
HAL Id: hal-00906419
https://inria.hal.science/hal-00906419

Submitted on 25 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Constraint Solving Approach to Tropical
Equilibration and Model Reduction

Sylvain Soliman, François Fages, Ovidiu Radulescu

To cite this version:
Sylvain Soliman, François Fages, Ovidiu Radulescu. A Constraint Solving Approach to Tropical
Equilibration and Model Reduction. WCB - ninth Workshop on Constraint Based Methods for Bioin-
formatics, colocated with CP 2013, Sep 2013, Uppsala, Sweden. pp.27–36. �hal-00906419�

https://inria.hal.science/hal-00906419
https://hal.archives-ouvertes.fr


A Constraint Solving Approach to Tropical

Equilibration and Model Reduction

Sylvain Soliman1, François Fages1, and Ovidiu Radulescu2

1 EPI Contraintes, Inria Paris-Rocquencourt, France
2 University of Montpellier, France

Abstract. Model reduction is a central topic in systems biology and
dynamical systems theory, for reducing the complexity of detailed mod-
els, finding important parameters, and developing multi-scale models for
instance. While perturbation theory is a standard mathematical tool
to analyze the different time scales of a dynamical system, and decom-
pose the system accordingly, tropical methods provide a simple algebraic
framework to perform these analyses systematically in polynomial sys-
tems. The crux of these tropicalization methods is in the computation of
tropical equilibrations. In this paper we show that constraint-based meth-
ods, using reified constraints for expressing the equilibration conditions,
make it possible to numerically solve non-linear tropical equilibration
problems, out of reach of standard computation methods. We illustrate
this approach first with the reduction of simple biochemical mechanisms
such as the Michaelis-Menten and Goldbeter-Koshland models, and sec-
ond, with performance figures obtained on a large scale on the model
repository biomodels.net.

1 Preliminaries on Model Reduction by Tropicalization

We consider networks of biochemical reactions with mass action kinetic laws.
Each reaction is defined as

X

i

αjiAi →

X

k

⇥jkAk.

The stoichiometric vectors αj ∈ N
n, βj ∈ N

n have coordinates αji and ⇥jk and
define which species are consumed and produced by the reaction j and in which
quantities.

The mass action law means that reaction rates are monomial functions of
the species concentrations xi and reads

Rj(x) = kjx
αj . (1)

where kj > 0 are kinetic constants, αj = (αj
1, . . . ,α

j
n) are multi-indices and

x
αj = x

α
j
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1 . . . x
α

j
n

n .
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The network dynamics is described by the following differential equations

dxi

dt
=

X

j

kj(⇥ji − αji)x
αj . (2)

In what follows, the kinetic parameters do not have to be known precisely, they
are given by their orders of magnitude. A convenient way to represent orders is
by considering that

kj = k̄j⌅
⇥j , (3)

where ⌅ is a positive parameter much smaller than 1, ⇤j is an integer, and k̄j
has order unity. An approximate integer order can be obtained from any real
positive parameter by

⇤j = round(log(kj)/ log(⌅)), (4)

where round stands for the closest integer. For instance, if ⌅ = 1/10, ⇤j will repre-
sent the logarithmic value of the parameter rounded to the nearest decade. Notice
that in this representation, small quantities have large orders. Furthermore, the
smaller ⌅, the better the separation between quantities of different orders, indeed
lim⇤→0

ki

kj
= ∞ if ⇤i < ⇤j . We are also interested in the orders of the species

concentrations, therefore we introduce a vector of orders a = (a1, . . . , an), such
that x = x̄⌅a. Orders a are unknown and have to be calculated. To this aim, the
network dynamics can be described by a rescaled system of ordinary differential
equations

dx̄i

dt
= (

X

j

⌅µjkj(⇥ji − αji)x̄
αj )⌅−ai , (5)

where
µj = ⇤j+ < a,αj >, (6)

and <,> stands for the vector dot product. The r.h.s. of each equation in (5) is
a sum of monomials in the concentrations, with positive and negative signs given
by the stoichiometries ⇥ji − αji. Generically, these monomials have different or-
ders (given by µj) and there is one monomial that dominates the others. In this
case, the corresponding variable will change rapidly in the direction imposed by
this dominating monomial. However, on sub-manifolds of the phase space, at
least two monomials, one positive and one negative may have the same order.
This situation was called tropical equilibration in [6]. Tropical equilibration is
different from equilibrium or steady state in many ways. Firstly, steady state
means equilibration of all species, whereas tropical equilibration may concern
only one or a few rapid species. Secondly, steady state means that forces are
rigorously compensated on all variables that are at rest, whereas tropical equili-
bration means that only the dominant forces are compensated and variables may
change slowly under the influence of uncompensated, weak forces. Compensation
of dominant forces constrains the dynamics of the system to a low dimensional
manifold named invariant manifold [7, 5]. As discussed in [6], tropical equilibra-
tions encompass the notions of quasi-steady state and quasi-equilibrium from
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singular perturbation theory of biochemical networks, but are more general. Let
us provide a formal definition of tropical equilibration (see [6] for more details).

