N

N

Using terminology extraction techniques for improving
traceability from formal models to textual requirements

Farid Cerbah, Jérome Euzenat

» To cite this version:

Farid Cerbah, Jérome Euzenat. Using terminology extraction techniques for improving traceability
from formal models to textual requirements. Proc. 5th international conference on applications of nat-
ural language to information systems (NLDB), Jun 2000, Versailles, France. pp.115-126, 10.1007/3-
540-45399-7 10 . hal-00906228

HAL Id: hal-00906228
https://inria.hal.science/hal-00906228
Submitted on 19 Nov 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-00906228
https://hal.archives-ouvertes.fr

Terminology Extraction Techniques for
Improving Traceability from Formal Models to
Textual Requirements

Farid Cerbah' and Jéréme Euzenat?

! Dassault Aviation - DPR/DESA - 78, quai Marcel Dassault
92552 cedex 300 Saint-Cloud - France

farid.cerbah@dassault-aviation.fr

2 Inria Rhéne-Alpes - 655, avenue de 'Europe
38330 Monbonnot St Martin - France
Jerome.Euzenat@inrialpes.fr — http://www.inrialpes.fr/exmo/

Abstract. This article deals with traceability in sotfware engineering.
More precisely, we concentrate on the role of terminological knowledge
in the mapping between (informal) textual requirements and (formal)
object models. We show that terminological knowledge facilitates the
production of traceability links, provided that language processing tech-
nologies allow to elaborate semi-automatically the required terminolog-
ical resources. The presented system is one step towards incremental
formalization from textual knowledge.

1 Introduction

Modern information systems tend to integrate textual knowledge and formal
knowledge in common repositories. The informal is richer and familiar to any
user while the formal is more precise and necessary to the computer. It is recog-
nized that linking formal knowledge to informal knowledge has several benefits
including, (1) establishing the context for formalized knowledge and document-
ing it, and (2) providing a natural way to browse through formalized knowledge.
Two significant examples can be pointed out:

— Product Data Management. Design and production data are formalized
in product trees. This formalization improves data consistency and evolutiv-
ity. The components of the product tree are related to documents, such as
maintenance manuals or manufacturing notices. Connecting formal models
to informal sources guarantees a better synchronization between technical
data and documents.

— Software Engineering. Formal models, and more particularly object ori-
ented models are widely used in software development. In this context, tex-
tual knowledge represents specification and design documents. These infor-
mal sources are used as a basis for building the formal models.

Several works focused on the advantages of using a corpus-based terminology for
supporting formal knowledge acquisition [4], [1], [2]. These contributions empha-
size the central role of terminological resources in the mapping between informal
text sources and formal knowledge bases. In the same spirit, the present work
uses terminology software support for generation and management of traceabil-
ity links between initial software requirements and formal object representations
resulting from the modeling processes. We describe a fully implemented system
that provides high-level hypertext generation, browsing and model generation
facilities. From a more technical viewpoint, we introduce an original xmL based
model for integrating software components.

The rest of the paper is organized as follows. Section 2 introduces the main con-
cepts of our approach and the basic tasks that should be performed by a user
support tool which takes advantage of terminological knowledge for improving
traceability. Section 3 gives a detailed and illustrated description of the imple-
mented system. Finally, section 4 briefly compares our contribution to related
works and the conclusion provides some directions for further research.

2 Principles

2.1 Traceability in Software Engineering

In a software development process, design and implementation decisions should
be “traceable”, in the sense that it should be possible to find out the requirements
impacted, directly or indirectly, by the decisions. This mapping is useful in many
respects:

— It helps to ensure exhaustiveness: By following traceability links, the user
or a program can easily identify the requirements which are not satisfied by
the software.

— It facilitates the propagation of changes: At any time in the development
process, traceability information allows to find out the elements impacted
by changes (upstream and downstream). For instance, the user can evaluate
the incidence on the software design and implementation of a late change in
the initial customer requirements.

— When traceability is established with hyperlinks, the browsing capabilities
provided by design support tools are increased.

In an object-oriented framework, many traceability links aim at relating textual
fragments of the documents in natural language and model fragments. Putting
on these links manually is a tedious and time consuming task and current tools
for requirement analysis provide no significant help for doing that job.

