is a straightfor-
ward technique. How many iterations are instantiated depends
on the following factors. On the one hand, the more iterations
the larger the DAG and the better our understanding of the
application. It is therefore easier to take good scheduling
decisions if we have a large graph. On the other hand, the DAG
can become very large and therefore the time for scheduling
can increase sharply. More importantly, the size of the schedule
may exceed the available memory to store it on the embedded
system. The solution consists in finding a trade-off between
the quality of the schedule and its size. Such decision is left
to the decision maker (application designer). But technically
it is possible to apply the same schedule window by window
as if the DFG were unrolled dynamically.

C. Memory Model

To take memory constraints into account, we introduce a
new, dedicated kind of tasks: memory-slot allocation and re-
lease. Once a memory slot has been allocated by an allocation
task, its reference is passed between actors as a data token, up
to the task which releases it. Such kind of tasks can only be

1A token is the smallest unit of data that can be processed by a task. It is
application specific; e.g. for an image-processing algorithm, it can be a line
of pixels.

alloc_0_0

src_0_0

motionDetect_0_0

estimateLineNoise_0_0

tempUV_0_0

tempY_0_0spaY_0_0

fading_0_0

frameController_0

lineController0_0_0

lineController1_0_0

dst_0_0

free_0_0

estimateFrameNoise_0

hostController_0

Fig. 1. Example DAG for the TNR algorithm. A single line of pixels is handled. For n lines, double-suffixed tasks have to be run n times. alloc_0_0
consumes memory while free_0_0 releases memory. estimateFrameNoise_0’s successor is frameController_1 and is thus not represented on this
figure.

run by a SWPE, and their scheduling is more complex than
regular tasks.

Indeed, when it is run, each of them can either consume
or release a certain amount of local memory expressed as a
number of tokens. In order to keep the model simple, we
assume—without loss of generality—that one memory slot can
accommodate exactly one data token. The token transfer of
such a task is expressed as an algebraic cost: positive if it allo-
cates memory or negative if it releases memory. The number of
available slots is updated on each task execution by subtracting
algebraically its cost; it shall always be nonnegative: when it
becomes zero, the scheduler first has to schedule some releaser
tasks before being allowed to schedule other allocators.

Figure 1 illustrates the model described above with a
DAG representing an image-quality-improvement algorithm
that applies a temporal noise reduction (TNR) to each line
of pixels. The graph comprises only one instance (i.e. task)
of each actor because any one of them does the same par-
allel processing on all pixel lines included in the frames
that compose a video sequence2. Simple-suffixed nodes (e.g.
frameController_0) are executed once per frame while
double-suffixed nodes (e.g. tempUV_0_0) are run once per
line; the numbers indicate image and line numbers, respec-
tively.

The TNR application works as follows:
hostController is run by the host processor of the
SoC to introduce a full frame into external memory;
frameController launches the processing from a
SWPE; lineController0 and 1 program the DMA to,
respectively, read and write the data in external memory. The

2Thus, from a processing viewpoint, pixel lines are independent.

critical part begins with the alloc actor which allocates
a memory slot for a whole line. This slot is filled by a
transfer from the external memory by the src actor, and
after treatement is transferred back to external memory
by the dst actor, after which the memory slot can be
released by the free actor. estimateLineNoise and
estimateFrameNoise evaluate frame n’s noise level so
as to calibrate the processing for frame n + 1. Lastly, spaY,
tempUV, tempY and motionDetect analyze the frame
in order for fading to be able to apply the appropriate
correction.

It should be noted that src and dst can only run on the
DMA. As we have only one DMA controller on the platform,
these tasks are serialized during the execution of the graph.
This scheme ensures the absence of contention on the DMA:
memory transfers are executed one after the other.