Definition 1. Two reactions j, j0 are tropically equilibrated on the species i iff:

i) µj = µj0 ,

ii) (⇥ji − αji)(⇥j0i − αj0i) < 0 (meaning that the effects of the reactions j
and j0 on the species i are opposite),

iii) µk ⇧ µj for any reaction k  = j, j0, such that ⇥ki  = αki.

According to (6) and Definition 1, the equilibrations correspond to vectors
a ∈ Rn where the minimum in the definition of the piecewise-affine function
fi(a) = minj(⇤j+ < a,αj >) is attained at least twice. Tropical equilibrations
are used to calculate the unknown orders a. The solutions have a geometrical in-
terpretation. Let us consider the equality µj = µj0 . This represents the equation
of a n− 1 dimensional hyperplane of Rn, orthogonal to the vector αj −αj0 :

⇤j+ < a,αj >= ⇤j0+ < a,αj0 > (7)

For each species i, we consider the set of reactions Ri that act on this species,
namely the reaction k is in Ri iff (βk − αk)i  = 0. The finite set Ri can be
characterized by the corresponding set of stoichiometric vectors αk. The set of
points of Rn where at least two reactions equilibrate on the species i corresponds
to the places where the function fi is not locally affine (the minimum in the
definition of fi is attained at least twice). For simplicity, we shall call this locus
tropical manifold [6, 9].

A simple example of biochemical network is the Michaelis-Menten mechanism
of an enzymatic reaction. This network consists of two reactions:

S + E
k1

⌦

k−1

ES
k2

⌃ P + E,

where S,E,ES, P represent the substrate, the enzyme, the enzyme-substrate
complex and the product, respectively.

The system of polynomial differential equations reads:

x0

1 = −k1x1x3 + k−1x2,

x0

2 = k1x1x3 − (k−1 + k2)x2,

x0

3 = −k1x1x3 + (k−1 + k2)x2,

x0

4 = k2x2. (8)

where x1 = [S], x2 = [SE], x3 = [E], x4 = [P ].

There are two conservation laws: x2 + x3 = e0 and x1 + x2 + x4 = s0 The
rescaled variables are xi = x̄i⌅

ai , 1 ⌅ i ⌅ 4, k1 = k̄1⌅
⇥1 , k−1 = k̄−1⌅

⇥−1 , e0 =
ē0⌅

⇥e , s0 = s̄0⌅
⇥s . Let us notice that the last equation can never be equilibrated

because it contains only one monomial. The tropical equilibration equations for

29



the remaining variables read:

⇤1 + a1 + a3 = ⇤−1 + a2,

⇤1 + a1 + a3 = min(⇤−1, ⇤2) + a2,

⇤1 + a1 + a3 = ⇤2 + a2,

min(a2, a3) = ⇤e,

min(a1, a2, a4) = ⇤s. (9)

The set of integer orders endowed with the minimum and sum operations is a
semiring, called min-plus algebra [2] where the minimum is noted ⊕ and the sum
⊗. Our tropical equilibration problem is solving a set of polynomial equations
in this semi-ring.

Let us emphasize an important difference between the calculation of tropical
equilibrations and calculation of exact equilibria of systems of polynomial differ-
ential equations. If there are exact conservation laws, the set of exact equilibrium
equations are linearly dependent, therefore one can eliminate some of them from
the system. Because elements in a min-plus semiring do not generally have ad-
ditive inverses, elimination is not automatically possible in systems of tropical
equations. In this case, one should keep all the tropical equilibrium equations
for all the variables and add to them the tropical conservation relations.

2 Example of Golbeter-Koshland Switch

A slightly more complicated network is the Goldbeter-Koshland mechanism. This
consists of two coupled Michaelis-Menten equations. The mechanism is impor-
tant because it plays the role of a switch, allowing the propagation of information
in signal transduction networks. The detailed mechanism is represented by four
mass action reactions

S + Ea

ka
1

⌦

ka
−1

EaS
ka
2

→ S⇤ + Ea, S
⇤ + Eb

kb
1

⌦

kb
−1

EbS
⇤

kb
2

→ S + Eb.

where S and S⇤ are, for instance, the un-phosphorylated and phosphorylated
forms of a substrate, Ea, Eb, are kinase and phosphatase enzymes, respectively.

