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Abstract. The LFp Framework is an extension of the Harper-Honsell-Plotkin’s Edinburgh Logical
Framework LF with external predicates, hence the name Open Logical Framework. This is accomplished
by defining lock type constructors, which are a sort of ¢-modality constructors, releasing their argument
under the condition that a possibly external predicate is satisfied on an appropriate typed judgement.
Lock types are defined using the standard pattern of constructive type theory, i.e. via introduction,
elimination, and equality rules. Using LFp, one can factor out the complexity of encoding specific
features of logical systems which would otherwise be awkwardly encoded in LF, e.g. side-conditions
in the application of rules in Modal Logics, and sub-structural rules, as in non-commutative Linear
Logic. The idea of LFp is that these conditions need only to be specified, while their verification
can be delegated to an external proof engine, in the style of the Poincaré Principle or Deduction
Modulo. Indeed such paradigms can be adequately formalized in LFp. We investigate and characterize
the meta-theoretical properties of the calculus underpinning LFp: strong normalization, confluence, and
subject reduction. This latter property holds under the assumption that the predicates are well-behaved,
i.e. closed under weakening, permutation, substitution, and reduction in the arguments. Moreover, we
provide a canonical presentation of LFp, based on a suitable extension of the notion of 8n-long normal
form, allowing for smooth formulations of adequacy statements.

* This work was supported by the Serbian Ministry of Education and Science (projects ON174026 and I11044006).



1 Introduction

The Edinburgh Logical Framework LF, presented in [16], is a first-order* constructive type theory. It was
first introduced as a general meta-language for logics, as well as a specification language for generic proof-
checking/ proof-development environments.

In this paper, we consider an extension of LF with external predicates, and in this sense our framework
is an open Logical Framework. This is accomplished by defining lock type constructors, which are a sort of
o-modality constructors for building types of the shape Lﬁﬁ[p], where P is a predicate on typed judgements.

Following the standard specification paradigm in Constructive Type Theory, we define lock types using
introduction, elimination, and equality rules. Namely, we introduce a lock constructor for building objects
Eﬁ,)g[M ] of type E%’U[p], via the introduction rule (O-Lock) , presented below. Correspondingly, we introduce
an unlock destructor, UY ,[M], and an elimination rule (O-Unlock) which allows for the elimination of the
lock type constructor, under the condition that a specific predicate P is verified, possibly ezternally, on an
appropriate correct, i.e. derivable, judgement.

'k M:p I'FsN:o

> > (O-Lock)
r }_E ‘CN,J[M] : EN,a[p]

I'ts M : LY [p] 'y N:o P(I'Fx N:o)
s UL, M) p

(O-Unlock)

The equality rule for lock types amounts to a lock reduction (£L-reduction), L{ﬁﬁ[ﬁzﬁ[M ] = M, which
allows for the elimination of a lock, in the presence of an unlock. The L-reduction combines with standard
B-reduction into SL-reduction.

So as to allow the reader an introductory insight into the application and potential benefits of lock types,
we present here a fragment of one of the case studies proposed later in the paper (see Section 6.3). The
problem of suitably encoding systems with “rules of proof” (as opposed to “rules of derivation”) like, e.g.,
classical Modal Logics K, KT, K4, KT4 (S4), KT45 (Ss) in Hilbert style is well-known in the literature.
In this specific case, the aforementioned systems all feature necessitation as a rule of proof. We can encode
such a rule in LFp by locking the type True ((J¢) in the conclusion of NEC as follows:

o : Type

O:0->0

True : o -> Type

NEC : IT¢:0.llm:True(d). L [True(0g)]

where o denotes the type of propositions, [ is the operator commonly used to denote necessitation, and
True is the classical truth judgment.

The gist of this encoding approach is to use the predicate Closed (I' Fx m: True(¢)) in order to correctly
capture the notion of “rules of proof”. This predicate holds iff “all free variables occurring in m have type o”.
Indeed, if all the free variables of a proof term satisfy such a condition, it is clear, by inspection of the canonical
forms, that there cannot be free variables of type True(...) in the proof term, i.e. the encoded modal formula
does not depend on any assumption. The conciseness and elegance of the proposed representation in LFp
can be contrasted with the burden of the extra-judgments and structures needed in other more “traditional”
approaches in the literature [1,2,12].

LFp is parametric over a potentially unlimited set of (well-behaved) predicates P, which are defined on
derivable typing judgements of the form I' Fx N : o. The syntax of LFp predicates is not specified, with

4 In contrast to the systems on the top and back sides of the A-cube, which are either second- or higher-order.
5 The former apply only to premises which do not depend on any assumption, such as necessitation, while the latter
are the usual rules which apply to all premises, such as modus ponens.



the main idea being that their truth is to be verified via a call to an external validation tool; one can view
this externalization as an oracle call. Thus, LFp allows for the invocation of external “modules” which, in
principle, can be executed elsewhere, and whose successful verification can be acknowledged in the system
via L-reduction. Pragmatically, lock types allow for the factoring out of the complexity of derivations by
delegating the {checking, verification, computation} of such predicates to an external proof engine or tool.
The proof terms themselves do not contain explicit evidence for external predicates, but just record that a
verification {has to be (lock), has been successfully (unlock)} carried out. In this manner, we combine the
reliability of formal proof systems based on constructive type theory with the efficiency of other computer
tools, in the style of the Poincaré Principle [5].

In this paper, we develop the meta-theory of LFp. Strong normalization and confluence are proven without
any additional assumptions on predicates. For subject reduction, we require the predicates to be well-behaved,
i.e. closed under weakening, permutation, substitution, and SL-reduction in the arguments. LFp is decidable,
if the external predicates are decidable. We also provide a canonical presentation of LFp, in the style of
[36,15], based on a suitable extension of the notion of Sn-long normal form. This allows for simple proofs of
adequacy of the encodings.

In particular, we encode in LFp the call-by-value A-calculus and discuss a possible extension which
supports the design-by-contract paradigm. We provide smooth encodings of side conditions in the rules of
Modal Logics, both in Hilbert and Natural Deduction styles, cf. [2,12]. We also encode sub-structural logics,
i.e. non-commutative Linear Logic, cf. [31,12]. We also illustrate how LFp can naturally support program
correctness systems and Hoare-like logics. In our encodings, we utilize a library of external predicates, the
pseudo-code of which appears in [18].

As far as expressiveness is concerned, LFp is a stepping stone towards a general theory of shallow wvs
deep encodings, with our encodings being shallow by definition. Clearly, by Church’s thesis, all external
decidable predicates in LFp can be encoded, possibly with very deep encodings, in standard LF. It would
be interesting to state in a precise categorical setting the relationship between such deep internal encodings
and the encodings in LFp.

LFp can also be viewed as a neat methodology for separating the logical-deductive contents from, on one
hand, the verification of structural and syntactical properties, which are often needlessly cumbersome but
ultimately computable, or, on the other hand, from more general means of validation.

Synopsis. In Section 2, we present the syntax of LFp, the typing system, and the SL-reduction. In Section 3,
we prove the main meta-theoretical properties of the system. In Section 4, the expressive power of LFp is
discussed. In Section 5, we present a canonical version of LFp, and we discuss the correspondence with the full
framework. In Section 6, we show how to encode the call-by-value A-calculus, a minimal functional language
following the design by contract paradigm, Modal Logics, non-commutative Linear Logic and Hoare Logic.
In Section 7, we provide one final look back on LFp, while conclusions and future work appear in Section 8.

1.1 A Philosophical Prelude

Since Euclid first introduced the concept of rigorous proof and the axiomatic/deductive method, philosophers
have been questioning the nature of mathematics: is it, essentially, analytic or synthetic? We shall not address
these issues here, because we do not wish to dare to comment on the reflections of giants such as Leibniz,
Kant and Schopenhauer. However, we humbly believe that the topics in this paper should be cast against
that background, and we will, therefore, offer some comments in that direction.

Possible, but clearly partial, modern readings of the synthetic vs analytic opposition are, in our view,
those of deduction from axioms vs. computation according to rules, proof checking vs. verification, and proving
inhabitability of judgements vs. definitional equality of types.

The machinery of locking/unlocking types, which we are introducing in LFp, allows for the opening up
of the Logical Framework to alternate means of providing evidence for judgements. In standard LF, there
are only two ways of providing evidence, namely discovering types to be inhabited or postulating that types
are inhabited by introducing appropriate constants. The lock/unlock types of LFp allow for an intermediate
level, one provided by external means, such as computation engines or automated theorem proving tools.



However, among these, we could also think of graphical tools based on neural networks, or even intuitive visual
arguments, as were used in ancient times for giving the first demonstrations of the Pythagoras’ theorem,
for instance. In a sense, LFp, in allowing to formally accommodate any alternative proof method to pure
axiomatic deduction, vindicates all of the “proof cultures” which have been utilized pragmatically in the
history of mathematics, and not only in the Western tradition.

A natural objection which can be raised against LFp is: “But alternative proof methods are not rigorous
enough! We need to go through the pains of rigorous formalized proof checking in order to achieve the highest
reliability of our certifications!”. This is, of course, true, but a few points need to be made.

First of all, absolute certainty is a myth, as it cannot be achieved. The De Bruijn Principle [5,13] is
usually invoked in this respect. It amounts to the request that the core of the proof checker be small and
verifiable by hand. Alternate proof techniques certainly do not satisfy it in a strict sense. But alternate
proof techniques, if properly recorded, are not useless and come, somewhat at an intermediate level between
rigorous encoding and blatant axioms. They can expedite verifications, as in the case of the Poincaré’s
Principle [5], or Deduction Modulo [14], or make the proof more perspicuous and provide some intuition, as
Schopenhauer advocated [33]. On a lighter note, just recall the story of the famous mathematician lecturing
at the seminar, who, halfway through the proof, said: “And this trivially holds!” Just to say a few seconds
later: “But is it really trivial here? Hmm...”. And after about ten minutes of silence triumphantly exclaiming;:
“Yes, it is indeed trivial!”. How should we encode such evidence? Should we just rule it out?

However, there is a far deeper reason why a fundamentalist approach to certainty cannot be maintained
that easily, and this has to do with the issue of adequacy. Contrast, for a moment, the process of proving a
computation correct w.r.t. carrying out its verification by directly executing it. Consider, for example, that
1! %22 % 3% = 108. In the latter case, one would need to do some simple arithmetics, while in the former case,
one would need to reify the rules for computing exponentials and products. Of course, using the autarkic
approach explained in [5] or reasoning by reflection as in [9], one could internalize the needed arithmetics
checking procedures (proving their correctness once and for all), while still preserving the de Bruijn principle
and keeping proof terms small. However, our approach is more “schematic”, in the sense that it creates room
for “plugging-in” any verifier, without the need to specify which one and without the need to prove internally
its soundness.

But what can guarantee that this formalization is adequate, i.e. that it corresponds to our intended
understanding of arithmetic? The issue of proving that formal statements, such as specifications, encodings,
and proof obligations, do indeed correspond to the intended meanings and pragmatic usages cannot ever
be done completely internally to any system. Ultimately, we have to resort to some informal argument
outside any possible De Bruijn Principle. And any such argument can, at best, increase our confidence in the
correctness of our proof of the arithmetical computation. If one looks for a definitive proof of adequacy, one
is led into an infinite regress. The moral here is that only fully internalized arguments can rely on the De
Bruijn Principle, but even the simplest application takes us outside the system. Ultimately, we have to “just
do it” as in Munchhausen trilemma, or as in the story by Lewis Carroll on the dialogue between “A-kill-ease”
and the “Taught-us” [8].

One final comment on lock/unlock types vs. Deduction Modulo or the Poincare’s Principle, which will be
slightly expanded in Section 7. The latter are always extensions of the type Equality Rule to new definitional
equalities. LFp» on the other hand, permits a reflection into the proof objects themselves.

One concluding comment. The traditional LF answer to the question “What is a Logic?” was: “A signature
in LF”. In LFp, we can give the homologue answer, namely “A signature in LFp”, since external predicates
can be read off the types occurring in the signatures themselves. But we can also use this very definition to
answer a far more intriguing question: “What is a Proof culture?”.

1.2 Comparison with Related Work

The present paper extends [19], and continues the research line of [17,20], which present extensions of the
original LF, where a notion of S-reduction modulo a predicate P is considered. These are based on the idea
of stuck-reductions in objects and types in the setting of higher-order term rewriting systems, by Cirstea-
Kirchner-Liquori [10,6], later generalized to a framework of Pure Type Systems with Patterns [6]. This typing



protocol was essential for the preservation of strong normalization of typable terms, as proven in [17]. In
[17,20] the dependent function type is conditioned by a predicate, and we have a corresponding conditioned
B-reduction, which fires when the predicate holds on a {term, judgement}. In LFp, predicates are external
to the system and the verification of the validity of the predicate is part of the typing system. Standard
[B-reduction is recovered and combined with an unconditioned lock reduction. The move of having predicates
as new type constructors rather than parameters of II’s and \’s allows LFp to be a mere language extension
of standard LF. This simplifies the meta-theory, and provides a more modular approach.

Our approach generalizes and subsumes, in an abstract way, other approaches in the literature which
combine internal and external derivations. In many cases, it can express and incorporate these approaches.
The relationship with the systems of [10,6,17,20], which combine derivation and computation, has been
discussed above. Systems supporting the Poincaré Principle [5], or Deduction Modulo [14], where derivation
is separated from verification, can be directly incorporated in LFp. Similarly, we can abstractly subsume the
system presented in [7], which addresses a specific instance of our problem: how to outsource the computation
of a decision procedure in Type Theory in a sound and principled way via an abstract conversion rule. Another
system which has a very similar goal w.r.t. LFp is presented in [11], where a framework named AIT-calculus
modulo is introduced, extending the original LF with computation rules. The latter are realized by means of
rewrite rules empowering the “traditional” conversion rule of LF (i.e., the congruence relation =g is replaced
by =sr, where R denotes the set of rewrite rules introduced into the system). The authors then successfully
encode all functional Pure Type Systems (PTS) into the AII-calculus modulo, proving the conservativity of
their embedding under the termination hypothesis. The main difference between AIT-calculus modulo and
LFp» amounts to the fact that the latter features a simpler metatheory, because the reduction is closer to the
standard S-reduction (at least in principle) and the external predicates are handled in a more controlled way
by means of the lock/unlock mechanism. The direct consequence of this approach, from a practical point
of view (when considering a possible implementation), is that we do not need to change the kernel of the
original LF, but only extend it.