IV. PROBLEM DEFINITION

A. Inputs

Based on the models described in Section III, we define the
problem we tackled as follows. Let G = (V,E) be a directed
acyclic task graph (DAG) modeling the application. Each task
vi ∈ V corresponds to a firing of an actor and each edge
(vi, vj) ∈ E models a dependency between two tasks. We have
a heterogeneous environment composed of m heterogeneous
processing elements (PEs) being all able to access S memory
slots. The duration of task vi on PE j is noted pi,j . When a
PE j cannot execute task vi we have pi,j = +∞. Otherwise,
to account for the fact that task durations may depend on
the input data, pi,j is a random variable that follows a law
in [0,+∞[. We also need to distinguish the memory tasks,
which allocate or release memory. They have a negligible but

non-zero duration. We call VM ⊂ V the set of all memory
tasks. The number of memory slots allocated or released by
task vi ∈ VM is cost(vi), which is positive when the task
allocates slots (consumer task), or negative when the task
releases slots (releaser task). Each consumer task is paired with
the corresponding releaser task, therefore we have a bijection
function pair:

∀vi ∈ VM , ∃!vj ∈ VM ,

{

vj = pair(vi) ∈ VM

cost(vi) + cost(vj) = 0
.

Lastly, there always exists a path from vi, cost(vi) > 0, to
pair(vi) in G to ensure that the reference of the allocated
memory slot is passed from actor to actor, starting from its
consumer task, down to its releaser task.

B. Metrics

The goal of the problem is to schedule the tasks on
the availables PEs, respecting resource constraints and task
dependencies. We have two metrics to optimize: the average
makespan Cmax (i.e. the finish time of the last task) and the
average memory usage Mmax. We take an average metrics to
account for random task durations. The memory-usage metrics
is defined as follows. Given a schedule, let M(t) be the
memory usage of the schedule at time t. By definition:

M(t) =
∑

vi∈V <
M

(t)

cost(vi) ,

where V <
M (t) ⊂ VM is the set of memory tasks scheduled up

to time t. Hence, we have:

Mmax = max
t∈[0,Cmax]

M(t) ,

and the schedule has to respect the available number of slots:

Mmax ≤ S .

C. Discussion

The above problem is a multi-criteria problem as memory
usage and makespan are conflicting objectives. Indeed, as
shown in the DAG of Fig. 2(a), if we schedule sequentially
each 3-task thread on a homogeneous set of processors, we
reach Mmax = 1 but Cmax = n, and if we parallelize on n
resources we have Cmax = 1 but Mmax = n.

Moreover, it is well known that minimizing Cmax alone
is NP-hard. But, minimizing Mmax alone is NP-hard as well.
A possible reduction comes from the following NP-complete
version of pebble game. It consists in deciding if a DAG can
be pebbled with less than K pebbles where 1) pebbles can be
placed on the node of the DAG only when all its predecessors
are pebbled, 2) pebbles can be removed at any time and 3)
nodes can be pebbled only once [15].

D. Motivating Example

Not all scheduling heuristics which respect precedence
constraints can produce valid schedules respecting memory
constraints. Indeed it may happen, if we do not have enough
memory slots, that the scheduling heuristics deadlocks. An
example of DAG that leads to deadlock is given in Fig. 2(b).
On one processor, the scheduling sequence 1+, 3+, t5, t7

1+#

t
1#

1%
#

2+#

t
2#

2%
#

n+#

t
n#

n%
#

…#

(a) DAG leading to conflicting objectives for makespan
and memory consumption.

1+#

2+#

t
5#

t
6#

2(#

1(#

3+#

4+#

t
7#

t
8#

4(#

3(#

(b) DAG leading to a deadlock even with two available
memory slots.

Fig. 2. cost(i+) = +1, cost(i
−
) = −1, and duration of computing tasks

ti is 1 on all processors.

deadlocks if we have only two memory slots. Indeed, after
executing t5 and t7, the only task that can be executed
consumes memory (2+ and 4+). With two memory slots a
solution consists in executing the upper part and the inferior
part of the DAG sequentially: the sequence 1+, 2+, t5, t6, 1-,
2-, 3+, 4+, t7, t8, 3-, 4- is a valid schedule with 2 available
memory slots. Therefore, having a scheduling heuristics that
takes into account memory constraints is necessary to obtain
schedules that do not deadlock.

V. SOLUTION DESCRIPTION

Definition 1: A memory set is a set of DAG nodes located
on a path from a consumer to its paired releaser, including
those two. Memory sets are clustered into memory clusters
such that a memory cluster comprises all memory sets which
have intersecting nodes.