2.2 The Role of Terminological Resources

In many information systems where both textual knowledge and formal knowl-
edge are involved to describe related concepts, terminology can play an inter-
mediate role. As mentioned earlier, previous works in the fields of knowledge

Informal Documents ! Technical Terms ' Formal Models

- L

FLIGHT Requirements : w ‘

Requirement 1 : L | gt pran :

A flight plan is composed ... H :

et AT stodedigns i i \ -

, Current flight pian i [_Fiight plan Waypoint |
! - ': : Waypoints

Requirementk : i i Time constraints

Weaypoint

A DEST waypoint is selected)| ! !
when : ; Qfet waypoint !
. ; Destination waypoint !

Requirementn : \\T

L/

-
~—

Fig. 1. Using terminological items to link textual requirements and object models

acquisition and natural language processing have shown that terminological re-
sources extracted from corpora can help the incremental formalization processes
from texts to formal models.

There exist other demonstrative examples in related domains, such as product
data management and software engineering.

For example, in the DOCSTEP project [8], which deals with product data manage-
ment, terminological resources are used to connect multilingual technical docu-
mentation and items of product trees. Hyperlinks are established between term
occurrences in documents and corresponding objects in product trees.

In software engineering, the role of terminological knowledge in the modeling
process has often been pointed out [15, 10, 3]. One of the first step in the modeling
process consists of a systematic identification of the technical terms (simple and
compound nouns) in the documents, namely the terminology used to describe
the problem. Some of these technical terms represent concepts which will be
subsequently introduced in the formal models. These terms can be seen as an
intermediary level between the textual requirements and the formal models. (see
figure 1).

2.3 Functional View of a System that Exploits Terminology

A system that takes advantage of terminological resources may involve tech-
niques pertaining to several technological areas, and particularly natural lan-
guage processing, information retrieval and knowledge management:

Terminology Extraction. In technical domains, many precise and highly rel-
evant concepts are linguistically represented by compound nouns. The multi-
word nature of the technical terms facilitates their automatic identification

in texts. Relevant multi-word terms can be easily identified with high ac-
curacy using partial syntactic analysis [4], [11] or statistical processing [6]
(or even both paradigms [7]). Terminology extraction techniques are used
to automatically build term hierarchies that will play the intermediate role
between documents and models.

Document and Model Indexing. The technical terms are used for indexing
text fragments in the documents. Fine grained indexing, i.e paragraph level
indexing, is required while most indexing systems used in information re-
trieval work at the document level. Besides, most descriptors used in this
kind of indexing are multi-word phrases. The terms are also used for index-
ing the model fragments (classes, attributes ...).

Hyperlink Generation. The terminology driven indexing of both texts and
objects with the same terminology is the basis of the hyperlink generation
mechanisms. Futhermore, hyperlink generation mechanisms should be con-
trolled interactively, in the sense that the user should be able to exclude
automatically generated links or add links that have not been proposed by
the system.

Model Generation. It is quite common that the concept hierarchies mirror
the term hierarchies found in the documents. This property can be used to
generate model skeletons which will be completed manually.

These features are implemented in the system presented in the next section.

3 A User Support Tool for Improving Traceability

The implemented system consists of two components, X Term and Troeps. X Term
deals with the document management and linguistic processing functions, more
particularly terminological extraction and document indexing. Troeps deals with
model management and model indexing. The model generation function is spread
over both components.

3.1 XTerm

XTerm [5] is a natural language processing tool that provides two services to
end users:

— Terminology acquisition from documents. It analyzes a French or English
technical documentation in order to build a hierarchy of potential technical
terms. The user can explore and filter the extracted data via a graphical
interface.

— Terminology-centred hypertext navigation. XTerm can be seen as a hyper-
text browser. The extracted terms are systematically linked to their textual
contexts in the documents. The user can easily access the textual fragments
containing term occurrences.

plan—de~vol—courant

Filtre

< Validés
Souil de Fréuence = (/2 +]

(78212510

Tigwe 5 Page CTM

Les valenrs des contraintes de type heure prévne sont alors recaleulées.