This mechanism leads to the following system of differential equations:

x0

1 = ka2x5 − ka1x1x3,

x0

2 = kb2x6 − kb1x2x4,

x0

3 = ka
−1x5 + kb2x6 − ka1x1x3,

x0

4 = ka2x5 + kb
−1x6 − kb1x2x4,

x0

5 = ka1x1x3 − (ka
−1 + ka2 )x5,

x0

6 = kb1x2x4 − (kb
−1 + kb2)x6. (10)

where x1 = [Ea], x2 = [Eb], x3 = [S], x4 = [S⇤], x5 = [EaS], x6 = [EbS
⇤].
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This system has three conservation laws:

x1 + x5 = Ea
0 ,

x2 + x6 = Eb
0,

x3 + x4 + x5 + x6 = S0. (11)

Equilibrating each equation of (10) and taking into account (11) leads to the
following tropical equations:

⇤
a
2 ⊗ a5 = ⇤

a
1 ⊗ a1 ⊗ a3,

⇤
b
2 ⊗ a6 = ⇤

b
1 ⊗ a2 ⊗ a4,

(⇤a
−1 ⊗ a5)⊕ (⇤b

2 ⊗ a6) = ⇤
a
1 ⊗ a1 ⊗ a3,

(⇤a
2 ⊗ a5)⊕ (⇤b

−1 ⊗ a6) = ⇤
b
1 ⊗ a2 ⊗ a4,

⇤
a
1 ⊗ a1 ⊗ a3 = (⇤a

−1 ⊕ ⇤
a
2 )⊗ a5,

⇤
b
1 ⊗ a2 ⊗ a4 = (⇤b

−1 ⊕ ⇤
b
2)⊗ a6,

a1 ⊕ a5 = ⇤
a
e ,

a2 ⊕ a6 = ⇤
b
e,

a3 ⊕ a4 ⊕ a5 ⊕ a6 = ⇤s. (12)

The corresponding CSP, described in the next section, is solved instantly and
gives the unique solution: a1 = 5, a2 = 4, a3 = 3, a4 = 4, a5 = 7 for parameter
values consistent with the literature: k⇤1 = 1000, k⇤2 = 150, k⇤

−1 = 150.

3 Tropical Equilibration as a Constraint Satisfaction

Problem

Given a biochemical reaction system with its Mass-Action kinetics, and a small
⌅, the problem of tropical equilibration is to look for a rescaling of the variables
such that the dominating positive and negative term in each ODE equilibrate as
per Definition 1, i.e., are of the same degree in ⌅.

Note that there are supplementary constraints related to this rescaling when
some conservation laws exist for the original system. Finding these conservation
laws is another CSP which can be solved efficiently with constraint methods
[8]. Here we will assume that the conservation laws are given in input. In our
prototype implementation, both the computation of conservation laws and the
following equilibration are performed for a given system.

For each original equation dxi/dt, 1 ≤ i ≤ n is introduced a variable ai ∈ Z

that is used to rescale the system by posing xi = ⌅
ai x̄i. These are the variables

of our CSP. Note that they require a solver handling Z like for instance SWI-
Prolog [11, 10] with the clpfd library by Markus Triska.

The constraints are of two kinds. For each differential equation that should
be equilibrated is a list of positive monomials M+

i , and a list of negative mono-
mials M−

i . The degrees in ⌅ of all these monomials are integer linear expres-
sions in the ai. Now, to obtain an equilibration one should enforce for each i
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that the minimum degree in M+
i is equal to the minimum degree in M−

i . This
will ensure that we find two monomials (i of Definition 1) of opposite sign (ii)
and of minimal degree (iii). This corresponds to the first six tropical equations
of (12). We will see how they can be implemented with reified constraints, but
for now, let us assume a constraint min(L, M) that enforces that the FD variable
M is the minimum value of a list L of linear expressions over FD variables. We
have in our CSP, for each 1 ≤ i ≤ n, min(PositiveMonomialDegrees, M) and
min(NegativeMonomialDegrees, M).

The second kind of constraint comes from conservation laws. Each conserva-
tion law is an equality between a linear combination of the xi and a constant ci.
By rescaling, we obtain a sum of rescaled monomials equal to ⌅

log(ci)/ log(⇤)c̄i.
We want this equality to hold when ⌅ goes to zero, which implies that the
minimal degree in ⌅ in the left hand side is equal to (the round of) the de-
gree of the right hand side. Since once again the degrees on the left are lin-
ear combinations of our variables ai, this is again a constraint of the form:
min(ConservationLawDegrees, K) where K is equal to round(log(ci)/ log(⌅)).
This corresponds to the last three tropical equations of (12).