Following this definition, a memory set which has no vertex
in common with any other memory set is also a memory
cluster. For instance, in the graph represented on Fig. 1, the
memory cluster corresponding to the processing of line 0 from
frame 0 consists of alloc_0_0, free_0_0 and those eight
tasks located between them. Additionally, Figure 3 shows a
more complex graph with several memory clusters. In the
remainder, we will only consider memory clusters.

Definition 2: The achievable lower bound (ALB) of the
memory cost is the maximum number of consumed memory
slots by a memory cluster, over all memory clusters.

Then we derive two conditions which permit to achieve
this lower bound:

C1: The sets of priorities of consumer tasks from different
clusters do not overlap.

C2: Consumer tasks from ancestor clusters have higher
priorities.

Proposition 1: Conditions C1 and C2 are sufficient to
schedule under the ALB.

Proof: Due to space limitation, we only give the intuition.
Let us consider two disconnected clusters A and B. As A
and B are disconnected, Condition C1 guarantees that if a
consumer from A is scheduled first then all consumers from
A will be scheduled before those from B, which will ensure no
deadlock due to lack of memory (for instance, in the case of the
DAG of Fig. 2(b), this will ensure that 1+ and 2+ are scheduled
together, before 3+ and 4+, and thus the whole cluster will be
schedulable). Now assume that some node in B has an input
dependency from a node in A. Then Condition 2 demands that
consumers from A should be scheduled first. Consequently,
the dependency will be satisfied when B’s consumers are
scheduled, ensuring no memory waste.

In order to meet these conditions, the scheduling process
has to be adapted since the mere counting of memory slots
introduces implicit dependencies that do not appear in the
initial graph and therefore cannot be accounted for by the usual
schedulers. To solve this issue, we devise a new task graph:

Definition 3: The independence graph associated with an
application is an undirected graph whose vertices represent
only memory tasks. The edges are such that two nodes are
connected if and only if there exists no path between them in
the original DAG.

The idea is to account for the precedence relations between
memory tasks that do not appear as data dependencies. Using
this graph allows for a priority adjustment so as to bring
forward the execution of releaser tasks, since they constitute
the main locking point in the schedule.

A. Priority Adjustment

We now introduce an adjustment of priorities for memory
constraints, which can be applied to static-priority–based list-
scheduling algorithms.

Each releaser task vr will get a priority bonus PB equiva-
lent to the total priorities of the set V ∗

C of tasks vc satisfying
the following requirements:

1) vc is adjacent to vr in the independence graph;
2) cost(vc) > 0, i.e. vc is a consumer;
3) one of the following holds:

a) P (vc) < P (pair(vr)) where P (v) gives the
priority of any task v,

b) pair(vc) is not adjacent to pair(vr) in the
independence graph.

PB(vr) =
∑

vc∈V ∗

C

P (vc)

Requirement 1 ensures that only tasks with no pre-existent
precedence relation are considered, to avoid producing a bonus
loop; Requirement 2 prevents releaser tasks from influencing

one another; Requirements 3a and 3b respectively aim at
meeting Conditions C1 and C2. These adjusted priorities are
then propagated to the rest of the DAG through a second pass
of the regular task-prioritizing phase.

In some few cases, this priority-adjustment scheme is not
sufficient to meet Condition C1. In such cases, we give in
Algorithm 1 a way to enforce C1 directly. The rationale behind
this algorithm is that the priorities of some consumer tasks
may have to be raised in order to avoid overlapping between
clusters. To do so, the priority list is traversed backward and
each time overlapping clusters are detected the priority of
the lower-ranked consumer is raised. Thanks to this scheme,
priority forcing does not alter already-traversed tasks and the
algorithm requires only one pass.

Count the number of consumers in each cluster;
// Traverse the priority list backward

considering only consumer tasks

foreach new cluster C traversed do
if all tasks in preceding cluster C ′ have not already
been traversed then

Find task T ′ from C ′ with highest priority
while there are tasks T in C such that
P (T) < P (T ′) do

// Raise priority of task T

P (T)← P (T ′) + 1
end

end
end

Algorithm 1: Priority forcing

In practice, the extra bonus that this algorithm introduces
is very small, i.e. the initial priority adjustment is already very
good.