4\ XTerm — Main Panel \ 2 \J k #\ Paragraphes \ " \J\
Domaines Analyse Vues Export Alde
| Terme pian de vol courant | ‘
XTerm :
Extraction interaciive de termes technigues. [5G-GDV. doc] IA ‘
une partie reiointe finge. ioinant Pavion & Mitinérairs nlan de vol courant 1 e
= b=l Validation des Termes |
= Netscape: NEUTRE - —
= e T r— Tenmes candidat D o e e e
File Edit Yew Go Communicaior . NN
= o 5 s - = « plage de variation [2] A its/Source] - | _|
€ % 3 & o @ = & & v pien 53] }m
Bak Fowud Rebad Home Seanh Nelscpe Pit Sewly S +/ pian de ol [192]
S s S - TR i plan de vol courant [37] 1
¢ Bookmarke Ji Location: |http//ocdias06 /cgi-hin/hytropes/ocdias E plan de vol en cours (6] .2
£ Wertbers ¢ Weblail ¢ Connections 42 Bizloumal ¢ SmartUpcate 2 lkplace. Lo/ plai de vol transmis [5] o
- - S # plan de vol MIDS [2] fSEVOL e —
i Valider Z
troeps | SN Al plan sélect _I - plan de vol dans le systéme heure (2] ol o
E{EE Invalider ¢ plan de vn\.degve’pavaunn da ission [24] A
.)) dsale L. plan de vol de préparation de mission utilisé
viewpoint NEUTRE in the concept plan ||Lexi curce| Repter | o point 1]
[3G-C o point fictif 2]
Lael psqure B position [e o
5 L/ position avion (2] 140511997
coura.
Theroot class is plan o T possibilts 3]
i motif 5 ¥ poste [13]
The taxonomy of classes is: g‘;m BELES poste de modification de paramétres [2]
e ¥ principe [3] r
IPDY Principe général dutilisation [2]
EGT(priorité 2]
prés :
- Graphe - procédure 4]
plan—de-vol 'S”;n‘n‘ _I proximite 5 e
e plar préparation [45]
plan-de—vel-de—préparation—de-mission parie | | | Textes | L préparation de mission [44]
Description| | | | EFprésentation [20]
7| | - présertation o 12 st 2
—— présentation e 1a page (6] Tl
Nowbre ds =
Quitter
HNombre de termes
2 2

| Ench. :A §: Liste puces 2 para | 55dess® | 100% | | z| @] @ 1=

Fig. 2. The integrated system based on XTerm and Troeps.

XTerm is made of four components:

Document Manager. This component provides textual data to the linguistic
components. It scans all document building blocks (paragraphs, titles, fig-
ures, notes) in order to extract the text fragments. The extracted units are
then prepared for linguistic processing.
Additionally, the document manager provides the mechanisms for indexing
and hyperlink generation from technical terms to document fragments. Hy-
perlink generation is a selective process: To avoid overgeneration, the initial
set of links systematically established by the system can be reduced by the

user.

Part of Speech Tagger. The word sequences provided by the document man-
ager are processed by a tagger based on the Multex morphological parser [14].
POS tagging starts with a morphological analysis step which assigns to each
word its possible morphological realisations. Then, contextual desambigua-
tion rules are applied to choose a unique realization for each word. At the
end of this process, each word is unambigeously tagged.

Term Extractor. As mentioned in section 2.3, the morpho-syntactical struc-
ture of technical terms follows quite regular formation rules which represent

Adj

Fig. 3. a term extraction automaton

a kind of local grammar. For instance, many French terms can be captured
with the pattern “Noun Preposition (Article) Noun”. Such patterns can be
formalized with finite state automata, where transition crossing conditions
are expressed in terms of morphological properties. The figure 3 gives an
example of a simplified automaton (state 2 is the unique final state).

To identify the potential terms, the automata is applied on the tagged word
sequences provided by the pos tagger. A new potential term is recognized
each time a final state is reached. During this step, the extracted terms are
organized hierarchically. For example, the term “flight plan” (“plan de vol”
in figure 2) will have the term “plan” as parent and “modified flight plan”
as a child in the hierarchy.

Actually, term extraction with automata is just the first filtering step of
the overall process. The candidate set obtained after this step is still too
large. Additional filtering mechanisms are involved to reduce that set. In
particular, grouping rules are used to identify term variants. For instance,
in French technical texts, prepositions and articles are often omitted for the
sake of concision (the term “page des buts” can occur in the elided form:
“page buts)”!. Term variants are systematically conflated into a single node
in the term hierarchy.