In [35], an extension of the Edinburgh LF with an equational theory is proposed, opening the door to
new ways of conversions among types within the framework. As a consequence, strong normalization and
confluence properties remain valid only in a weaker form (namely, modulo the equivalence induced by the
equational theory on types). In the second part of the work, Higher-order Term Rewriting Systems (HTRS)
with dependent types are introduced and used to generate equational theories, much like those analyzed in
the first part. Of course, the rewriting rules of such an HTRS must adhere to some constraints, in order to
guarantee the fundamental properties of the extended LF. For instance, it is forbidden to use a rewrite rule
to rewrite the type of another rule, i.e., rewriting must preserve well-typedness of expressions. According to
the author, the benefit of the new system, w.r.t. the original LF, is to overcome the inadequacies emerging
when dealing with the encoding of object languages embodying notions of computations via equational rules.
This work has served as a stepping stone to constraint-based extensions of the proof assistant Twelf, which
are called constraint domains [26]. These extensions provide a way for users to work easily with objects
(such as rational numbers), the explicit formalization of which in Twelf would otherwise be quite lengthy
or inefficient, but are still considered to be highly experimental. As future work, it would be interesting to
study the possibility of “embedding” the HTRSs, as in [35], as well as the constraint domains of Twelf in
LFp, as external predicates, since the constraints imposed on the rewriting rules seem closely related to our
well-behavedness properties (see Definition 1). Indeed, just as in [35], we have also used Newman’s Lemma
(see Section 3) to prove confluence of our system, and the issue of preserving well-typedness of expressions
has also been our main concern throughout the development of the meta-theory of LFp.

The work presented here also has a bearing on proof irrelevance. In [25], two terms inhabiting the same
proof irrelevant type are set to be equal. However, when dealing with proof irrelevance in this way, a great
amount of internal work is required, all of the relevant rules have to be explicitly specified in the signature,
and the irrelevant terms need to be derived in the system anyway. With our approach, we move one step
further, and do away completely with irrelevant terms in the system by simply delegating the task of building
them to the external proof verifier. In LFp, we limit ourselves to the recording, through a lock type, that one
such evidence, possibly established elsewhere, needs to be provided, making our approach more modular.



In the present work, predicates are defined on derivable judgements, and hence may, in particular, inspect
the signature and the context, which normal LF cannot. The ability to inspect the signature and the context
is reminiscent of [27,28], although in that approach the inspection was layered upon LF, whereas in LFp it is
integrated in the system. This integration is closer to the approach of [22], but additional work is required
in order to be able to compare their expressive powers precisely.

Another interesting framework, which adds a layer on top of LF is the Delphin system [32], providing
a functional programming language allowing the user to encode, manipulate, and reason over dependent
higher-order datatypes. However, in this case as well, the focus is placed on the computational level inside
the framework, rather than on the capability of delegating the verification of predicates to an external oracle.

LF with Side Conditions (LFSC), presented in [34], is more reminiscent of our approach as “it extends LF
to allow side conditions to be expressed using a simple first-order functional programming language”. Indeed,
the author aims at factoring the verifications of (complicated) side-conditions out of the main proof. Such
a task is delegated to the type checker, which runs the code associated with the side-condition, verifying
that it yields the expected output. The proposed machinery is focused on providing improvements for solvers
related to Satisfiability Modulo Theories (SMT).

2 The LFp System

The pseudo-syntax of the LFp system is presented in Figure 1. We have five syntactic categories: signatures,
contexts, kinds, families or types, and objects. This pseudo-syntax is, essentially, that of LF(c¢f. [16]), with
the removal of abstraction in families, and the addition of a lock constructor (Eﬁﬂ[f]) on families and
objects, and a corresponding lock destructor (L{ﬁp[—]) on objects Both the lock and unlock constructors
are parametrized over a unary logical predicate P, which is defined on derivable type judgements of the
foorm I' Fx N : 0. The entire LFp system is parameterized over a finite set of such predicates and as
these predicates are external by nature, they are not formalized explicitly. More comments are provided in
Section 4. In [18], we provide pseudo-code for a number of predicates which we have found to be useful, both
in general, and for the encodings which we present. However, these predicates are required to satisfy certain
well-behavedness conditions, which will be presented in Section 3, in order to ensure subject reduction of
the system. For the sake of notational completeness, the list of external predicates should also appear in the
signature. We omit it to increase readability.

Yes Yu=0|X,aK|X cco Signatures
rec I':=0|Ixo Contexts
Kek K ::=Type | lIz:0. K Kinds
o,T,p€F ou=a|Hzor|oN | LY, [p] Families (Types)
M,N €O M:u=c|z | x:oM | MN |
| LR o [M] | UR o [M] Objects
Fig. 1. The pseudo-syntax of LFp
Notational conventions and auziliary definitions. We will be using the following notation: M, N,... € O
denote objects, f,g,... denote object constants, z,y, z, ... denote object variables, o,7,p,... € F denote

types, a,b,... denote constant types, K € K denotes kinds, I" € C denotes contexts, 2 € S denotes
signatures, and P denotes predicates. We refer to £ as the lock symbol, and to U as the unlock symbol. We
will be using T to denote any term of the calculus (kind, family, or object), where, in some cases, the syntactic
category to which T" can belong will be clear from the context. We suppose that, in the context I', z:0, the
variable z does not occur free in I' or in o. We will be working modulo a-conversion and Barendregt’s
variable convention. We define the notions of the domain of a signature, the domain of a context, free and



bound variables of a term, as well as substitution in the Appendix. Finally, we will be using = to denote
syntactic identity on terms. All of the symbols can appear indexed.

2.1 The LFp Type System

The type system for LFp, presented in Figure 2, proves judgements of the shape:

Y sig 2’ is a valid signature
Fs I I' is a valid context in X
'y K K is akind in I" and X
I'Fxo: K o has kind K in I" and ¥
I'FsM:o M has type ¢ in I' and X
I'x:obs 7: Type .
Signature rules I'Fs Hx:o.m: Type (F-P3)
— (S-Empt . T .
0 v (S-Empty) Lreo:lorK LreN:it o,
I'ts oN: K[N/x]
Ysig Fx K a¢Dom(X) (S-Kind) e T Fhe N
- -Kin : :
Y, a:K sig =P yge = ? (F-Lock)
: I'ts Ly o[p] : Type
Y sig Fxo:Type c¢ Dom(X) S ) )
Y o e (5-Type) Proo:K DroK Kk o0
'rFso: K’
Context rules
¥ sig (©-Empty) Object rules
.Em .
0 pLy PEFF}_ c.CUGE (O-Const)
o
b I' Ik o:Type o ¢ Dom(I) (CType) Z
Lype Fs I’ zoel
Fs I zio = = .
g I'kFxz:0 (O-Var)
. Irzobs M: T
Kind rul ’ ‘A
|n}_ rules I'tx Ao M : Iz:o.m (0-Abs)
s I
———=—— (K-Type) I'ts M :x:or I'Fx N:o
I'Fx Type 0-A
¥ P I'rs MN :7[N/a] (O-App)
Lo Po K - g pyy ks M:p I'Fs N
S E—— 1 : :
I'ts Ox:0. K = = p ZP g (O-Lock)
F FE CN,CF[M} :LN,O‘[p}
Family rules It M: LY p)lFe N:o P(I'Fz N:o) (O-Unlock)
by I aKeX I'rs U ,[M]:p
——————— (F-Const)
I'txa: K I'tsM:0 I'bx7:Type o=scT
(O-Conv)

I'ts M: 7

Fig. 2. The LFp Type System

In LFp, we consider only the terms obtained after a finite number of application of the typing rules of
the system. In such terms, each symbol (such as a constant, a variable, a lock, or an unlock) can appear only
a finite number of times. Also, we denote by I' b5 a any typing judgement I' bx T : T/ or I' Fx, T. In the
two latter judgements, T will be referred to as the subject of that judgement.



2.2 BL-reduction and Definitional Equality in LFp

In LFp, we have two types of reduction. The first is the standard g-reduction, while the second is a novel
form of reduction, which we call £L-reduction. £L-reduction, essentially, serves as a lock-releasing mechanism,
erasing the U-L pair in a term of the form uﬁ,a[ﬁﬁ,a[M 1], thus effectively releasing M. Together, these
two reductions combine into SL-reduction, denoted by —g., and this combined reduction is the one which
we take into account when considering the properties of LFp. The main one-step SL-reduction rules are
presented in Figure 3. There, we have the new rule (£-O-Main), which is the reduction rule illustrating the
desired behavior of the lock and unlock combined - the effective release of a lock by an unlock, i.e. the unlock
destructor canceling out the lock constructor. This reduction rule, together with the (O-Unlock) and (O-Lock)
typing rules, provides an elegant mechanism for locking and unlocking objects. A similar reduction rule at
the level of types is not required, because applying the unlock destructor to a term automatically unlocks
its type, as ensured by the (O-Unlock) rule.

(Ax:0.M) N — M[N/xz] (8-O-Main)

uﬁ,o‘[‘cﬁ,d[M” _>BL M (COMaln)

Fig. 3. Main one-step-SL-reduction rules in LFp

o —pe o’ (F-My-BL) T e T (F-M-BL)
Hz:om —gc Hxio’ 7 Iz:0.1 —c Hzio.7’
_ 9789 (FALBL) N N (FABL)
O’N—)ggo’lN O'N—mE(J'NI
! /
N*)ﬁg N (F»CI,BL) O —3L O (F[,zﬁ[,)
EE,U[p] _>B£ ﬁ]?”,o[p] EE,U[p] _>B£ £]7\)],a’ [p]
/
P —BL P (F-L3-BL)

LYoo =8 LN,010']

Fig. 4. SL-closure-under-context for families of LFp

The rules for one-step closure under context for families are presented in Figure 4, while those for kinds
and objects are presented in the Appendix (Figure 15 and Figure 16). Furthermore, we denote the reflexive
and transitive closure of —g, by —#g..

We also introduce SL-definitional equality in the standard way, as the reflexive, symmetric, and transitive
closure of SL-reduction on kinds, families, and objects, as illustrated in the Appendix (Figure 17).

3 Properties of LFp

In this section, we present the main properties of LF». Without any additional assumptions concerning pred-
icates, the type system is strongly normalizing and confluent. The former follows from strong normalization
of LF (see [16]), while the latter follows from strong normalization and local confluence, using Newman’s
Lemma. The proof of Subject Reduction, however, requires certain conditions to be placed on the predicates,
and these conditions are summarized in the following definition of well-behaved predicates:

Definition 1 (Well-behaved predicates). A finite set of predicates {P;}icr is well-behaved if each P in
the set satisfies the following conditions:



Closure under signature and context weakening and permutation:

1. If X and 2 are valid signatures such that X C 2, and P(I" Fx «) holds, then P(I" g «) also holds.
2. If I' and A are valid contexts such that I' C A, and P(I" Fx «) holds, then P(Atx «) also holds.

Closure under substitution: If P(I',z:0',I" Fx N : o) holds, and I' bx, N’ : o', then P(I,I"'[N'/z] F
N[N'/z] : o[N'/x]) also holds.

Closure under reduction:

1. If P(I' b2 N : o) holds, and N —gz N’ holds, then P(I' x N’ : o) also holds.
2. If P(I' 5 N : o) holds, and 0 =g, o' holds, then P(I' Fx N : ¢') also holds.

3.1 Strong Normalization

In this section, we prove that LFp is strongly normalizing w.r.t. 8L-reduction. For this, we rely on the strong
normalization of LF, as proven in [16]. First, we introduce the function UL . LFp — LF, which maps LFp
terms into LF terms by deleting the £ and U symbols. The proof then proceeds by contradiction. We assume
that there exists a term 7' with an infinite SL-reduction sequence. Next, we prove that only a finite number
of S-reductions can be performed within any given LFp term 7T'. From this, we deduce that, in order for T to
have an infinite SL£-reduction sequence, it must have an infinite £-sequence, which we show to be impossible,
obtaining the desired contradiction. Therefore, we begin with the definition of the function ~“# : LFp — LF:

Type Y5 =Type; a UL =q; ¢ Ul =¢; x =ux;
(Mx:0.T) U5 = [Ta:0UE TUE,
(Ax:0.T) UL = \p:g—UE T7UE,

(TM) urL _ T UL p— Z/t[l

(LI ()\asf.cr*uE.Tfuﬁ) N—UE,
(Uﬁg[ N7UE = (Awpio= e T7UE) NTUE

> G W

where x is a variable which does not have free occurrences in T'. Its purpose is to preserve the N and o,
which appear in the subscript of the £ and U symbols, while still being able to S-reduce to T" in one step,
which is in line with the main purpose of ~“#_ i.e. the deletion of locks and unlocks from an LFp term. We
can naturally extend ~“* to signatures and contexts of LFp, obtaining signatures and contexts of LF:

(@
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and then to judgements of LFp, obtaining judgements of LF:

(2 Slg ur Z*Mﬁ

(Fx I

)" sig
)"

(I'bx K)U¢ F—“ﬁ Fooue KTHE,
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)"
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(I'Fxo:K =T Ul o UE L KTUE

(ks M:o) Mo = Ul by M7UE . g7UE,

With ~U~£ defined in this way, we have the following claim:



Proposition 1 (Connecting —3, in LFp, —5 in LF, and ~¥£).

1. If K —5c K' in LFp, then K~Y£ —5 K'~Y£ in LF.
2. If o =g o' in LFp, then o UL —50'~UE in LF.
3. If M =gz M’ in LFp, then M~Y~5 =55 M'~UE in LF.

A direct consequence of this is:
Proposition 2 (Connecting =5, in LFp, =5 in LF, and ~¥¥).

1. If K=3.K' in LFp, then K Y =3 K'~Y£ jn LF.
2. If o=gp0’ in LFp, then o UF=50'"U~ in LF.
3. If M=5c M in LFp, then M~UE=5M'~UE in LF.

Furthermore, the following holds:

uc

Proposition 3. The function ~“* maps derivable judgements of LFp into derivable judgements of LF.

Proof. All three of these propositions are proven simultaneously, by induction on the structure of the deriva-
tion of the reduction, the structure of the derivation of the equivalence, and the structure of the derivation
of the judgement. Here, we will present the relevant cases, while the remaining ones are handled similarly.