B. Insertion-based Policy

Many scheduling heuristics (e.g. HEFT, SDC) provide
insertion mechanisms to schedule tasks in idle-time slots. We
here show how to adapt this mechanism for memory tasks,
whose insertion also has to respect memory constraints.

Let s(t) be the number of available slots at time t; s(t)
represents the state of the local memory at any step of the
scheduling process and is supposed to be retrievable for any
previous step t0 < t. Let I(t) be the set of idle-time slots at
time t. For all i ∈ I(t), we define start(i) the start time of
i and end(i) the end time of i, then we derive the duration
of i: d(i) = end(i) − start(i) 3. Let V =

M (t) be the set of all
memory tasks running at time t. Then, a consumer task vc can
be inserted in a given i if the following assertions hold:

• the considered slot has enough memory to accommo-
date the memory cost of vc:

d(i) ≥ d(vc) ,

∃(t0, t
′

0) ∈ [start(i), end(i)]2,
{

∀t ∈ [t0, t
′

0], s(t) ≥ cost(vc)

t0 ≤ EST(vc) ≤ t′0
;

3Through a slight abuse of notation, we also use d to denote the duration
of tasks.

• insertion will not affect subsequent, already-scheduled
tasks:

∀t ≥ EST(vc), s(EST(vc)) + cost(vc)

+
∑

vm∈
⋃

t′∈[EST(vc),t]
V =
M

(t′)

cost(vm) ≥ 0 ,

where EST(v) denotes the estimated start time of task
v.

C. Self-timed Scheduling

To cope with the randomized task durations of the problem,
we have modified the list heuristics as follows. First, we
compute the priority and a static schedule of each task by
using the average of the random variable pi,j that gives the
duration of task i on processor j. Then, when we actually
execute the application we use this precomputed schedule to
allocate and order the tasks: during the real execution each
task is executed on the same processor and in the same order
as what was computed by the schedule. However, as task
durations may diverge from the average value used to compute
the schedule, the start times of the tasks change as well. Hence,
a task is executed as soon as its dependencies (in the DAG)
are satisfied and its preceding task (on its allocated processor)
is terminated. For this reason, we call this technique self-timed
scheduling [12] as only the allocation and the order respect the
static schedule while the start time is computed dynamically.
By doing this procedure several times, the observed average
of the different obtained makespans approaches the expected
makespan of the schedule.

VI. EXPERIMENTS

We implemented our contributions, namely the priority-
adjustment method and the insertion-based policy for memory
tasks, into HEFT and SDC. It should be noted that they are
both compatible with any static-priority–based list-scheduling
algorithm.

We carried out experiments on two real-world applications:
the TNR presented in Section III-C and the H.264 video coding
algorithm [20].

All our experiments consisted in comparing the makespans
of schedules with and without our priority-adjustment method
for different memory-slot numbers; insertion-based policy is
always used. Makespan values are averages on a thousand
executions with random task durations.

Random task durations are computed through the following
strategy:

1) For each type of actor (src, fading, etc.), we
define a unitary duration per number of pixels.

2) We determine the reference duration wr for each ac-
tor by multiplying the unitary duration by the number
of pixels that are processed (line or macroblock).

3) In order for all instances of a given task to get a
similar variation, we first set the average random
duration w̄ of this actor by choosing a dispersion
factor a ≥ 1 such that w̄ ∈ [w

r

a
, awr]. To do so,

we use the beta law which has a support on [0, 1]