Management /Browsing Component. This component ensures the basic term
management functionalities (editing, search, validation). X Term is highly in-
teractive. Many browsing facilities are provided to facilitate the manipulation
of large data sets (extracted terms + text fragments). XTerm can be used
as an access tool to documentation repositories.

! Whose English literal translations are respectively: “page of the waypoints” and
“page waypoints”. A plausible equivalent term in English could be “Waypoint page”.

Documents Terminology Object Models
==
= ==
=
Document <«—+ XTerm D XL R Troeps
Manager Parser
Servers ‘ ‘ ‘ TCPIP
Clients |

XTerm
Doc. Browser HTTR
Editor [Browser
—

Fig. 4. System architecture

3.2 Troeps

Troeps [12, 16] is an object-based knowledge representation system, i.e. a knowl-
edge representation system inspired from both frame-based languages and object-
oriented programming languages. It is used here for expressing the models.

An object is a set of field-value pairs associated to an identifier. The value of a
field can be known or unknown, it can be an object or a value from a primitive
type (e.g. character string, integer, duration) or a set or list of such. The objects
are partitioned into disjoint concepts (an object is an instance of one and only one
concept) which determines the key and structure of its instances. For example,
the “plan” concept identifies a plan by its number which is an integer. The fields
of a particular “plan” are its time constraints which must be a duration and its
waypoints which must contain a set of instances of the “waypoint” concept.
Objects can be seen under several viewpoints, each corresponding to a different
taxonomy. An object can be attached to a different class in each viewpoint.
For instance, a particular plan is classified as a “flight plan” under the nature
viewpoint and as a “logistic plan” under the functional viewpoint. This is unlike
other object systems, which usually allow only one class hierarchy.

Troeps knowledge bases can be used as HTTP servers whose skeleton is the struc-
ture of formal knowledge (mainly in the object-based formalism) and whose flesh
consists of pieces of texts, images, sounds and videos tied to the objects. Turning
a knowledge base into a HTTP server is easily achieved by connecting it to a port
and transforming each object reference into an URL and each object into a HTML
page. If HTML pages already document the knowledge base, they remain linked
to or integrated into the pages corresponding to the objects. The Troeps user
(through an Application Programming Interface) can explicitly manipulate each
of the Troeps entities. The entities can also be displayed on a HTTP client through
their own HTML page. The Troeps program generates all the pages on demand

Plan
i* ¥ Flight Plan
¥ Current Flight Plan
! ¥ Modified Flight Plan
i Transmitted Flight Plan Concept Plan

Class Generation The Taxonomy of classes is:
—’

Current-Flight-Plan
Modified-Flight-Plan

XTerm Troeps

Fig. 5. Class generation

(i.e. when a URL comes through #TTP). The pages make numerous references to
each others. They also display various documentation (among which other HTML
pages and lexicon) and give access to Troeps features. From a Troeps knowledge
server it is possible to build complex queries grounded on formal knowledge such
as filtering or classification queries. The answer will be given through a seman-
tically sound method instead of using a simple full-text search. Moreover, it is
possible to edit the knowledge base. The system presented here takes advantage
of this last feature.

3.3 Communication between the Components

The communication between the linguistic processing environment and the model
manager is bidirectional: Upon user request, XTerm can call Troeps to generate
class hierarchies from term hierarchies. Conversely, Troeps can call XTerm to
provide the textual fragments related to a concept (via a technical term).

For example, figure 5 illustrates the class generation process from a hierarchy of
terms carefully validated by the user (a hierarchy rooted in the term “Plan”).
The class hierarchy constructed by Troeps mirrors the hierarchy of the validated
terms (under the root “Plan”).

At the end of the generation process, the created classes are still linked to their
corresponding terms, which means that the terminology-centred navigation ca-
pabilities offered by XTerm are directly available from the Troeps interface. As
illustrated by figure 6, the Troeps user has access to the multi-document view of
the paragraphs which concern the “Flight-Plan” concepts®. From this view, the
user can consult the source documents if required.

2 More precisely, this view displays the paragraphs where the term “flight plan” and
its variants occur.

Term | Flight Plan

A flight plan is displayed on P =
, i
[The elaboration of flight plans .—_)-.
[] A
(& _—

Concept Plan X

The Taxonomy of classes is: / o
33
7 R
(1] ool
4 < -
i

Modified-Flight-Plan

XTerm

Troeps

Fig. 6. Traceability through hypertext links.