— For Proposition 1, let LY ,[p] =sc LR, 4[p] from N =5, N’, using the rule (F-£1-4L). From the IH, we
have that N~U£ —3 N'~UL while the goal is (A\z g0 UL p~UE) N7UL 5 Ax 0 UE p~UEL) N'7UL and
this follows immediately from the IH, and the rules for closure under context for S-reduction in LF.

— For Proposition 1, let (Az:o.M)N —g, M[N/z], using the rule (5-O-Main). Here, we have that the
goal is (A\m:o UL M ~UELY N=UL 5 M~UE[N~UE /2], which is, in fact, an instance of the main one-step
[B-reduction in LF.

— For Proposition 1, let UY ,[LN ,[M]] —sz M, using the rule (£-O-Main). Here, we have that the goal is
(Az 0 UL (\ypio~UE M) N) N —5 M4~ which we obtain by applying the main one-step S-reduction
rule of LF, bearing in mind the nature of the choice of z; and y;.

— For Proposition 2, let us have that K=, K', from K —s. K’, using the rule (8£-Eq-Main). From
the IH for Proposition 1, we have that K 4% —»z K’ —UL in LF, from which we trivially obtain that
K UEL=5 K'~Y£ in LF.

— For Proposition 3, let us have that I' by Eﬁ,a[p} : Type, from I' by p: Type and I' =g N : o, using the
rule (F-Lock). From the IH, we have that 'Y~ 5 s p~“% : Type, and 'YX by ue N7UE . g UE
while the goal is I' ™Y b5 ue (Azpio UL p~UE) N~UL ; Type. From the Subderivation property of LF, we
have that I'~Y£ . _ue 0~U~£ : Type, and, given that we can, without loss of generality, assume that i ¢
Dom(I"~“£), we obtain, using the Weakening property of LF, that "~ Ty o UL by ue p7UE : Type,
and, from there, that I'"Y* . _u, )\a:f:a_l’w.p_uﬁ : Hmf:U_UL.Type. Now, by using the application
formation rule of LF, we obtain that 'YX by _we (Azpio UE p~UE) N7UE : Type[N U~ /x;]. However,
this is our claim, as, since no substitutions can occur in Type, we have that Type[N ~“£ /x| = Type.

— For Proposition 3, let us have that I' by 0 : K/, from 'ty 0 : K, I' b5 K, and K=5,K’, using the rule
(F-Conv). From the IHs, we have that I' Y% g we o UE : K~UE PUL bo yp K'7UE and K=K/,
from which we obtain our goal, I'"“% .y o~U~% . K'~U£ by using the LF conversion rule for families.

— For Proposition 3, let us have that I' by Eﬁ,U[M] : Eﬁ,g[P], from 'ty M :pand I' g N : 0, using the
rule (O-Lock). From the IH, we have that I'"“* by, e M~UE : p7UL and I'"UE -y ye N7UE . g UL
while the goal is 'YX by wue (Ao UE M7UEYNTUL o (\ypioUE p~UE) N~UL First, as earlier,
we can obtain that I'Y% by _ur )\xf:a’UL.M*lw : H:cfzofl’w.pfuﬁ. Now, by using the applica-
tion formation rule of LF, we obtain that I' Y% by ue (Axjio UL MUEL) N-UL o pmULIN-UL /3],
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However, what we actually have is that I by oue (Azpio UL M-UL)N-UL ¢ p=UL a5 Dby the

choice of x;, we have that p~“*[N/x;] = p~“*. Also, in a similar manner as before, we can ob-
tain that I'"Y5 by we (A\ypo U p~UE) N~UL . Type. Now, as, by the choice of y;, we have that
pHUE=5(\y o UE p~UE) N7UL we can use the LF conversion rule for objects to obtain our claim.

— For Proposition 3, let us have that I' 5 UL ,[M] : p, from I ks M : L [p], I' Fx N : o,
and P(I' Fx N : o), using the rule (O-Unlock). From the TH, we have that I""Y£ g we M~UYE .
(Azpio UL p=ULY NUL and UL 5 ye N7UE - oUL while the goal which we would like to prove is
I Y b gue (Nypio UE M-UE)Y N-UL : p=UL Similarly to the previous item, we have that I'"Y£ 5w
p~UE : Type and that (\zj:0 UL p~UE) N~UE=;p=UL "and we can use the LF conversion rule for objects
to obtain that 'Y~ 5 we M~UE : p~UL Finally, as we have that M ~U£=5(\y;:0 UL M~UE) N—UE,
we obtain the desired claim by using the Subject Reduction property of LF.

As a consequence of Proposition 3, we have that the function ~“* maps well-typed terms of LFp

into well-typed terms of LF. Next, we will denote the maximum number of S-reductions which can be
executed in a given (either LF- or LFp-) term T as maxg(T). Now, we can notice that L-reductions
cannot create entirely new [-redexes, but can only ”"unlock” potential S-redexes, i.e. expressions of the
form Uﬁ7a[£ﬁ7a[kx:T.M]]T, arriving at Az:7.M T, which is a f-redex. Also, this resulting [-redex will
be present in (uﬁ7a[£§7a[>\l’27.M]] T)~Y£. Therefore, we have that, for any LFp-term T, it holds that
maxg(T) < maxg(T YF). As LF is strongly normalizing, we have that maxg(T~Y<) is finite, therefore
forcing maxg(7') into being finite, leading to the following proposition:

Proposition 4. Only finitely many p-reductions can occur within the mazimal reduction sequence of any
LFp-term. There is no LFp-term T with an infinite number of B-reductions in its maximal reduction sequence.

Next, we notice that any LFp-term has only finitely many £L-redexes before any reductions take place, and
that this number can only be increased through S-reductions, and only by a finite amount per g-reduction.
However, if we were to have an LFp-term T which has an infinite reduction sequence, then within this
sequence, there would need to be infinitely many L-reductions, since, due to Proposition 4, the number of
(B-reductions in this sequence has to be finite. On the other hand, with the number of S-reductions in the
sequence being finite, it would not be possible to reach infinitely many L-reductions, and such a term T
cannot exist in LFp. Therefore, we have the Strong Normalization theorem:

Theorem 1 (Strong normalization of LFp).

1. If I'Fx K, then K is BL-strongly normalizing.

2. if 'ty o: K, then o is BL-strongly normalizing.
3. if 'ty M : o, then M is BL-strongly normalizing.
3.2 Confluence

Since SL-reduction is strongly normalizing, in order to prove the confluence of the system, by Newman’s
Lemma ([3], Chapter 3), it is sufficient to show that the reduction on “raw terms” is locally confluent. First,
we need a substitution lemma, the proof of which is routine:

Lemma 1 (Substitution lemma for local confluence).

1. IfN —BL N/, then M[N/SC] —»QLM[N//I}.
2. If M —5e M, then MIN/z] —sz M'[N/z).

Next, we proceed to prove local confluence:

Lemma 2 (Local confluence of LFp). SL-reduction is locally confluent, i.e.:

1. If K =g K' and K —g. K", then there exists a K", such that K' —s; K" and K" —»s; K.
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2. If 0 =g o' and o —p 0, then there exists a o', such that o’ —»gc " and o’ —»s o’

3. If M =gz M’ and M —g M", then there exists a M"', such that M’ —»gz M and M" —»g M.

Proof. By simultaneous induction on the two derivations T' —g, 7" and T —g. T". All the cases for T kind
or family, as well as most of the cases for T object are proven trivially, using the induction hypotheses. Here
we will show only the cases involving base reduction rules:

1. Let us have, by the base reduction rule (8-Main), that (Az:0.M) N —g, M[N/z]. Let us also have that
(Az:o.M)N =gz (Ax:0’.M) N, from o —g, o', by the reduction rules (O-A1-5L) and (O-App:-5L). In
this case, we will show that the required conditions are met for M = M[N/x]. Indeed, by the definition
of =3, we have that M[N/x] -3, M[N/z], and also, by the reduction rule (5-Main), we have that
(Az:0".M)N —sc M[N/x], effectively having (Ax:0’.M) N —»g, M[N/zx].

2. Let us have, by the base reduction rule (8-Main), that (Az:0.M) N —sz M[N/z]. Let us also have that
(Az:o. M) N —gz (Ax:o.M') N, from M —g, M’, by the reduction rules (O-A2-5L) and (O-App:-8L). In
this case, we will show that the required conditions are met for M = M'[N/z]. By the reduction rule
(B-Main), we have that (Az:0.M') N —g, M'[N/z], from which we obtain (Az:0.M') N —»g. M'[N/z],
while we obtain that M[N/xz] -z M'[N/z] from part 2 of Lemma 1.

3. Let us have, by the base reduction rule (8-Main), that (Ax:0.M) N —g, M[N/z]. Let us also have that
(Az:0o.M)N —pr (Az:io.M)N', from N —g. N', by the reduction rule (O-Apps-8L). In this case, we
will show that the required conditions are met for M"" = M[N’/z]. By the reduction rule (8-Main),
we have that (Az:0.M)N' —g, M[N’/z], from which we obtain (Azx:0.M) N’ —g, M'[N/x], while we
obtain that M[N/xz] -3, M[N'/z] from part 1 of Lemma 1.

4. Let us have, by the base reduction rule (£-Main), that UJ L} [M]] =gz M, and let us also have
that UL (LR ,IM]] =sc UL (LR ,[M]], from N =3, N’, by the reduction rule (O-Unlock,-5L). In
this case, we will show that the required conditions are met for M’ = M. By the definition of —»s., we
have that M —»z, M, which leaves us with needing to show that UY, ,[L} ,[M]] =3, M. This we obtain
by the following sequence of reductions: from N —g, N’, which we have as an induction hypothesis,
using the reduction rule (O-Lock;-BL), we obtain that EZU[M} —8c LE,J[M], and from this, using
the reduction rule (O-Unlocks-BL), we obtain that L{ﬁ,,g[ﬁﬁ’g[M]] —8r UP,7U[£]73,,7U[M]], from which we
finally obtain that UY, ,[LN. ,[M]] =z M, by the reduction rule (£-Main), effectively showing that
US LN o[M]] =52 M. The remaining subcases are handled very similarly. |

Having proven local confluence, finally, from Theorem 1, Lemma 2 and Newman’s Lemma, we obtain the
confluence theorem for LFp:

Theorem 2 (Confluence of LFp). BL-reduction is confluent, i.e.:

1. If K —gc K' and K —»g K", then there exists a K", such that K' —»sr K" and K" —»g. K.

2. If 0 —»p, 0’ and o —»gg 0", then there exists a 0", such that o’ —»zp 0" and o' —»gp 0.

3. If M =gz M’ and M —»g. M", then there exists a M, such that M' —»ge M"" and M" —»gc M.

3.3 Subject Reduction
We begin by proving several auxiliary lemmas and propositions:

Lemma 3 (Inversion properties).

1. If Hx:0.T=3,T", then T" = Hx:0./T', for some o', T', such that 0'=sco, and T'=3.T.

2. If LY, ,[pl=5c0, then 0 = LY, ,,[0], for some N', o', and p', such that N'=3. N, o'=s0, and p'=gzp.
S If ks L8 [M]: L% lpl, then T'Fx M : p.

4. If I'Fx g0 M Hx:;]‘.T, then I''x:obx M :T.

Proof. The first two items are proven directly, by inspection of the rules for SL-closure-under-context for
kinds and types, while the third item is proven by using the rule (F-Lock), and the second item. The fourth
property follows directly from the typing and conversion rules, as well as the first item.
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By induction on the structure of the derivation, independently of the previous Proposition, we have:
Proposition 5 (Subderivation, part 1).

. A derivation of Fx 0 has a subderivation of X sig.

. A derivation of X, a:K sig has subderivations of X sig and x5 K.

. A derivation of X, f:o sig has subderivations of X sig and b5 o:Type.

. A derivation of bx I',x:0 has subderivations of X sig, bx I', and I' b5 o:Type.

. A derivation of I' Fx « has subderivations of X sig and Fx I.

Given a derivation D of the judgement I' -5 «, and a subterm occurring in the subject of this judgement,
there exists a derivation of a judgement having this subterm as a subject.

S Cuds Lo e

From this point on, we will assume that the first requirement for the well-behavedness of predicates,
namely the closure under signature and contert weakening and permutation, holds. With this in place, we
prove the following propositions by induction on the structure of the derivation:

Proposition 6 (Weakening and permutation). If predicates are closed under signature/context weak-
ening and permutation, then:

1. If X and 2 are valid signatures, and every declaration occurring in X also occurs in §2, then I' b5 «
implies I' Fg a.

2. If I' and A are valid contexts w.r.t. the signature X, and every declaration occurring in I' also occurs in
A, then I' x5 o implies A5 a.

Proposition 7 (Subderivation, part 2). If predicates are closed under signature/context weakening and
permutation, then:

1. If 'ty o: K, then 'ty K.
2. If 'ty M : 0, then I' -5 o : Type.

From this point on, we will assume that the second requirement for the well-behavedness of predicates,
the closure under cut, holds as well. We prove the following propositions by induction on the structure of
the derivation:

Proposition 8 (Transitivity). If predicates are closed under signature/context weakening and permutation
and under substitution, then: if I'z:0, " Fx o, and I' by N : o, then I, I"'[N/x] F 5 [N /z].

Notice that, contrary to what happens in traditional type systems, the following closure under expansion
does not hold: I' -5 M[N/x]:7 = I'kyx (Azio.M)N :7,for I't5x N : 0.

Proposition 9 (Unicity of types and kinds). If predicates are closed under signature/context weakening
and permutation and under substitution, then:

1.IfI'txo:Kyand I'Fx o : Ky, then I' Fx K1=3,K>.
2. If 't M :01 and I' =5, M : 09, then I' -5, 01=3,02

Finally, for Subject Reduction, we require that the third requirements for the well-behavedness of predi-
cates, namely the closure under definitional equality, also holds:

Theorem 3 (Subject reduction of LFp). If predicates are well-behaved, then:

I [fTFs K, and K —ssz K', then I’ 5 K.
2. IfT'tyo: K, and o =g o', then 'Fx o' 1 K.
3. If'Fs M: o, and M —sz M, then I' b5 M - 0.
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I'tx p: Type I'ks N:o I'Fx o: Type

(F-Lock)
I'Fs LY .[p) : Type
I'tsM:p I'tsN:o  I'byo:Type (O-Lock)
Irs LR, [M]: LR ]
FFZNIU F}_EM:ﬁﬁ,a[p]
I'tx o: Type I'ts LR ,[p] : Type P(I'ts N:o) (O-Unlock)

Ths UG M) p
Fig. 5. An extension of LFp typing rules for Subject Reduction

Proof. Here, we prove Subject Reduction of a slightly extended type system. We consider the type system
in which the rules (F-Lock), (O-Lock), and (O-Unlock) all have an additional premise I" Fx o : Type, while
the rule (O-Unlock) also has another additional premise I' 5 £Z’U[p] : Type, as shown in Figure 5.