alloc_0_0

srcBitstream_0_0

alloc_0_1

srcBitstream_0_1

alloc_1_0

srcBitstream_1_0

alloc_1_1

srcBitstream_1_1

bitstreamHandler_0_0

bitstreamHandler_0_1

bitstreamHandler_1_0

bitstreamHandler_1_1

decoding_0_0

decoding_0_1

decoding_1_0

decoding_1_1

reconstruction_0_0

reconstruction_0_1

reconstruction_1_0

reconstruction_1_1

intrapred_0_1

free_0_0_0_1

dstUnfilt_0_1 filter_0_1

intrapred_1_0

free_0_0_1_0 free_0_1_1_0

dstUnfilt_1_0filter_1_0

intrapred_1_1

free_0_0_1_1 free_0_1_1_1 free_1_0_1_1

dstUnfilt_1_1

filter_1_1

dstUnfilt_0_0 filter_0_0

free_0_0

srcUnfilt_0_0_0_1srcUnfilt_0_0_1_0 srcUnfilt_0_0_1_1

free_0_1

srcUnfilt_0_1_1_0 srcUnfilt_0_1_1_1

free_1_0

srcUnfilt_1_0_1_1

free_1_1

dstFilt_0_0

dstFilt_0_1

dstFilt_1_0

dstFilt_1_1

alloc_0_0_0_1alloc_0_0_1_0

alloc_0_1_1_0

alloc_0_0_1_1

alloc_0_1_1_1

alloc_1_0_1_1

Fig. 3. H.264 task graph for 4 dependent macroblocks. 3 out of 7 memory
clusters are shown in different shades of grey. Allocator and releaser tasks
appear in square boxes.

and when α = β has a mean 0.5. Here, we use
(α, β) = (2, 2):

w̄ = wr (Beta(α, β)(a− 1/a) +1/a) .

Moreover, we impose that:

∀i, a ≤
√

wr
i,js

/wr
i,jh

,

where wr
i,js

and wr
i,jh

are reference durations of task
vi respectively on a SWPE and a HWPE. This ensures
that a SWPE is never faster than an HWPE.

4) The final duration of each task instance is computed
similarly with the same dispersion factor a.

A. TNR

Our heuristics were fed with a DAG describing the process-
ing of 10 lines of 1000 pixels each. Since this simple example
has no risk of deadlock, Algorithm 1 of priority forcing is
not used. The simulated platform is composed of 1 DMA,
1 SWPE, and 5 HWPE (one per accelerated computation
actor). Figure 6 illustrates the results. Schedules with priority
adjustment always outperform their unadjusted counterparts;
this is true both for HEFT and SDC. Speedups range from
4 % for 1 slot to 20 % for 2 slots, and 10.6 % on average.
The low speedup for 1 slot can be explained by the low
pipelining potential since only one line can be processed at
at time. Conversely, the high speedup for 2 slots is due to
the wrong decisions taken by the unadjusted versions which
try to schedule all consumers at once since they have the
same priority. However this gap vanishes when the amount
of memory increases.

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

4 5 6 7 8 9

M
a
k
e
s
p
a
n

Number of memory slots

3x3 H264 scheduled by SDC with and without adjustment

0
0.001

0.06
0.1
0.2
0.7
0.8
0.9

1
Unadjusted

(a) SDC heuristics with different bonus factors

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

4 5 6 7 8 9

M
a
k
e
s
p
a
n

Number of memory slots

3x3 H264 scheduled by HEFT with and without adjustment

0
0.001

0.06
0.1
0.2
0.7
0.8
0.9

1
Unadjusted

(b) HEFT heuristics with different bonus factors

Fig. 4. H.264 with 3x3 macroblocks. The missing bars mean that the version of the heuristics produces a schedule that deadlocks.

 14000

 16000

 18000

 20000

 22000

 24000

 26000

4 6 8 10 12 14 16 18 20

M
a
k
e
s
p
a
n

Number of memory slots

10x10 H264 scheduled by SDC with and without adjustment

0
0.001

0.06
0.1
0.2
0.7
0.8
0.9

1
Unadjusted

(a) SDC heuristics with different bonus factors

 14000

 16000

 18000

 20000

 22000

 24000

 26000

4 6 8 10 12 14 16 18 20

M
a
k
e
s
p
a
n

Number of memory slots

10x10 H264 scheduled by HEFT with and without adjustment

0
0.001

0.06
0.1
0.2
0.7
0.8
0.9

1
Unadjusted

(b) HEFT heuristics with different bonus factors

Fig. 5. H.264 with 10x10 macroblocks. The missing bars mean that the version of the heuristics produces a schedule that deadlocks.