Data exchanges between XTerm and Troeps are based on the xwmrL language
(see figure 4). Troeps offers an XML interface which allows to describe a whole
knowledge base or to take punctual actions on an existing knowledge base. This
last feature is used in the interface where XTerm sends to Troeps short XML
statements corresponding to the action performed by the user. These actions
correspond to the creation of a new class or a subclass of an existing class and
the annotation of a newly created class with textual elements such as the outlined
definition of the term naming the class. For example, to generate classes from
the term hierarchy rooted at the term “plan”, XTerm sends to Troeps an XML
stream containing a sequence of class creation and annotation statements. XML
representation of object models . We give below an extract of this sequence, cor-
responding to the creation of classes “Flight-Plan” and “Current-Flight-Plan”:

<trp:ADD>
<trp:CLASS>
<trp:CLASSDSC name="Flight-Plan">
<trp:CLASSREF name="Plan"/>
</trp:CLASSDSC>
</trp:CLASS>
</trp:ADD>

<trp:ADD>
<trp:CLASS>
<trp:CLASSDSC name="Current-Flight-Plan">
<trp:CLASSREF name="Flight—Plan"/>
</trp:CLASSDSC>
</trp:CLASS>
</trp:ADD>

<trp:ANNOTATE label="comment">
<trp:CLASSREF name="Flight-Plan"/>
<trp:CONTENT>
A flight plan is a sequence of waypoints ...
</trp:CONTENT>
</trp:ANNOTATE>

10

The term definition filled out in the XTerm description of the term is added as
a textual annotation in the class description. After these automated steps, the
classes can be completed manually.

This xMrL interface has the advantage of covering the complete Troeps model
(thus it is possible to destroy or rename classes as well as adding new attributes to
existing classes). Moreover, it is relatively standard in the definition of formalized
knowledge so that it will be easy to have XTerm generating other formats (e.g.
xMI [13] or Ontolingua) which share the notion of classes and objects.

More details about this approach of xmr-based knowledge modeling and ex-
change are given in [9].

4 Related Work

Terminology acquisition is one of the most robust language processing technol-
ogy [4,11,7] and previous works have demonstrated that term extraction tools
can help to link informal and formal knowledge. The theoretical apparatus de-
picted in [4], [1] and [2] provides useful guidelines for integrating terminology
extraction tools in knowledge management systems. However, the models and
implemented systems suffer from a poor support for traceability, restricted to the
use of hyperlinks from concepts and terms to simple text files. On this aspect, our
proposal is richer. The system handles real documents, in their original format,
and offers various navigation and search services for manipulating “knowledge
structures” (i.e., documents, text fragments, terms, concepts ...). Moreover, the
management services allow users to build their own hypertext network.

With regard to model generation, our system and Terminae [2] provide comple-
mentary services. Terminae resort to the terminologist to provide a very precise
description of the terms from which a precise formal representation, in descrip-
tion logic, can be generated. In our approach, the system does not require users
to provide additional descriptions before performing model generation from term
hierarchies. Model generation strictly and thoroughly concentrates on hierarchi-
cal structures that can be detected at the linguistic level using term extraction
techniques. For example, the hierarchical relation between the terms “Flight
Plan” and “Modified Flight Plan” is identified by XTerm because of the explicit
relations that hold between the linguistic structures of the two terms. Hence, such
term hierarchies can be exploited for class generation. However, X Term would be
unable to identify the hierarchical relation that hold between the terms “vehicle”
and “car” (which is the kind of relations that Terminae would try to identify
in the formal descriptions). As a consequence, the formal description provided
by our system is mainly a hierarchy of concepts while that of Terminae is more
structural and the subsumption relations is computed by the description logic
system.

In the field of software engineering, object-oriented methods concentrate on the
definition of formal or semi-formal formalisms, with little consideration for the
informal-to-formal processes [15, 10, 3]. However, to identify the relevant require-

11

ments and model fragments, designers should perform a deep analysis of the
textual specifications. The recommendations discussed in section 2.2 on the use
of terminological resources can be seen as a first step.