The proof proceeds by simultaneous induction on the derivation of I' by M and M —s. M'. Here we
will show only the case in which the base reduction rule (8-Main) is used, and one of the cases for which
the well-behavedness of predicates is a requirement, while the other cases are handled either similarly or
trivially, mostly by using the induction hypotheses.

1. We have that I' Fx Ax:o.M N : 7[N/z|, by the rule (O-App), from I Fx Ax:o.M : z:0.7, and
I'tx N :o, and that (A\x:0.M) N —s. M[N/x] by the rule (8-Main). From Proposition 3, we get that
I'nz:obx M : 7, and from this and I 5 N : o, we obtain the required I" bx M[N/z] : 7[N/z], by an
application of Proposition 8.

2. We have that I" b UL [LN ,[M]] : p, by the rule (O-Unlock), from I' b5 L, [M]: LY [p], ['F5 N :
o,'ts o :Type, and P(I' g N : 0), and that U [LY ,[M]] =3 M by the rule (£-Main). Here, we
obtain the required I' 5 M : p directly, using the last two items of Lemma ?7.

3. We have that I" bx UL ,[M] : p, by the rule (O-Unlock), from I' ks M : L [p], I' Fs LR ,[p] : Type,
I'x N:o,I'Fxo: Type, and P(I' Fx N : ), and that L{ﬁ,a[M] —pc U ,/[M], by the reduction
rules for closure under context, from o —g. o'. First, from the induction hypothesis we have that
I' b5 o’ : Type, and we also have, from ¢ —g: o, that o=g,0’. From this, using I 5 N : o, and
the rule (O-Conv), we obtain that I' Fx N : ¢’. Next, since I' by Eﬁ’g[p] : Type could only have
been obtained by the type system rule (F-Lock), from I' b5 p : Type and I' Fx N : o, and since
we have I' bx N : ¢/, we obtain that I' Fx Cﬁﬂ, [p] : Type. From this, given o=g,0’, we obtain that
LEJ/ (o] =52 E%,U, [p], and since we already have that I" 5 M : ﬁﬁa[p], we can use the type system rule
(O-Conv) to obtain I' Fx M : Lpﬁ, [p]. Finally, by the well-behavedness requirements for the predicates,
we have that P(I" Fx N : ¢’) holds, and we can now use the type system rule (O-Unlock) to obtain the
required I' Fx Z/lﬁva/ [M] : p. Here, we can notice that there are steps in this proof (in which we obtain
I'bx o' :Type,and I' g Lﬁg[p] : Type), which could not have been made had the original system not
been extended for this theorem.

Now, we can prove straightforwardly that I 5 « in the extended system iff I' 5 « in the original LFp
system (i.e. that the judgements that these two systems derive are the same), by induction on the length
of the derivation, With this, given that we have proven Subject Reduction of the extended system, we have
that Subject Reduction also holds in the original LFp system.
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aec A az=alaN Atomic Families

o,T,p€F o u=a| Huor | LY (0] Canonical Families
Ae A, Au=c|z| AM UK ,[A] Atomic Objects
M,N e O M = A| \z:o.M | L} ,[M] Canonical Objects

Fig.6. CLFp Syntax

4 The Expressive Power of LFp

Various natural questions arise as to the expressive power of LFp. We outline the answers to some of them:
— LFp is decidable, if the predicates are decidable; this can be proven as usual.

— If a predicate is definable in LF, i.e.it can be encoded via the inhabitability of a suitable LF dependent
type, then it is well-behaved in the sense of Definition 1.

— All well-behaved recursively enumerable predicates are LF-definable by Church’s thesis. Of course, the
issue is then on how “deep” the encoding is. To give a more precise answer, we would need a more
accurate definition of “deep” and “shallow” encodings, which we still lack. This paper can be seen as a
stepping stone towards such a theory, with our approach being “shallow” by definition, and the encodings
via Church’s thesis being potentially very, very deep. Consider e.g. the well-behaved predicate “M, N
are two different closed normal forms”, which can be immediately expressed in LFp.

— One may ask what relation is there between the LF encodings of, say, Modal Logics, discussed in [2,12],
and the encodings which appear in this paper (see Section 6.3 below). The former essentially correspond
to the internal encoding of the predicates that are utilized in Section 6.3. In fact, one could express the
mapping between the two signatures as a forgetful functor going from LFp judgements to LF judgements.

— Finally, we can say that, as far as decidable predicates, LFp is morally a conservative extension of LF.
Of course, pragmatically, it is very different, in that it allows for the neat factoring-out of the true
logical contents of derivations from the mere effective verification of other, e.g. syntactical or structural
properties. A feature of our approach is that of making such a separation explicit.

— The main advantage of having externally verified predicates amounts to a smoother encoding (the sig-
nature is not cluttered by auxiliary notions and mechanisms needed to implement the predicate). This
allows performance optimization, if the external system used to verify the predicate is an optimized tool
specifically designed for the issue at hand (e.g. analytic tableaux methods for propositional formule).

5 The Canonical LFp Framework

In this section, we present a canonical version of LFp, i.e. CLFp, in the style of [36,15]. This amounts to
an extension of the standard n-rule with the clause EZVU[ME’J[M ] = M, corresponding to the lock type
constructor. The syntax of CLFp defines the normal forms of LFp, and the typing system captures all of
the judgements in 7-long normal form which are derivable in LFp. CLFp will be the basis for proving the
adequacy of the encodings which are presented in Section 6. As will be seen, contrary to standard LF, not all
of the judgements derivable in LFp admit a corresponding n-long normal form. In fact, this is not the case
when the predicates appearing in the LFp judgement are not satisfied in the given context. Nevertheless,
although CLFp is not closed under full n-expansion, it is still powerful enough for one to be able to obtain
all relevant adequacy results.

5.1 Syntax and Type System for CLFp

The pseudo-syntax of CLFp is presented in Figure 6, while the type system for CLFp is shown in Figure 7,
with the note that the formation rules and judgments related to signatures, contexts, and kinds are the same
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Atomic Family rules Atomic Object rules

Fs I aKeX s I' coe X

Trrao K (A-Const) Trocoo (O-Const)
I'Fxa= Iro K, Fs I zoel (O-Var)
I'Fs M <o I'Fyxz=o0
K _
Ki[M/z]; = K (A-App) 'ty A= Iziom
I'tsaM =K I'tsM<o n[M/z)f =7 oA
IFsAM =7 (O-App)
Canonical Family rules Ihs A= EE,U[/)]
I'Fs a= Type 'y N<o PI'Fs N<o
I'ts a Type (F-Atom) - ( ) (O-Unlock)
o yp I Uf (Al =p
Izobk T
F:MH%T %pe (F-Pi)
z Hro.T lype Canonical Object rules
'+ Type I'kFx N <
20 YR~ 2 27 (FoLock) TrzAd=a o ptom)
I'ts Ly . [p] Type 'ty A<=a
robs M <71
I'kFs Ax:o.M < Iz (0-Abs)
I'ks M < I'kx N <
= p = 7 (O-Lock)

I'Fs LF . [M] < LR o]

Fig. 7. The CLFp Type System

as in LFp, and have been omitted. The type system for CLFp, together with the first three judgments of
LFp (see Section 2.1), proves judgements of the shape:

I' -5 o Type o is a canonical family in I" and X

I'Fya=K K is the kind of the atomic family « in I" and X/
I'Fs M <o M is a canonical term of type ¢ in I" and ¥
'ty A=o o is the type of the atomic term A in I" and X/

The predicates P in CLFp are defined on judgements I' -y M < o. The type system makes use,
in the rules (A-App) and (F-App), of the notion of hereditary substitution, which computes the normal
form resulting from the substitution of one normal form into another. The general form of the hereditary
substitution judgement is T[M/x]* = T', where M is the term being substituted, = is the variable being
substituted for, T" is the term being substituted into, 7" is the result of the substitution, p is the simple
type of M, and m is the syntactic category being involved in the judgement (i.e. kinds, atomic/canonical
families, atomic/canonical objects, contexts). The simple type p of M is obtained via the erasure function
(presented in Fig. 8), which maps dependent into simple types. The rules for the hereditary substitution
judgement appear in Figure 9 and Figure 10. At this point, we remind the reader that we are still abiding
by Barendregt’s hygiene condition.

Notice that, in the rule (O-Atom) of the type system (see Fig. 7), the syntactic restriction of the classifier
to a atomic ensures that canonical forms are n-long normal forms for a suitable notion of 7-long normal

(@~ =p (02" =p (0) =p (o) =/
(a)"=a (aM)” =p (HIz:02.0)" =p2 = p (55,0[0/])7 = £E,0[pl]

Fig. 8. Erasure to simple types
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Substitution in Kinds

o[Mo/z0lk =o' K[Mo/zol% = K’
_ (S-K Type) [Mo/ o], K[ o/ O]Pol R (s.k-Pi)
Type[Mo/xo],, = Type (IIx:0.K)[Mo/x0]p, = Hx:0.'K

Substitution in Atomic Families
alMo/zol}, = o/ M[Mo/xolg, = M’
(aM)[Mo/zo]], = o' M’

(S§-F-Const) (S-F-App)

a[Mo/xol}, = a

Substitution in Canonical Families

olMo/soly, = of Mool =0t _oelMofail =0 s 1y

- (S-F-Atom) - —
a[Mo/.%o]pO =« (Hx:a1.02)[Mo/xo]p0 = Ha?:o’l.O'Q
0'1[Mo/180]§0 :O'g MﬂM()/IEo]?O :M{ O'Q[Mo/xo]fo :Ué

[’71\9/11,01 [02][M0/x0]§0 = ‘Cxli,o'i [02]

(S-F-Lock)

Fig. 9. Hereditary substitution, kinds and families

form, which extends the standard one for lock-types. For one, the judgement z:I1z:a.a Fx © < Ilz:a.a is
not derivable, as ITz:a.a is not atomic, hence Fx Az:(I1z:a.a).¢ < Hx:(Ilz:a.a).I1 z:a.a is not derivable. But
Fx Ae:(llz:a.a). \y:a.xy < Hz:(I1z:a.0). 1 z:a.a, where a is a family constant of kind Type, is derivable.
Analogously, for lock-types, the judgement x:ﬂﬁ’g[p] by < L'E’U[p] is not derivable, since L'E’U[p] is not
atomic. As a consequence, -y Az:LY  [p].x < ITx:LY [p].LF ,[p] is not derivable. However, z:L% ,[o] b5
LY LU 2] < LK ,[p] is derivable, if p is atomic and the predicate P holds on I" Fx N < o. Hence
Fx )\xzﬁﬁ,o[p].ﬁﬁa[uz\?ﬂ[xﬂ = Hm:ﬁﬁ_o[p].ﬁﬁa[p] is derivable. In Definition 3 below, we formalize the
notion of n-expansion of a judgement, together with correspondence theorems between LFp and CLFp.

5.2 Properties of CLFp
We start by studying basic properties of hereditary substitution and the type system.

Lemma 4 (Decidability of hereditary substitution).

1. For any T in {K,A,F,0,C}, and any M, x, and p, either there exists a T' such that T[M/x]}* =T" or
there is no such T'.

2. For any M, z, p, and A, either there exists A" such that A[M/z] = A', or there exist M" and p', such
that A[M /x5 = M': p', or there are no such A" or M.

Lemma 5 (Head substitution size). If A[My/xo] = M:p, then p is a subexpression of po.
Proof. This Lemma is proven directly, by induction on the derivation of A[My/x¢],, = M : p.

Lemma 6 (Uniqueness of substitution and synthesis).

1. It is not possible that A[My/xo]5, = A" and A[My/xo]5, = M:p.

2. For any T, if T[Mo/xo]py, =T', and T[Mo/xo]p, =T", then T" =T".
3. If'tsa= K, and 'ty a= K, then K = K.

4. If 't A= o0, and 'ty A= o', then o = o’.

Proof. The proof of this Lemma is trivial. It follows directly from the definition of hereditary substitution
and the CLFp type system.

Lemma 7 (Composition of hereditary substitution). Let us assume that © # xo, My. Then:
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Substitution in Atomic Objects

——— (8-:0-Const
Dhofaalzy ¢ & OCY

T # xo
xo[Mo/x0]5, = Mo : po o[Mo/zols, —
A1[Mo /200, = Awip2. M1 : p2 — p  Ma[Mo/x0)5, = M5 M{[M}/x]5, = M’

(A1 M2)[Mo/xolp, = M : p
A1[Mo/xo}?,0 = A} MQ[MO/xO],?O = M}
(A1 M32)[Mo/zo)5, = A1 M5
o[Mo/walf, =o' M[Mo/wal§, = M’ AlMo/wolg, = L3 o [Mi] : £ o]
UE,G[A}[MO/IO}ZO =M:p
o[Mo/wo]jy =0’ M[Mo/xo]p, = M’ A[Mo/wo]g, = A’
UJ\E,U[A} [Mo/x0]p, = Llf/[,ya, [A']

(8:0-Var)

(§8-:0-Var-H)

(S:0-App-H)

(S-0-App)

(8-0-Unlock-H)

(§-O-Unlock)

Substitution in Canonical Objects
A[Mo/zolg, = A’ A[Mo/zol5, =M : p
A[Mo /0], = A’ A[Mo /0], = M’
M[Mo/x0)5, = M’
Az:o. M [Mo /205, = Av:o. M’
01[Mo/z0lhy = ot Mi[Mo/0]5, = M{ Ma[Mo/x0]5, = Mj
LNty o [Ma][Mo /0], = L1 o1 [M3]

/
1

(S-0-R) (S-O-R-H)

(S-O-Abs)

(S8-O-Lock)

Substitution in Contexts

—— (S-Ctat-Empty)
[Mo/xo]5, = -

zo £z x@Fv(Mo) I'[Mo/xolgy =1" o[Mo/zolhy, =0

F,JJ:G’[MQ/LI,’o]g) =1 x:0

(S-Ctat-Term)

Fig. 10. Hereditary substitution, objects and contexts

1. If MQ[MO/IO]I?O = M, Th[Mz/z]}, = Ti, and Ti[Mo/xo];; = TY', then there exists a T, such that

Ti[Mo/xoll =T, and Ty [Ma/z], = M' : p.