 7

 8

 9

 10

 11

 12

 13

 14

 15

 1 2 3 4 5 6 7 8 9 10

M
a
k
e
s
p
a
n

Number of memory slots

HEFT original
SDC original

HEFT adjusted
SDC adjusted

Fig. 6. TNR with 10 lines of 1000 pixels

B. H.264

We used a simplified model of an H.264 decoder illustrated
by Fig. 3. The base unit of the decoding process is the
macroblock (MB), which is a contiguous set of—typically—
16 lines of 16 pixels. Each MB is processed as follows:
the first stage is the decoding (entropy, dequantization, etc.)

of the current MB; the second step is the intraprediction4

using at most 4 previously decoded MBs; the third step is
the reconstruction of the original MB; the final step is the
filtering. Each use of an MB, either as reference or while being
decoded, must be preceded by a memory allocation modeled
by a consumer task in the DAG and followed by a memory
release modeled accordingly. For the sake of simplicity, buffers
are not reused, hence the need to systematically reload the MBs
required for the computation. Optimizing this scheme is left
as future work. Thus, the tasks processing subsequent MBs—
in raster-order image scanning—have data dependencies from
earlier-MB tasks.

Contrary to the TNR, it is not possible to schedule the
H.264 under an arbitrary low number of memory slots, as some
tasks need 4 MBs at the same time. The ALB is actually 4.
The simulated platform is composed of 1 DMA, 1 SWPE, and
4 HWPE (one per accelerated computation actor).

Schedules with priority adjustment do not outperform the
unadjusted counterparts anymore, on the contrary. This is due
to the priority adjustment tending to prevent the pipelining of
the dataflow instances. We have thus tried to use a bonus factor

4To keep the model simple, interprediction is not considered.

BF ∈ [0, 1] to mitigate the priority adjustment as follows:
∀v ∈ V, Padjusted(v) = Poriginal(v) + PB(v) ∗BF .

In the first set of simulations, the schedulers were fed with
a DAG describing the processing of 3 lines of 3 MBs (3x3).
Figure 4 illustrates the results. When there is no bar, it means
that the schedule deadlocks due to lack of memory. We see that
the lower the bonus factor the larger the number of memory
slots required to produce valid schedules. This is due to the
fact that with a low bonus factor the adjusted priority is very
close to the original priority (see above formula). With a bonus
factor of 0, only priority forcing (see algorithm 1) is performed.
Unadjusted schedulers are unable to produce legal schedules
below 7 slots while their adjusted counterparts can, but at the
cost of a higher makespan. Changing the bonus factor permits
to tune the benefits of both aspects, and we can see that a
speedup can be reached (around BF = 0.01) up to 13 %
for 7 slots, 12 % for 8 slots and 11 % for 9 slots. In the
worst case, the adjusted version is 6 % slower but ensures
the absence of deadlock. However, it is always possible to
outperform the original HEFT or SDC with our adjustement
technique. Moreover, if we compare Fig. 4(a) with 4(b), we
see that there is no real difference between HEFT and SDC in
our case. Like for the TNR, makespans and speedups decrease
as the memory constraint is loosened since the processing of
different MBs can then be further pipelined. Conversely, for
4 slots the makespan is particularly high because most MBs
have to be processed sequentially.

In the second set of simulations, the schedulers were fed
with a DAG describing the processing of 10 lines of 10 MBs
(10x10). Figure 5 illustrates the results. The outcome is similar,
except that the original HEFT and SDC algorithms are not able
to produce legal schedules with less than 19 slots, while the
adjusted variants are able to produce legal schedules with as
few as 4 slots.

The overall results show very close performance for HEFT
and SDC. This demonstrates the ability of our contributions to
be applied to different existing heuristics with equal benefits.

VII. CONCLUSION

In this paper, we have presented extensions to list-
scheduling algorithms for taking into account memory require-
ments. This is done through a new model featuring memory
tasks and priority adjustment of the tasks. Moreover, we have
shown how to extend task insertion to this case. Experiments
on TNR show that we can achieve a makespan gain up to 20%.
For complex applications (e.g. H.264), we show that a strong
priority adjustment prevents deadlock contrary to unmodified
heuristics. Moreover, we have explored the trade-off between
makespan and memory consumption and we have shown that
we are able to find schedules that outperform original heuristics
for both criteria.

Our future work is directed toward dynamic scheduling. We
want to study how on-line scheduling is able to better cope
with the dynamics of the application: when the structure as
well as the duration of the tasks are not fully known in advance.
More specifically, we will address the issues stemming from
the scheduling of video coding algorithms such as H.264
and HEVC, mainly: hardware/software partitioning, execution
model, parameter passing and graph reconfiguration.