The transition from informal to formal models is also addressed in [17]. The
approach allows users to express the knowledge informally (like in texts and
hypertexts) and more formally (through semantic networks coupled with an ar-
gumentation system). In this modeling framework, knowledge becomes progres-
sively more formal through small increments. The system, called “Hyper-Objet
substrate”, provides an active support to users by suggesting formal descriptions
of terms. The integrated nature of this system allows to make suggestions while
the users are manipulating the text, and to exploit already formalized knowledge
to deduce new formalization steps (this would be adapted to our system with
profit). However, our natural language component is far more developed.

5 Conclusion

We have presented a fully implemented system which:

— analyzes text corpora and generates terminological resources organized in
a hierarchical way;

— allows users to validate particular elements of the terminology;

— generates class hierarchies in a formal model and communicates them to
the Troeps knowledge server through an XML stream;

— provides a way back from the model to the documents through the fede-
rating action of the terminology.

It thus provides both assisted generation of formal models from texts and trace-
ability of these models back to the documents. To our opinion, this is a valu-
able tool for elaborating structural or formal knowledge repositories (as well as
databases or software models) from legacy texts.
To improve the current system, more developments are underway for:
— improving knowledge generation by automatically detecting potential at-
tributes and their types (the same could be possible for events, actions ...);
— implementing definition detection in texts;
— using the knowledge model as an index for providing query-by-formalized-
content of the documents.

Acknowledgements

This work has been partially realized in the GENIE II program supported by
the French ministry of education, research and technology (MENRT) and the
DGA/SPAé.

12

References

1.

10.

11.

12.

13.

14.

15.

16.
17.

N. Aussenac-Gilles, D. Bourigault, A. Condamines, and C. Gros. How can knowl-
edge acquisition benefit from terminology ? In Proceedings of the 9th Knowledge
Acquisition for Knowledge Based System Workshop (KAW ’95), Banff, Canada,
1995.

. B. Biébow and S. Szulman. Une approche terminologique pour la construction

d’ontologie de domaine & partir de textes : TERMINAE. In Proceedings of 12th
RFIA Conference, pages 81-90, Paris, 2000.

G. Booch. Object-Oriented Analysis and Design with Applications. Addison-
Wesley, 2d edition, 1994.

. D. Bourigault. Lexter, a terminology extraction software for knowledge acquisition

from texts. In Proceedings of the 9th Knowledge Acquisition for Knowledge Based
System Workshop (KAW ’95), Banff, Canada, 1995.

F. Cerbah. Acquisition de ressources terminologiques — description technique des
composants d’ingénierie linguistique. Technical report, Dassault Aviation, 1999.
K. W. Church and P. Hanks. Word association norms, mutual information and
lexicography. Computational Linguistics, 16(1):22-29, 1990.

B. Daille. Study and implementation of combined techniques for automatic extrac-
tion of terminology. In J.L. Klavans and P. Resnik, editors, The Balancing Act:
Combining Symbolic and Statistical Approaches to Language. MIT Press, Cam-
bridge, 1996.

K. Elavaino and J. Kunz. Docstep — technical documentation creation and man-
agement using step. In Proceedings of SGML ’97, 1997.

Jérome Euzenat. XML est-il le langage de représentation de connaissance de I’an
2000 ? In Actes des 6eme journées langages et modéles & objets, pages 59-74, Mont
Saint-Hilaire, CA, 2000.

I. Jacobson. Object-Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley, 1992.

J. S. Justeson and S. M. Katz. Technical terminology: Some linguistic properties
and an algorithm for identification in text. Natural Language Engineering, 1(1):9—
27, 1995.

O. Marino, F. Rechenmann, and P. Uvietta. Multiple perspectives and classification
mechanim in object-oriented representation. In Proceeding of 9th ECAI, pages 425—
430, Stockholm, 1990.

OMG. XML Metadata Interchange (XMI). Technical report, OMG, 1998.

D. Petitpierre and G. Russell. MMORPH — the Multext morphology program.
Technical report, Multext Deliverable 2.3.1, 1995.

J. Rumbaugh. Object-Oriented Modeling and Design. Prentice-Hall, 1991.

Projet Sherpa. Troeps 1.2 reference manual. Technical report, Inria, 1998.

F. Shipman and R. McCall. Supporting incremental formalization with the hyper-
object substrate. ACM Transactions on information systems, 17(2):199-227, 1999.