2. If MQ[Mo/.’L'()]’?O = My, Ay[Mz/x]5, = M : p, and Ai[Mo/x0l5 = A, then there exists an M', such that

M[Mo/xo],?o =M', and A[MQ/.T]SZ =M :p.

3. If My[Mo /]S = Mj, Ai[My/x]5, = A, and Ai[Moy/x0)% = M : p, then there exists an M, such that

A[My/xo)5, = M’ : p, and M[Mz/glc]/?2 = M.

By induction on derivations, similar to one in [15] p.14-15, we prove:

Theorem 4 (Transitivity). Let X sig, Fx 'L, zo:p0, I'r and I't b My < po, and assume that all predi-

cates are well-behaved. Then

There exists I', such that [Mo/xo]pc0 =TIy andbx I, T,
If I't,xo:po, 'r Fx K then there exists K' such that [Mo/l”o],[)gK =K and I't, I Fs K'.

e o~

[Mo/.’l?o]f;]a:(fl and [M()/LL'()],(U)OM: M’ and FL,FII:g Fs M <o’

18

If I't,xo:po, I'r Fx o Type, then there exists o’ such that [Mo/xo]gga =o' and I't,I'; Fx o' Type.
If I't,xz0:p0, IR Fx o Type and I'y,x0:p0,Ir Fx M < o, then there exist o' and M’ such that



Theorem 5 (Decidability of typing). If predicates in CLFp are decidable, then all of the judgements of
the system are decidable.

Proof. By induction on the complexity of judgements. O
Now we are in the position of making precise the relationships between CLFp and the original LFp system.

Theorem 6 (Soundness). For any predicate P of CLFp, we define a corresponding predicate in LFp with:
P(I'tx M : o) holds if and only if I' b5 M : o is derivable in LFp and P(I' Fx M < o) holds in CLFp.
Then, we have:

If X sig is derivable in CLFp, then X sig is derivable in LFp.

If -5 I' is derivable in CLFp, then Fx I' is derivable in LFp.

If I'+5 K is derivable in CLFp, then I' b5 K is derivable in LFp.

If 'y a= K is derivable in CLFp, then I' -y a : K is derivable in LFp.
If I' 5 o Type is derivable in CLFp, then I' 5 o : Type is derivable in LFp.
If I't5x A = o is deriwable in CLFp, then I't5 A : o is derivable in LFp.
If I't5 M < o is derivable in CLFp, then I' b5, M : o is derivable in LFp.

NS G oo~

Vice versa, all LFp judgements in n-long normal form (n-lnf) are derivable in CLFp. The definition of a
judgement in n-Inf is based on the following extension of the standard n-rule to the lock constructor:

Ax:o. Mz —n M 5%,0[“17\?,0[]\4]] —n M.

Definition 2. An occurrence £ of a constant or at variable in a te11n of a LFp judgement 18 fully applied and
unlocked with respect to its type or kind Hxl 1. £1 Hxn on.-Lola]...], where El, .. E are vectors of
locks, if £ appears in contexts of the form Z/ln[( U [{M D-. )]\_/fn], where My, .. Mn, Z/ll, .., Uy have
the same arities of the corresponding vectors of Il ’s and locks.

Definition 3 (Judgements in n-long normal form).

— A term T in a judgement is in n-Inf if T is in normal form and every constant and variable occurrence
in T is fully applied and unlocked w.r.t. its classifier in the judgement.
— A judgement is in n-Inf if all terms appearing in it are in n-Inf.

Definition 4 (Well-behaved CLFp-predicates). A finite set of predicates {P;}icr is well-behaved in
CLFp if each P is closed under signature, context weakening, permutation, and hereditary substitution.

Theorem 7 (Correspondence). Assume that all predicates in LFp are well-behaved. For any predicate
P in LFp, we define a corresponding predicate in CLFp with: P(I' b M < o) holds if ' b M < o is
derivable in CLFp and P(I' 5 M : o) holds in LFp. Then, we have:

If X sig is in n-Inf and is LFp-derivable, then X sig is CLFp-derivable.

If b5 I' is in n-Inf and is LFp-derivable, then -5 I' is CLFp-derivable.

If I' 5 K s in n-Inf, and is LFp-derivable, then ' -5 K is CLFp-derivable.

If 'ty a: K isin n-Inf and is LFp-derivable, then I' -y a = K is CLFp-derivable.
If I' by o:Type is in n-Inf and is LFp-derivable, then I' -5 o Type is CLFp-derivable.
If 'ty A« is in n-Inf and is LFp-derivable, then I' x A = « is CLFp-derivable.
If I'tx M : o is in n-Inf and is LFp-derivable, then I' 5 M < o is CLFp-derivable.

NS G o~

Proof. We prove all items by mutual induction on the complexity of the judgement, where the complexity
of a judgement is given by the sum of symbols appearing in it, provided that the complexity of the symbols
Type and @ is 1, the complexity of a constant/variable is 2, the complexity of the symbol I/ is greater than
the complexity of £, and the complexity of the subject of the judgement is the sum of the complexities of
its symbols plus the complexity of the normal form of the type of each subterm of the subject, derived in
the given context and signature.
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Directly, using the induction hypothesis.

Directly, using the induction hypothesis.

Directly, using the induction hypothesis.

If 'y o: K is in n-Inf, we have that « = aNy ... N,, K = Type, and also that:

(a) a:Ixy:01... 240, Type € X, with Tx1:01 ... 2,:0,.Type in np-Inf. This means that, forall 1 <4 < n,
we have that o; is in 7-Inf.

(b) I't5x N; : o} is derivable in LFp, for 1 <14 < n, where o} is in n-Inf, and o} =g 0;[N1/21, ..., Ni—1/xi—1].

Now, from (a), we obtain that I' b5 a = ITx1:07 ... 2,:0,. Type is derivable in CLFp. Next, by applying

the induction hypothesis to (b), we obtain that I' Fx N; < o} is derivable in CLF for all . From this,

by repeatedly applying the rule (A-App), we get that I' b5 aN;y ... N,, = Type.

5. The cases when o is an atomic family have already been covered above, while the remaining cases are

proven directly, using the induction hypothesis.

6. (a) If I' b5 ¢ : «, this could have been obtained only through the rule (O-Const) of LFp, from 5 I’
and ¢ : o0 € I'. By the induction hypothesis, we get that s I' in CLFp, and that ¢: o € I, from
which, using the rule (O-Const) of CLFp, we obtain the desired I' b5 ¢ = 0.

(b) If I' bx = : 0, this could have been obtained only through the rule (O-Var) of LFp, from k5 I and
x : o € I'. By the induction hypothesis, we get that -y I" in CLFp, and that = : ¢ € I', from which,
using the rule (O-Var) of CLFp, we obtain the desired I' b5y & = 0.

(¢) Let I' 5y AM : a be derivable in LFp, and be in n-Inf. A, as an atomic object, is then of the form:

P P
Uny o[- UN o

W Lo =

ela{ My ... M, Y| M) My_; .. M.

Here, we have that ¢ (or z) is fully applied and unlocked with respect to its classifier, and we also have
that all N, o;, M;, ]\_/[;, as well as M and «, are in n-Inf. Also, we have that the types of M;, ]\_4;, and
M are in n-Inf, as they are recorded in the type of ¢ (or x), which is part of the signature (or context),
which is also in 7-Inf. We will denote the type of M by o, and the type of A by Ilz:0.7. Then, by
the induction hypothesis, we have that I' -y M < o, and that ' -5 A < IIz:0.7. From the latter,
as it only could have been obtained through the rule (O-Atom), we have that I' by A = IIz:0.7.
Now, we have two cases to consider:

i. a = a, a constant atomic type, which is the trivial case, as a is immune to both hereditary and
standard substitution. We immediately get that 7 = a, with which we can use the rule (O-App)
of CLFp to obtain the desired I' by, AM = a.

ii. « = aM;...M,, a fully applied constant atomic type of arity m. Then, we have that 7 =
aM;i ... M]. Due to the fact that M, and all M;, M/ are in normal form (as they are in n-Inf),
we have that 7[M/z] = a[M/z]M{[M/z]...M][M/z] = aM; ... M, = a. However, due to the
normal forms, the ordinary and hereditary substitution here coincide, yielding 7[M/z]f = a.
With this, using the rule (O-App), we obtain the desired I' -5, AM = «.

(d) Let us consider the case when I' 5 Mﬁ’O[A} : o’. By inspection of the typing rules of LFp, we have
that the original introduction rule for our initial judgement had to have been I' x U] [A] : a,
derived from I'5 A: LY o], I'Fg N : 0, and P(I' 5 N : 0), where a=go’. By the induction
hypothesis, we have I' Fx; N < o. Using the rule (O-Conv) of LFp, we can now get I' Fx A : ﬁﬁyo[a’]
and from this, by the induction hypothesis, we get that I' Fx A < ﬁﬁg[a’ ]. Since that would only be
possible through the rule (O-Atom), we have that I'Fx A = /3]7370[0/ | also holds. Finally, given the
properties of the predicate induced in CLFp by the predicate P in LFp, as stated in the formulation
of the theorem, we can use the rule (O-Unlock) of CLFp to obtain the desired I" Fs UL ,[M] = o’.

7. (a) The cases when M is an atomic object have already been covered above.

(b) Let us consider the case when I' by Az:0.M : 6. By inspection of the typing rules of LFp, we have
that # = ITx:0'.7’, where the original introduction rule for our initial judgement had to have been
I' b5 MAx:o.M : IIz:o.1, derived from I',z:0 Fx M : 7, where o=g.0’, and 7=5,7'". However, since
o, M, ¢’ and 7’ are in 7-Inf, they must also be in normal form, meaning that ¢ = ¢’, leaving us with
I' b5 Ax:o.M : IIz:o.7'. Using the rule (O-Conv) of LFp, we can now get I z:0 bx M : 7/; and
from this, by the induction hypothesis, we get that I',z:0 by M < 7/, from which, using the rule
(O-Abs) of CLFp, we obtain the desired I' b5 Az:0.M < ITx:0.7'.
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(c) Let us consider the case when I' Cﬁ’U[M} : 0. By inspection of the typing rules of LFp, we have
that 0 = [ﬁp,’g/ [p'], where the original introduction rule for our initial judgement had to have been
'ty LG ,[M] : Lﬁa[p], derived from I' Fx M : p and I' b5 N : 0, where N=g,N’', o=3.0",
and p=g,p’. However, since M, N, o, N', o/, and p’ are in 7-Inf, they must also be in normal form,
meaning that N = N’ and o = o/, leaving us with I' by LY [M] : L} ,[p]’. By the induction
hypothesis, we have I' Fx N < o. Using the rule (O-Conv) of LFp, we can now get I' Fx M : p/
and from this, by the induction hypothesis, we get that I' -z M <« p’. Finally, we can use the rule
(O-Lock) of CLFp to obtain the desired I' Fx Eﬁ,U[M] = E%,U[p’].

Notice that, by the Correspondence Theorem above, any well-behaved predicate P in LFp induces a well-
behaved predicate in CLFp. Finally, notice that not all LFp judgements have a corresponding n-Inf. Namely,
the judgement z:L% ,[p] Fx x : L] ,[p] does not admit an 7-expanded normal form when the predicate P
does not hold on N, as the rule (O-Unlock) can be applied only when the predicate holds.

6 Pragmatics and Case Studies

In this section, we illustrate the pragmatics of using LFp» as a metalanguage by encoding some crucial case
studies. We focus on formal systems where derivation rules are subject to side conditions which are either
rather difficult or impossible to encode naively, in a type theory-based LF, due to limitations of the latter or
to the fact that they need to access the derivation context, or the structure of the derivation itself, or other
structures and mechanisms which are not available at the object level. This is the case for substructural and
program logics [1,2,12].

We have isolated a library of predicates on proof terms, whose patterns frequently occur in the examples.
The main archetype is: ”given constants or variables only occur with some modality D in subterms satisfying
the decidable property C”. Modalities can be anyone of such phrases: "at least once”, "only once”, ”as the
rightmost”, ”does not occur”, etc. C can refer to the syntactic form of the subterm or to that of its type, the
latter being the main reason for allowing predicates in LFp to access the context. As a side remark, we have
noticed that often the constraints on the type of a subterm can be expressed as constraints on the subterm
itself by simply introducing suitable type coercion constants. In [18], we present a basic library of auxiliary
functions, which can be used to introduce external predicates of the above archetypes.

We start by giving, yet another, encoding of the well known case of untyped A-calculus, with a call-by-
value evaluation strategy. This allows us to illustrate yet another paradigm for dealing with free and bound
variables appropriate for LFp. Then, we add on top of such A-calculus an extension, in order to model a
sort of design by contract functional language. Next, we discuss modal logics, both in Hilbert and Natural
Deduction style, and we give a sketch of how to encode the non-commutative linear logic introduced in [31].
Another example, on program logics ¢ la Hoare, appears in Section 6.4. We state adequacy theorems, and,
due to lack of space, here provide proofs for only some of them. For the sake of simplicity, in the following
examples, we use the notation ¢ — 7 for ITx:0.7 if © ¢ Fv(7). Moreover, we will omit the type ¢ in EE)U[M],
when o is clear from the context.

As far as comparisons with alternate encodings in LF, we refer the reader to the general comments which
have been made in Section 4.

Finally, in the adequacy theorems, we will be using the notion of judgement in n-long normal form (n-Inf),
which has been introduced in Definition 3.

6.1 The Untyped A-calculus

Free and bound variables. Consider the well-known untyped A-calculus:
M,N,...:=2 | M N | \x.M,

with variables, application and abstraction. We model free variables of the object language as constants in
LFp. Bindable and bound variables are modeled with variables of the metalanguage, thus retaining the full
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Higher-Order-Abstract-Syntax (HOAS) approach, by delegating a-conversion and capture-avoiding substitu-
tion to the metalanguage. Such an approach allows us to abide by the “closure under substitution” condition
for external predicates, still retaining the ability to handle “open” terms explicitly.