REFERENCES

[1] T. L. Adam, K. Chandy, and J. Dickson, “Comparison of list schedules
for parallel processing systems.” Communications of the ACM, vol. 17,
no. 12, pp. 685–690, 1974.

[2] A. Batat and D. Feitelson, “Gang scheduling with memory considera-
tions,” in Parallel and Distributed Processing Symposium, 2000. IPDPS

2000. Proceedings. 14th International. IEEE, 2000, pp. 109–114.

[3] L. Benini, E. Flamand, D. Fuin, and D. Melpignano, “P2012: Building
an ecosystem for a scalable, modular and high-efficiency embedded
computing accelerator,” 2012, pp. 983–987.

[4] J. Buck and E. Lee, “Scheduling dynamic dataflow graphs with bounded
memory using the token flow model,” in 1993 IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP-93),
vol. 1. IEEE, 1993, pp. 429–432.

[5] L.-C. Canon, E. Jeannot, R. Sakellariou, and W. Zheng, “Comparative
evaluation of the robustness of dag scheduling heuristics,” in Grid

Computing, S. Gorlatch, P. Fragopoulou, and T. Priol, Eds. Springer
US, 2008, pp. 73–84.

[6] P. Fradet, A. Girault, P. Poplavko et al., “Spdf: A schedulable parametric
data-flow moc (extended version),” 2011, inria RR7828.

[7] T. Geng et al., “Parallelization of computing-intensive tasks of the h.264
high profile decoding algorithm on a reconfigurable multimedia system,”
IEICE Transactions on Information and Systems, vol. E93-D, no. 12,
pp. 3223–3231, 2010.

[8] G.-A. Jian et al., “A system architecture exploration on the configurable
hw/sw co-design for h.264 video decoder,” 2009.

[9] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for
allocating directed task graphs to multiprocessors,” ACM Comput.

Surv., vol. 31, no. 4, pp. 406–471, Dec. 1999. [Online]. Available:
http://doi.acm.org/10.1145/344588.344618

[10] E. L. Lawler, J. K. Lenstra, A. R. Kan, and D. B. Shmoys, “Sequencing
and scheduling: Algorithms and complexity,” Handbooks in operations

research and management science, vol. 4, pp. 445–522, 1993.

[11] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of

the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[12] E. A. Lee and S. Ha, “Scheduling strategies for multiprocessor real-time
dsp,” IEEE Global Telecommunications inproceedings and Exhibition,
vol. 2, 1989.

[13] D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepley, G. Haugou,
F. Clermidy, and D. Dutoit, “Platform 2012, a many-core computing ac-
celerator for embedded socs: Performance evaluation of visual analytics
applications,” 2012, pp. 1137–1142.

[14] S. Saponara et al., “Performance and complexity co-evaluation of the
advanced video coding standard for cost-effective multimedia commu-
nications,” Eurasip Journal on Applied Signal Processing, vol. 2004,
no. 2, pp. 220–235, 2004.

[15] R. Sethi, “Complete register allocation problems,” SIAM journal on

Computing, vol. 4, no. 3, pp. 226–248, 1975.

[16] Z. Shi and J. J. Dongarra, “Scheduling workflow applications on
processors with different capabilities,” Future Generation Computer

Systems, vol. 22, no. 6, pp. 665 – 675, 2006.

[17] G. Sullivan and J.-R. Ohm, “Recent developments in standardization
of high efficiency video coding (hevc),” Proceedings of SPIE - The

International Society for Optical Engineering, vol. 7798, 2010.

[18] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Task scheduling algorithms
for heterogeneous processors,” in 8th IEEE Heterogeneous Computing

Workshop (HCW’99), San Juan, Puerto Rico, Apr. 1999, pp. 3–14.

[19] S.-H. Wang et al., “A software-hardware co-implementation of mpeg-
4 advanced video coding (avc) decoder with block level pipelining,”
Journal of VLSI Signal Processing Systems for Signal, Image, and Video

Technology, vol. 41, no. 1, pp. 93–110, 2005.

[20] T. Wiegand et al., “Overview of the h.264/avc video coding standard,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 13, no. 7, pp. 560–576, 2003.

http://doi.acm.org/10.1145/344588.344618