Furthermore, if the system under study is not at steady state, the minimum
degree should not be reached only once, which would lead to a constant value
for the corresponding variable when ⌅ goes to zero, but at least twice. This is the
case for the example treated in [5]. The constraint we need is therefore slightly
more general than min/2: we need the constraint min(L, M, N) which is true
if M is smaller than each element of L and equal to N elements of that list. Note
that using CLP notation, we have:

min(M, L) :- C#>=1, min(M, L, C).

In order to enforce that the minimum is reached at least a required num-
ber of times, one obvious solution is to try all pairs of positive and negative
monomials and count the successful pairs [7]. However, this is not necessary,
the min(L, M, N) constraint directly expresses the cardinality constraint on
the minimums. and can be implemented using reified constraints to propagate
information between L, M and N in all directions, without enumeration. Using
SWI-Prolog notations, the implementation of min/3 by reified constraints is as
follows:

min([], _, 0).

min([H | T], M, C) :- M#=<H, B #<==> M#=H, C#=B+CC ,

min(T, M, CC).

This concise and portable implementation will probably improve when the
minimum and min_n global constraints are available (see [1] for a reference).
However it already proves very efficient as demonstrated in the next section.
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4 Computation Results on Biomodels.net

To benchmark our approach, we applied it systematically to all the dynamical
models of the BioModels1 repository [4] of biological systems, with ⌅ set arbi-
trarily to 0.1. We used the latest release (r24 from 2012-12-12) which includes
436 curated models.

Among them, only 55 models have non-trivial purely polynomial kinetics (ig-
noring events if any). Our computational results on those are summarized in the
following table, where the first column indicates whether a complete equilibra-
tion was found, and the times are in seconds.

Found # models Variables (avg/min/max) Time (avg/min/max)
yes 23 17.348/3/ 86 0.486/0.004/2.803
no 32 17.812/1/194 0.099/0.000/1.934

We managed to avoid timeouts by using an iterative domain expansion: the
problem is first tried with a domain of [−2, 2], i.e., equilibrations are searched by
rescaling in the 10−2, 102 interval. If that fails, the domain is doubled and the
problem tried again (until a limit of 10−128, 10128). This strategy coupled with
a domain bisection enumeration (bisect option in SWI-Prolog) allowed us to
gain two orders of magnitude on the biggest models.

Only one of the models (number 002) used values far from 0 in the equili-
bration (up to ⌅

40) and has no complete equilibration if the domain is restricted
to [−32, 32]. This is because all kinetics are scaled by the volume of the com-
partment, which in that case was 10−16, translating the search accordingly. We
thus do not believe that enlarging the domains even more would lead to more
equilibrations. Nevertheless, choosing a smaller ⌅ might increase the number of
equilibrations.

18 of the 23 models for which there is a complete equilibration are actually
underconstrained and appear to have an infinity of such solutions (typically
linear relations between variables). For the 5 remaining ones, we computed all
complete equilibrations:

Model # equilibrations Total time (s)
BIOMD0000000002 36 109
BIOMD0000000122 45 291
BIOMD0000000156 7 0.008
BIOMD0000000229 7 0.7
BIOMD0000000413 29 3.3

5 Discussion

One of the limits of this approach, is that it is not well suited to equilibration
problems with an infinite number of solutions. For those, symbolic solutions
depending on free parameters are necessary, as done in [6].

1 http://biomodels.net
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It is also possible to reduce a system using its conservation laws, and to apply
tropical equilibration directly on the reduced system. However, the resulting
equilibrations might be slightly different, apparently due to the possible loss of
positivity of certain variables. We want to investigate this question further.

In many cases, it makes sense biologically to only look for partial equilibra-
tions. Strategies to decide when such decision has to be made remain unclear.
Nevertheless the framework of partial constraint satisfaction and more specif-
ically Max-CSP [3] would allow us to easily handle the maximization of the
number of equilibrated variables.

In this paper we discussed only the calculation of the tropical equilibrations
and of the unknown orders of the variables. Once the orders of the variables are
known, the rapid variables can be identified and the system reduced to a simpler
one. The details of the reduction procedure, involving pruning of dominated
terms and pooling of fast variables into fast cycles will be presented elsewhere.
A simple reduction procedure, involving only pruning is described by Theorem
3.6 of [6].
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