The abovementioned “bindable” variables must neither be confused with bound, nor with free variables.
For instance, the A-term z (in which the variable is free) will be encoded by means of the term Fyx (free
n) :term for a suitable (encoding of a) natural number n (see Definition 5 below). On the other hand, the A-
term Az.z (in which the variable is obviously bound) will be encoded by 5 (lam Ax:term.x). However, when
we “open” the abstraction Az.M, considering the body M, we will encode the latter as x:term Fx eg,y (M),
where €,y is the encoding function defined later in this section. In this case, x is a bindable variable.

Definition 5 (LFp signature X for untyped A-calculus).

term : Type nat : Type 0 : nat
S : nat —> nat free : nat -> term
app : term -> term -> term lam : (term -> term) -> term

We use natural numbers as standard abbreviations for repeated applications of S to 0. Given an enumeration
{xi}ien oy of the variables in the untyped A-calculus, we put:

(25) = xi,ifx; € X
cxiti) = (free i), if z; ¢ X’
ex(MN) = (app ex(M)ex(N)),
ex(Ar.M) = (lam Ax:term.exygyy (M)),
where, in the latter clause, z ¢ X.

Theorem 8 (Adequacy of syntax). Let {x;},cn\ {0} be an enumeration of the variables in the A-calculus.
Then, the encoding function €x is a bijection between the \-calculus terms with bindable variables in X and
the terms M derivable in judgements I' -5, M : term in n-Inf, where I' = {x : term | x € X'}. Moreover, the
encoding is compositional, i.e. for a term M, with bindable variables in X = {z1,..., 2z}, and Nq,..., N,
with bindable variables in Y, the following holds:

6;(‘(]\4[]\717 RN ,Nk/l‘l, ce ,$k]) = Ex(M)[Ey(N1>, ceey Ey(Nk)/Jil, RN ,J}k].
Proof. The injectivity of ex follows by a straightforward inspection of its definition, while the surjectivity
follows by defining the “decoding” function dy on terms in 7-Inf:
Ox((free i)) = z; (where z; € X)
dx(xi) = x; (where x; € X)
dx((app MN)) = 6 (M) O (N)
dx(lam Ax:term.M) = Az.0xygz) (M)
Given the characterization of n-Infs, and the types of the constructors introduced in Xy, it is easy to see
that dx is total and well-defined. It is not possible to derive a n-long normal form of type term containing a

U-term, since no constructors in X use L-types. Finally, by induction on the structure of M, it is possible
to check that dx(ex(M)) = M and that ey is compositional.

Definition 6 (The call-by-value reduction strategy.). The call-by-value (CBV) evaluation strategy can
be specified by:

Fepy N =M

(E— gy (refl) Fony M= N (symm)
Fopy M =N ’—CBVNZP(trn) Fepy M =N gy M' =N’ (app)
Fopy M = P ans Fopy MM = NN PP
v 18 a value (8.) Fepy M =N (&)
\% \%

Fepy (Ax.M)v = M[v/x] Fopy Ae.M = z.N
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where values are either variables (constants in our encoding) or functions.

Definition 7 (LFp signature Ycpy for A-calculus CBV reduction). We extend the signature of Def-
inition 5 as follows:

triple : Type
_, _, _> : term -> (term -> term) -> (term -> term) -> triple
eq : term -> term -> Type

refl : IIM:term.(eq M M)

symm : IIM:term./IN:term.(eq N M) -> (eq M N)
trans : IIM,N,P:term.(eq M N) -> (eq N P) -> (eq M P)
eq_app : IIM,N,M’ ,N’:term.(eq M N) -> (eq M’ N’) -> (eq (app M M’) (app N N’))
betav : [IM:(term —> term).[IN:term.L)* [eq (app (lam M) N) (M N)]

csiv : [IM,N: (term -> term)2.Hx:term.ﬁfx’M’m[(eq M x) (N x))->(eq (lam M) (lam N))]

<

where the predicates Val and & are defined as follows, and triple is the type of triples of terms with types
term, term -> term and term -> term:

-Val(I'kx N : term) holds iff either N is an abstraction or a constant (i.e. a term of the shape (free 1) );
- (I by <x,M,N> : triple) holds iff x is a constant (i.e. a term of the shape (free i)), M and N are
closed and x does not occur in M and N.

Theorem 9 (Adequacy of CBV reduction). Given an enumeration {;};em oy of the variables in the
A-calculus, there is a bijection between derivations of the judgment Fopy M = N on terms with no bindable
variables in the CBV X-calculus and proof terms h, such that x5, h: (eq €g(M) €y(N)) is in n-Inf.

Proof. We define an encoding function €, by induction on derivations of the form Fcpy M = N (on terms
with no bindable variables) as follows:

— if V is the derivation
Fepy M =M

then €, (V) = (refl ey(M)):(eq ep(M) €p(M));

— if V is the derivation with (symm) as last applied rule, then, by the induction hypothesis, there is a term h
such that Fx.,, h: (eqep(N) ep(M)). Hence, we have e (V) = (symm ey(M) €p(N) h):(eq eg(M) ep(N));

— if V is the derivation with (trans) as last applied rule, then, by the induction hypothesis, we have that
there exist terms h and h’ such that Fx ., h: (eq eg(M) eg(N)), and also 5., h': (eq €y(N) €y(P)).
Hence, we will have that € (V) = (trans y(M) ep(N) ep(P) h b'):(eq ep(M) eg(P));

— if V is the derivation with (eq-app) as last applied rule, then, by the induction hypothesis, we have that
there exist terms h and h’ such that by, h:(eq eg(M) €y(N)) and Fx.5, b’ : (eq eg(M') eg(N")).
Hence, we will have that ¢; (V) = (eq-app ep(M) eg(N) ep(M’) ep(N') hh'): (eq (app €p(M) ep(M"))
(app ep(N) €p(N')));

— if V is the derivation )
v is a value

FCBv(Axﬂfﬁﬂzﬂfh/ﬂ
then €5 (V) = V“l)[(betav (Ax : term.eg,y (M)) €p(v)): (eq (app (lam Ax : term.er,) (M) €g(v)) ((Ax:

ep(v

term. €5y (M))(ep(v))))]%

6 Notice the presence of the unlock operator in front of the LFp encoding: this is possible thanks to the fact that
we know, by hypothesis (e.g., the premise of the applied derivation rule), that v is a value. Indeed, since values
in the object language are either variables or abstractions and we are deriving things from the empty context, in
this case v must be an abstraction Ay.N (otherwise it would be a free variable and the derivation context could
not be empty). Thus, it will be encoded into a term of the form (lam Ay:term..er1(N)) and the predicate Val is
defined to hold on such terms (see Definition 7), whence the predicate Val holds on ey €p(v) : term).
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— if V is the derivation with (&,) as the last applied rule, then, by the induction hypothesis, we have
that there exists a term h for which it holds that Fx.,, h: (eq ey(M) eg(N))". With this in place,
we have the following: € (V) = (u%triple[(csiv Ax:term.er,y (M) Ax:term.ep,1 (N) €p(x))]h): (eq (lam
Ax:term.er,y(M)) (lam Ax:term.ef,y(N))), where T is the triple of the form (eg(7), (Ax:term.eq,y (M),
(Ax:term.eg,y(N))).

The injectivity of €, follows by a straightforward inspection of its definition, while the surjectivity follows by
defining the “decoding” function dy by induction on the derivations of the shape ., h:(eq M N) in n-long
normal form. Since all the cases are rather straightforward, we analyze only the definition concerning the main
rule (8,), since it involves an external predicate. So, if we derive from Y¢py a proof term h in n-long normal
form such as U2l [betav M N] whose type is (eq (app (lam M) N) (M N)) (where M = Ax:term.M, with

M in n-lnf), then the predicate Val (Fx.,, N:term) must hold, and N is encoding the value dy(N). Hence,
the decoding of h is the following derivation:

dp(N) is a value
Fepy dp(lam (Ax:term.M))dp(N) = dp((Ax:term.M') N),

and since we have that dp((lam (Ax:term.M'))) = Az.0(,3(M') (see proof of Th. 8), that A\z.0(,(M')dg(N) =
g2y (M) [0p(N) /] (B-reduction in CBV A-calculus), that §y((Ax:term.M') N) = dp(M'[N/x]) (5-reduction in LFp)
and that 0y, (M")[0p(N)/z] = p(M'[N/x]) (by induction on the structure of M'), we are done. Therefore, it is
easy to verify by induction on 7-long normal forms that J; is well-defined and total. Similarly, we can prove
that d; is the inverse of €, making €; a bijection.

We conclude this section illustrating the expressive power of LFp by encoding a restricted 7n-rule, which
generalizes the one originally suggested by Plotkin ([29]), i.e., Az.xx = Az.x)y.xy

eta : IIM:(term -> term).L)[(eq (lam M) (lam (Ax:term.(M (lam Ay:term.(app x )))))))]

where the predicate n(I"Fx M : (term->term)) holds if and only if the outermost abstracted variable of M
occurs in functional position among the head variables.

6.2 Design by Contract in Functional Style

In this section, we extend the untyped call-by-value A-calculus of the previous example, so as to accommodate
a minimal functional language supporting the design by contract paradigm (see, e.g., [23]). More precisely,
we will enrich the A-calculus with the conditional expression cond(C,M), whose intended semantics is that of
checking that the constraint C applied to M (denoted by C(M)) holds. As we will see, such expressions can
be used to validate the entry input and the exit value on a function application. (The syntax of conditions C'
is omitted, a typical example is given by predicates on natural number (in)equalities, as in the Hoare Logic
example in Section 6.4. Informally, C' must be “something” which can be evaluated to true or false, when
applied to its argument.) The syntax of expressions is defined as follows:

M,N,...:=x | M N | Xe.M | cond(C, M),

The call-by-value (CBV) evaluation strategy can be then extended by adding to the rules of Definition 6 the
following one:
C(v) holds and v is a value

d
Fepy cond(C,v) = v (cond)

Notice that conditional expressions are first-class values, i.e. they can be passed as arguments of a function.

7 Notice that the object variable z occurring in M and N is represented by a constant ((free k), for a natural k,
such that x = xj) here, since the encoding function takes the empty set as the set of bindable variables. Instead,
in the next line, the encoding function will take {z} as the set of bindable variables, yielding an encoding of x
through a metavariable x of the metalanguage of LFp.
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So far, we can encode pre- and post-conditions in our language as follows:
cond(Q, (M (cond(P, N))))

Indeed, the key idea is that the above expression will reduce only if the argument N were to “pass” the
pre-condition P (i.e., the input contract) and if the application result M N were to “pass” the post-condition
Q (i.e., the output contract).

We build upon the previous case study, encoding free variables by means of constants (e.g., natural
numbers) embedded into terms, while bindable and bound variables will be represented by metavariables of
the metalanguage. In the next definition, we provide an LFp signature for our language, extending Definition 5
(bool will represent the type of boolean values true and false, i.e., the result of evaluating conditions C
on their arguments M).

Definition 8 (LFp signature X for design by contract A-calculus).

nat : Type term : Type bool : Type
0 : nat S : nat -> nat free : nat -> term
cond : (term -> bool) -> term -> term app : term -> term -> term

lam : (term -> term) -> term

In order to make clear the role played by the types and constructors so far introduced, we fully specify the
encoding function ey, mapping terms of the source language into the corresponding terms of LFp, where X
denotes a set of bindable variables. Given an enumeration {x;};cn\ {0} of the variables in the source language,
we have the following:

xiifx; €X
cx(wi) = {(free i)ifa; ¢ X
ex(Ar.M) = (lam Ax:term.exyx) (M))
cx(cond(C. A1) = (cond ex(C) ex(M),
ex(MN) = (app ex (M) x(N))

We now present the encoding of the CBV reduction of our source language encoded in LFp. Obviously,
all the rules stated in the previous case study (about untyped A-calculus) remain unchanged. There is only
the need to account for the new reduction rule involving the new constructor cond.

Definition 9 (LFp signature X for design by contract A-calculus CBV reduction).
We extend the signature of Definition 7 by adding the following constant:

condv : [IC:(term -> bool).IIM:term. L%, ., [(eq (cond C M) M)]
where the external predicate Eval is defined as follows:

— Eval(I'Fx(C M):bool) holds iff M is a value (i.e., an abstraction or a constant), C and M are closed and
the evaluation of the condition C on the term M holds.

The expressive power of external predicates is fully exploited in the above example. Of course, we require
that the external logical conditions C' (corresponding to object-level expressions C) allow the Eval predicate
to satisfy the requirements of Definition 1, i.e., that they induce a well-behaved SL-reduction. We conclude
by illustrating how the expressivity of predicates and locks allows for a straightforward encoding of the
design-by-contract predecessor function as follows (taking nat as the type of terms):

(lam Ax: nat.(cond (Az: nat.z> 0) ((cond (Ay: nat.y>0) x) - 1)))
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6.3 Substructural Logics

In many formal systems, rules are subject to side conditions and structural constraints on the shape of
assumptions or premises. Typical examples are the necessitation rule or the [J-introduction rules in Modal
logics (see, e.g., [1,2,12]). For the sake of readability, in the following we will often use an infiz notation for
encoding binary logic operators.

Modal Logics in Hilbert style. In this example, we show how LFp allows for smooth encodings of logical
systems with “rules of proof” as well as “rules of derivation”. The former apply only to premises which do
not depend on any assumption, such as necessitation, while the latter are the usual rules which apply to all
premises, such as modus ponens. The idea is to use suitable “lock types” in rules of proof and “standard”
types in the rules of derivation.

By way of example, we give the signature (see Figure 12) for the classical Modal Logics K, KT, K4,
KT4 (S4), KT45 (Ss) in Hilbert style (see Figure 11); all feature necessitation (rule NEC in Figure 11) as
a rule of proof. We make use of the predicate Closed (I" Fx m: True(¢)), which holds iff “all free variables
occurring in m have type o”. This is precisely what is needed to correctly encode the notion of rule of proof,
if o is the type of propositions. Indeed, if all the free variables of a proof term satisfy such a condition,
it is clear, by inspection of the 7-lnfs, that there cannot be free variables of type True(...) in the proof
term, i.e. the encoded modal formula does not depend on any assumption (see [18] for a formal specification
of the predicate). This example requires that predicates inspect the environment and be defined on typed
judgements, as indeed is the case in LFp. The above predicate is well-behaved. Hence, we ensure a sound
derivation in LFp of a proof of O¢, by locking the type True(J¢) in the conclusion of NEC (see Figure 12).

Al 9= (Y —9)
Ay (p=> (W —=8)) = (p—Y) = (¢ =)

As 1 (-0 W) = (76 = ¥) = 6) P i
K :0(¢ ) = (¢ — 0y) P A

T :Op— o K4 |K+4

4 :0¢— 006 KT4 |KT +4

5 00 006 KT45|KT4+5

mp . &0 =¥ NEC : 2

Y - Do

Fig. 11. Hilbert style rules for Modal Logics

Adequacy theorems are rather trivial to state and prove; as usual we define an encoding function ey on
formulee with free variables in X" as follows, representing atomic formulae by means of LFp metavariables:

— ex(z) = x, where x € X;

— ex () = —ex(9);
— ex(p =) =ex(9) = ex(¥);
— ex(0¢) = Oex(9).
— €ex(0) = Oex(9).

Then, we can prove, by structural induction on formulz, the following theorem:

Theorem 10 (Adequacy of modal formulee syntax). The encoding function ex is a bijection between
the modal logic formule with free variables in X and the terms ¢ derivable in judgements I' Fx ¢ : o
in n-lnf, where I' = {x:0 | © € X}. Moreover, the encoding is compositional, i.e. for a formula ¢,
with free variables in X = {x1,...,x}, and ¥q,..., 0, with free variables in ), the following holds:

ex(OlY1, /o1, wk]) = ex(P)ey (1), .- ey (r) /21, - oo T
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o : Type - :0->0->0 - :0->0 O:0->0 O :0->0
True : o -> Type
Al : I1¢,v:0.True(¢p— (P—¢))
A2 : II¢,,&:0.True(p—(Y—E)) = (¢ — YP) = (¢ — &)
A3 : I1¢,Y:0.True((—¢p — ) = ((m¢ = V) — ¢P))
K : IIg,¢:0.True(0(¢p—vy) = (p—0yY))
: Il¢:o0.True(Uop— o)
: Il ¢:o0.True (Uo—00¢)
5 : II¢:0.True(Qop—00¢)
MP : II¢,Y:0.True(¢) -> True(¢p—) -> True(y))
NEC : I¢:o.IIm:True(¢) . LE%% [True ()]

S

Fig. 12. The signature X for the Modal Logics in Hilbert style

If we denote by ¢1,...,¢, F ¢ the derivation of the truth of a formula ¢, depending on the assumptions
@1, ..., 0n, in Hilbert-style modal logics, the adequacy of our encoding can be stated by the following theorem:

Theorem 11 (Adequacy of the truth system in Hilbert-style). There is a bijection between deriva-
tions ¢1,...,¢r = ¢ in Hilbert-style modal logic and proof terms h such that I' Fx h: (True ex(¢1 — ... —
or — @) in n-long normal form, where X = {x1,...,x,} is the set of propositional variables occurring in
D1y Py and I'={x1:0,...,xn:0}.

Modal Logics in Natural Deduction Style. In LFp, one can also accommodate other modal logics, such
as classical Modal Logics S; and S5 in Natural Deduction style. In particular there are several alternative
formulations for Sy and S5, e.g. as defined by Prawitz, which have rules with rather elaborate restrictions on
the shape of subformulae where assumptions occur. Figure 13 shows all the rules allowing to specify modal
logics Sy and S5 (@ la Prawitz), NK, NKT, NK4, NKT4, NKT45. In order to illustrate the flexibility of
the system, the rule for O introduction in Sy ((3-1-Sy4)) is given in the form which allows cut-elimination.
Figure 14 shows their encoding in LFp. Again, the crucial role is played by three predicates, namely Closed,
BozedS4 and BozedS5. As in the Hilbert-style encoding, Closed (I' Fx m: True (¢)) holds iff “all free variables
occurring in m have type o”. This is precisely what is needed to correctly encode rule (('-1), where the truth
of the formula ¢ must not depend on any assumptions.

In the case of the modal logic Sy, the intended meaning of BozedS4 (I" -5 m: True(¢)) is that all the
occurrences of free variables of m occur in subterms whose type has the shape True([Jv) or is o. In the case of
S5 the predicate BozedS5 (I" Fx m: True(¢)) holds iff the variables of m have type True(Oy), True(—0y) or
o. It is easy to check that these predicates are well behaved. Again, the “trick” to ensure a sound derivation
in LFp of a proof of ¢ is to lock appropriately the type True([¢) in the conclusion of the introduction
rule BoxI (see Figure 14).

The problem of representing, in a sound way, modal logics in logical frameworks based on type theory is
well-known in the literature [1,2,12]. In our approach, we avoid the explicit introduction in the encodings of
extra-judgments and structures, as in [1,2,12], by delegating such machinery to an external oracle via locks.

As for the adequacy of our encoding, we can state Theorems 12 and 13 below. As in the previous case,
we first define an encoding function ey on formule with free variables in X as follows, representing atomic
formulae by means of LFp metavariables:
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ok I't¢o—y I'kg

-k ff ' ff
Tré ff =" TFo (ff —E)
AROrN Oreoe Oy, -0 F ¢ r'+0¢
AF 06 O=13)  &r -anroe @) Frg ©7F
re0(¢—vy) I'-0O¢
T 0 (7o —E)
OF ¢ , r'-0¢ I'0¢
oroe O 7Y rroos oY rrmes G
NC start + (— —1) + (— —E) + (RAA) + (ff—I) + (ff—E)
Sa NC+(0O-1-S4)+(O—-E)
Ss NC+(O—-1-S5)+ (0—E)
NK NC+ (=g -E)+ (O -1)
NKT |NK+ (O-E)
NK4 |NK+(Og-1)
NKT4 [INKT 4+ (Opg —1)
NKTA5|\NKT4+ (0o — 1)
Fig. 13. Modal Logic rules in Natural Deduction style
o : Type ff : o - :0->o0 — : o0 ->0->o0 O:0->o0 O o0 ->o0

True : o -> Type
impI : II¢,¢:0.(True(¢) -> True(yp)) -> True(¢p — )
impE : Il¢,1:0.True(¢p — ¢) -> True(¢p) -> True (1))
£f£fI : Il¢p:0.(True(—¢) -> True(ff)) -> True(¢)
ffE : Il¢:0.True(ff) -> True(¢p)
BoxIS4 : II¢:o.IIm:True(¢) . Lo "™ [True (O¢)]
BoxIS5 : II¢:o.IIm:True(¢) . L2 [True ((¢)]
BoxE : Il¢:0.True([d¢) -> True(¢)
impBoxE : Il¢,1:0.True(d(¢ — ) -> True(d¢) -> True(y)
BoxI’ : II¢:o. ITm:True(¢).LE"%% [True(e)]
BoxBoxI : Il¢:0.True(U¢) -> True(H¢)
BoxDiamondI : IT¢:0.True(Q¢p) -> True(dOep)

Fig. 14. The signature X's for classic Sy Modal Logic in LFp

Then, we can prove, by structural induction on formulee, the following theorem:

Theorem 12 (Adequacy of modal formulse syntax). The encoding function ex is a bijection between
the modal logic formule with free variables in X and the terms ¢ derivable in judgements I' Fx ¢ : o
in n-Inf, where I' = {x:0 | * € X}. Moreover, the encoding is compositional, i.e. for a formula ¢,
with free variables in X = {x1,...,xx}, and ¥1,...,¢,, with free variables in Y, the following holds:

ex(Oln, - i/, an]) = ex(@)ley(n), - ey (W) /@1, - .

The adequacy of the truth system of modal logics in natural deduction style can be proved by structural
induction on derivations of the judgment I" F ¢:

Theorem 13 (Adequacy of modal logics in natural deduction style). Let X = {z1,...,2,} be a
set of propositional variables occurring in formule ¢1, ..., ¢k, d. There exists a bijection between derivations

28



of the judgement {¢1,...,¢r} = ¢ in modal logics in natural deduction style, and proof terms h such that
I'tFx h: (True ex(¢)) in n-Inf, where ' = {x1:0,...,xn: 0, hl: (True ex(¢1)),...,hk: (True ex (¢))}.

Non-commutative linear logic (NCLL) In this section, we outline an encoding in LFp of a substruc-
tural logic like the one presented in [31]. Take, for instance, the rules for the ordered variables and the —»
introduction/elimination rules®:

I A (2,22A) - M:B
I';ozAF z:A ovar I A,0N2zAMA—» B 1
Ay FMA— B T A9;025F N:A
I'; (A1 w0 Ag); (21, ) - M” N:B

—»F

where the x symbol denotes the context merge operator.

In this system “ordered assumptions occur exactly once and in the order they were made”. In order to
encode the condition on the occurrence of z as the last variable in the ordered context in the introduction
rule, it is sufficient to make the observation that, in an LF-based logical framework, this information is fully
recorded in the proof term. The last assumption made is the rightmost variable, the first is the leftmost.
Therefore, we can, in LFp, introduce suitable predicates in order to enforce such constraints, without resort-
ing to complicated encodings. In the following, we present an encoding of this ordered fragment of NCLL
into LFp. In order to give a shallow encoding, we do not represent explicitly the proof terms of the original
system (see, e.g., [31]). The encodings of rules — I and —» E are:

impRightIntro : [TA,B:o.[IM:(True A)->(True B) .ﬁﬁ.grﬁi?is)ixhue B) [(True (impRight A B))],

impRightElim : [TA,B:o.(True (impRight A B)) -> (True A) -> (True B),

where True:o->Type is the truth judgment on formula (represented by type o) and impRight : 0% represents
the —» constructor of right ordered implications. Finally, Rightmost (I" Fx M:(True A)->(True B)) is the
predicate checking that M is an abstraction in normal form (i.e., M= Az : (True A).M’> with M’ in normal form),
and that the bound variable z occurs only once, and as the rightmost free one in M’.

For what concerns the — introduction/elimination rules the encoding strategy is similar; indeed, the
rules are the following:

I'; A (22A,2)F M:B
A QN <z:AM:A— B —1
AW FM:A— B I'; Ax; (- N:A
I'; (A1 ) Ag); (21, 8%) - M<N:B

—

Thus, our encoding exploits the predicate Leftmost in the encoding of the introduction rule of »—:

. Leftmost .
impLeftIntro : [IA,B:o0.IIM:(True A)->(True B) 'EM,E(J;;Z:éA)—>(True p)[(True (impLeft A B))],

impLeftElim : I/A,B:o. (True (impLeft A B)) -> (True A) -> (True B),

where impLeft:o® represents the ~— constructor of left ordered implications. Finally, Leftmost (I" +x
M:(True A)->(True B)) checks that M is an abstraction in normal form (i.e., M= Az : (True A).M’ with
M’ in normal form), and that the bound variable z occurs only once, and as the leftmost free one in M”.

8 Notice that in this logic the derivation context is split into three distinct parts, namely, the intuitionistic context
I, the linear context A and the ordered context (2.
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The fragment of linear implications is, again, treated in a similar way, with a suitable predicate “ensuring”
the correct introduction of the —o constructor. The rules for the linear fragment of NCLL are the following:

I'; (Ay:A); 2+ M:B

- S — I
I';y:A; - Fy:A fvar I A0 My:AM:A— B
A 2M:A—-oB I';A5;-FN:A
I (A x Ay); 2+ M N:B -
Hence, the encodings of the rules — I and — E are as follows:
impLinearIntro : ITA,B:o0.IIM: (True A)->(True B) Eﬁ’('fr‘i‘f; 0> (true 3 [(TTue (impLinear A B))],

impLinearElim : I7A,B:o.(True (impLinear A B)) -> (True A) -> (True B),

where impLinear:o® represents the —o constructor of linear implications. Finally, Linear (I’ Fx M:(True
A)->(True B)) is the predicate checking that M is an abstraction in normal form (i.e., M= Az : (True A).M’
with M’ in normal form), and that the bound variable z occurs (free) only once in M’.

Finally, the encoding of the intuitionistic fragment of NCLL is straightforward, since in this part there
are no restrictions about the intuitionistic variables:

. (I x:A); A 2 M:B
(I, z:A, I); - Fx:A roar ;A QF X A M:A— B -

r;AQ-MA—B I'-FN:A
I';A; Q- MN:B

I

—F

The encodings of the introduction/elimination rules for the intuitionistic implication are trivial:

impIntro : ITA,B:o.IIM: (True A)->(True B). (True (imp A B)),
impElim : ITA,B:o. (True (imp A B)) -> (True A) -> (True B)

Notice that in the encodings of rules —» g, — F and — E we have not enforced any conditions on the
free variables occurring in the terms, in order to avoid infringing the closure under substitution condition.
Indeed, the obvious requirements surface in the adequacy theorem:

Theorem 14 (Adequacy). Let X = {Pi,...,P,} be a set of atomic formule occurring in formule
Ay, ..., A, A. Then, there exists a bijection between derivations of the judgment (A1, ..., Ai—1); (As, ..., Aj-1);
(Aj,..., Ap) F A in non-commutative linear logic, and proof terms h such that I'y,hi:(True ex(A41)),...,
hy:(True ex(Ag)) F h: (True ex (A)) in n-long normal form, where the variables hi, ..., hj_y occur in h
only once, hy, ..., hy occur in h only once and, precisely, in this order, and I'x is the context P1:o,...,Pn:o
representing the object-language propositional formule Py, ..., P,.

As far as we know, this is the first example (see the discussion in, e.g., [12]) of an encoding of non-
commutative linear logic in an LF-like framework. Notice the peculiarity of this adequacy result, which
is inevitable given the substructural nature of NCLL, but which is, nonetheless, perfectly compositional.
The gist is the following: as far as theorems, i.e. proofs with no assumptions, everything is standard; when
assumptions, i.e. truly free, not bindable variables are involved, an external requirement has to be externally
checked. An alternate adequacy could be stated representing, as in the A-calculus case, truly free variables
by constants. Obviously, carrying out a deep embedding of the system, one could enforce the conditions on
the variables occurring in the linear and ordered contexts by means of suitable locks at the level of the proof
terms (see, e.g., [18]).
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6.4 Imp with Hoare Logic

In this subsection, we give an encoding of an imperative language, called Imp together with its Hoare Logic.
The syntax of programs in Imp is:

p == skip | © := expr | null | assignment
if cond then p else p | p;p | cond | sequence
while cond {p} while

Other primitive notions of our object language are variables, both integer and identifier, and expressions.
Identifiers denote locations. For the sake of simplicity, we assume only integers (represented by type int) as
possible values for identifiers. In this section, we follow as closely as possible the HOAS encoding, originally
proposed in [1], in order to illustrate the features and possible advantages of using LFp w.r.t. LF. The main
difference with that approach is that here we encode concrete identifiers by constants of type var, an int-like
type, of course different from int itself, so as to avoid confusion with possible values of locations.

The syntax of variables and expressions is defined as follows:

Definition 10 (LFp signature ¥ for Imp).

int : Type bool : Type var : Type
bang : var -> int 0,1,-1 : int + : int -> int -> int

= : int -> int -> bool and, imp : bool -> bool -> bool
not : bool -> bool forall: (int -> bool) -> bool

Since variables of type int may be bound in expressions (by means of the forall constructor), we define
explicitly the encoding function €5” mapping expressions with bindable variables of type int in X of the
source language Imp into the corresponding terms of LFp:

GO0 =0, O =1, G =1
e.'rp( ) )X ifreX
€ W7 (bang x) if 2 ¢ X
ex’(n+m)=(ex"(n)ex"(m), €x"(n=m)=(=ex"(n)ey’(m))
ey’ (me) = (not €37 (e)), ey"(ene’) = (and ex”(e) ex"(¢"))

ex’(e2€) = (imp ex(e) ex” (), €x"(Va.¢) = (forall Ax:int.e5 [ 1 (9))

where x in (bang x) denotes the encoding of the concrete memory location (i.e., a constant of type var)
representing the (free) source language identifier x; the other case represents the bindable variable a rendered
as a LFp metavariable x of type int in HOAS style. The syntax of imperative programs is defined as follows:

Definition 11 (LFp signature X for Imp with command).
We extend the signature of Definition 10 as follows:

prog : Type Iskip : prog Iseq : prog -> prog —> prog
Iset : var -> int -> prog Iif : Ile:bool.prog -> prog -> LI . ,[prog]

Ivhile : ITe:bool.prog -> LI [prog]

where the predicate QF (I" Fx e:bool) holds iff the formula e is closed and quantifier free, i.e., it does not
contain the forall constructor. We can look at gF as a “good formation” predicate, ruling out bad programs
with invalid boolean expressions by means of stuck terms.

The encoding function €Y mapping programs with free variables in X' of the source language Imp into

the corresponding terms of LFp is defined as follows:
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eProg

X

T0g

e (p; p') =(Iseq €
1f e en else m) Iif € e €

prog (e),bool e.;P P.;Og gfrog ' *

(i
p’og(whzle e {p}) =UZ (1vhile ¢P(e) E(p))] ()

”p(e),bool

skip) =Iskip
v (= e) =(Iset x "% (e))
pmg(p) 6{30“] @)

*d

(*) if e is a quantifier-free formula (we are assuming to encode legal programs).
Now, given the predicate true: bool -> Type such that (true e) holds iff e is true’, we can define a
judgment hoare as follows:

Definition 12 (LFp signature X for Hoare).

args : Type
<_ , _> : var -> (int -> bool) -> args
hoare : bool -> prog -> bool -> Type
hoare_Iskip : Ile:bool. (hoare e Iskip e)

hoare_Iset : I[t:int.I[x:var.lle:int -> bool.

EP}:G; args (Boare (e t) (Iset x t) (e (bang x))]

hoare_Iseq : Ile,e’,e’’:bool.llp,p’: prog.(hoare e p e’) -> (hoare e’ p’ e’’) —->
(hoare e (Iseq p p’) e’’)
hoare_Iif : Ile,e’,b:bool.Ilp,p’:prog.(hoare (b and e) p e’) ->
(hoare ((not b) and e) p’ e’) -> (hoare e Uppyy[(Iif b p p')] e”)

hoare_Iwhile : Ile,b:bool.Ilp:prog.(hoare (e and b) p e) —->
(hoare e Ut .1[(Ivhile b p)] ((not b) and e))
hoare_Icons : Ile,e’,f,f’:bool.lIp:prog.(true (imp e’ e)) -> (hoare e p f) ->
(true (imp f £f’)) -> (hoare e’ p f’),

where P*!(I" -5 (x,e):args) holds iff e is closed!? and the location (i.e., constant) x does not occur in e.
Such requirements amount to formalizing that no assignment made to the location denoted by x affects the
meaning or value of e (non-interference property).

The intuitive idea here is that if e=e5”(E), p=e4.*/(P) and e’=c%?(E’), then (hoare e p e’) holds iff
the Hoare’s triple { E}P{E’} holds. The advantage w.r.t. previous encodings (see, e.g., [1]), is that in LFp we
can delegate to the external predicates QF and P*¢! all the complicated and tedious checks concerning non-
interference of variables and good formation clauses for guards in the conditional and looping statements.
Thus, the use of lock types, which are subject to the verification of such conditions, allows to legally derive
I' -5 m: (hoare e p e’) only according to the Hoare semantics.

7 A Philosophical Coda

One may still wonder whether it is worth to develop all the meta-theory we presented in this work. Why
would one like to delegate part of the formalization and verification of an object system to an external tool?
Indeed, one could adopt a “monolithic” approach, encoding and checking everything into his favourite proof
assistant. However, such strategy will soon reveal many drawbacks.

We start by giving another practical application of Poincaré’s Principle. Suppose we are in the setting
of the m-calculus formalization (see, e.g., [21]) and we want to prove rigorously that if a certain property P
holds on a process P, then the same property will also hold on the process (vz)P, provided that x ¢ fn(P).
With pencil and paper it is easy to conclude this, since we know that P = (vz)P under the aforementioned
freshness assumption. However, proof assistants force the user to spell out in full details even trivial proofs

9 The definition is omitted due to lack of space.
10 Otherwise, the predicate P would not be well-behaved, see Definition 1.
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like P = (vz)P. Hence, if we want to formally prove the previous structural congruence statement, we have
to proceed applying basic axioms:

Plo=P 0 is the identity w.r.t. parallel composition
Pl(vz)0=P (vz)0=0

(va)(P[0) = P (va)(PIQ) = Pl(va)Q if x & fn(P)
(vz)P=P 0 is the identity w.r.t. parallel composition

Here, we showed only the main steps of the proof, using implicitly structural rules, transitivity and symmetry.
Surely, this is rather boring and does not require any particular skill to carry it out: it is a trivial verification
like checking, e.g., that 2 + 2 = 4 ([5,30]). Of course, one will do the proof once and then save it for future
reuse; however, at the level of the machinery behind the proof assistant, this would imply larger proof terms,
more memory consumption and, in general, a slowdown in the overall performance!!. Thus, being able to
delegate such straightforward and trivial verifications to an external (and optimized) tool would be very
helpful during complicated formal proof developments. Indeed, the user of the proof assistant would be free
to concentrate only on the “creative” part of the whole proof and the framework itself would be free to avoid
an explicit treatment of uninteresting parts of the proof. This is precisely an important aspect of the spirit
behind the design of LFp: allowing the user to factorize apart consolidated proof knowledge, freeing himself
and the framework to record in full details “useless” and trivial verifications.

For instance, in the case of the 7-calculus, the reduction rule taking into account structural congruences
between processes, namely

P=P P —Q Q=qQ
P—Q

can be encoded in LFp using locks as follows:

Ef;}?félm [(red P Q)]

where the red symbol serves to encode the reduction relation —, and the external predicate Struct holds
if and only if P = P’ and Q' = Q.
In LFp, one can easily incorporate other systems separating derivation and computation. F.g. the rule

C A— B A=C
B

in Deduction Modulo can be represented as:

O=:1IIA B,C:o.
IOz : True(A — B). Iy : True(C).
L7,y [ True(B)].

But the mechanism of lock/unlock types in LFp is more general than the one provided by Deduction
Modulo or Poincare’s principle. The latter can be viewed as extensions of the type Equality Rule to new
definitional equalities. LFp on the other hand, allows to reflect into the proof objects themselves, as has
been extensively shown in the examples.

8 Conclusions and Future Work

In this paper, we have presented an extension of the Edinburgh LF, which allows to internalize external
validation tools and oracles in the form of a ¢-modal type constructor. Using LFp, we have illustrated how

1 As we already pointed out in the introduction, proof terms can be kept small, adopting a reflection approach (see,
e.g., [9]), but at the price of proving internally the correctness of the decision procedures.
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we can factor out the complexity of encoding logical systems which are awkward in LF, e.g. Modal Logics
and substructural logics, including non-commutative Linear Logic. More examples appear in [18], and others
can be easily carried out, e.g. LFp within LFp.

We believe that LFp provides a modular platform that can streamline the encoding of logics with arbitrary
structural side-conditions in rules, e.g. involving, say, the number of applications of specific rules. We simply
need to extend the library of predicates [18].

In LFp we could address formally the issue of reflection. We can already grasp the gist of this philosophy
through the following principle:

Reflection : ITx:o. LET™¢[(True x)]

We believe that our framework could also be very helpful in modeling dynamic and reactive systems: for
example bio-inspired systems, where reactions of chemical processes take place only if some extra structural
or temporal conditions hold, or process algebras. Often, in the latter systems, no assumptions can be made
about messages exchanged through the communication channels. Indeed, it could be the case that a redex,
depending on the result of a communication, can remain stuck until a “good” message arrives from a given
channel, firing in that case an appropriate reduction (this is a common situation in many protocols, where
“bad” requests are ignored and “good ones” are served). Such dynamic (run-time) behavior could hardly be
captured by a rigid type discipline, where bad terms and hypotheses are ruled out a priori ([24]).

The machinery of lock derivations is akin to d-rules ¢ la Mitschke, see [3], when we take lock rules,
at object level, as d-rules releasing their argument when the condition is satisfied. This connection can be
pursued further. For instance, we can use the untyped object language of LFp to support the design-by-
contract” programming paradigm.

It should be noted that the system we have presented here is a purely first-order predicative type theory,
corresponding to the vertex (1,0,0) of Barendregt’s cube [4]. A reasonable and worthwhile step further would
be to extend it to the full impredicative higher-order Calculus of Constructions.

Alternative presentations of LFp could be given, featuring say typed reductions, or doing away with
unlock destructors. In certain cases, we might even want to keep track of the external calls which have been
made during the derivation. One way to accomplish this would be to employ a variant of LFp in which
L-reductions do not fire, thus preserving the U-L pairs within the term. More practical experimenting with
LFp will provide more insights on these issues.

The prototype of LFp under development is about to be completed. This experiment will help pick,
among the many implementations of type theory in the literature, the best one with regard to proving the
well-behavedness of predicates.

LFp can shed light on various concepts needing better formal understanding: e.g. shallow vs.deep encod-
ings, proposition-as-types for modal operators, combination of different validation tools.
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Appendix

Definitions and extensions of several standard notions

— the domain of a signature Dom(X):

Dom() = (D
Dom(X, a:K) = Dom(X) U {a}
Dom(X, c:0) = Dom(X) U {c}
— the domain of a context Dom(I"):
Dom(0) =0

Dom(I, z:0) = Dom(I") U {z}
— the free variables of a term Fv(T):
Fv(Type) = Fv(a) = Fv(c)
Fv(z)
Fv(I[lz:0.T) =
Fv()\x 0.T) = (Fv(o) UFv
Fv(T N)
V(LT (1)
Fv(Uy ,[T))

— the bound variables of a term Bv(T):
Bv(Type) = Bv(a) = Bv(c) = Bv(z)
Bv(IIz:0.T)
Bv(Az:0.T) = Bv(o
Bv(T N)
Bv(LY o [T])
BV(Z/{EJ[T]) = Bv(V) UBv(o) UBV(T)

— substitution T[M/xz] of an object M for the variable x in a term T (here, we assume that z # y, and
that we are working modulo Barendregt’s hygiene condition):

Type[M/z] = Type
alM/x] = a,
c[M/z] = ¢,
x[M/x]) = M,
(ITy:0.T

[

[M/x]

[M /]

[M/x] =

[M/z] = Ty:0c[M/x].T[M/x]
[M/x]

[M /]

(M /]

)
(A\y:0.T)[M/z] = Ay:o[M/x].T[M/x]
(TN)[M/x] =T[M/x] N[M/x]
(ﬁﬁ,a[T]) M/z] = ﬁE[M/z],a[M/x] [T[M/z]]

(Uﬁa [T))[M/z] = UE[M/I]J[M/x] [T[M/x]]
— substitution T'[M/z] of an object M for the variable = in a context I:

0)[M/x] =0
([, y:0)[M/x)=T[M/z],y:(c[M/x]), where x # y, Fv(M) C Dom(I").
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BL-closure under context for kinds

0 —3C o’
z:0.K =g Hz:0' K

(K-Ny-8L)

Fig. 15. fL-closure-under-context for kinds

BL-closure under context for objects

0 —8C O'/

(O-\1-BL)
Az:o.M =g Azio’ .M
M —sc M’ (0-A;-BL)
M N —BL M' N
N —pc N’ (0-L1-BL)
LR o [M] =sc LN ,[M]
M e M’ (0-L3-BL)
LE,U[M] —BL ‘CE,G[M/]
’

UK o [M] =52 UK 1 [M]

K —pc K' (K-Mx-BL)
z:0.K =g Hz:0.K'
M —pc M’ (0-X2-BL)
Az:o.M =g Azio. M’
N —pc N’ (0-Az-BL)
M N —BL M N’
U-)BL O'/ (O[Qﬁﬁ)
LN o[M] =52 LY ,/[M]
!
N e N (O-Uh-BL)
uﬁ,a[M] _>/8£ u]‘[\;f",a'[M}
M —se M’ (OUh-BL)

UR o [M] = U 5 [M']

Fig. 16. SL-closure-under-context for objects of LFp

BL-definitional equality in LFp

!/
T = T (BL-Eq-Main) T=2T (BL-Eq-Refl)
T=scT'
T=eT (preqsym)  T=el”  T'=eT" (5rEq-Trans)
T'=5cT T=sT"

Fig. 17. fL-definitional equality in LFp



