Towards understanding action recognition

Abstract : Although action recognition in videos is widely studied, current methods often fail on real-world datasets. Many recent approaches improve accuracy and robustness to cope with challenging video sequences, but it is often unclear what affects the results most. This paper attempts to provide insights based on a systematic performance evaluation using thoroughly-annotated data of human actions. We annotate human Joints for the HMDB dataset (J-HMDB). This annotation can be used to derive ground truth optical flow and segmentation. We evaluate current methods using this dataset and systematically replace the output of various algorithms with ground truth. This enables us to discover what is important - for example, should we work on improving flow algorithms, estimating human bounding boxes, or enabling pose estimation? In summary, we find that highlevel pose features greatly outperform low/mid level features; in particular, pose over time is critical, but current pose estimation algorithms are not yet reliable enough to provide this information. We also find that the accuracy of a top-performing action recognition framework can be greatly increased by refining the underlying low/mid level features; this suggests it is important to improve optical flow and human detection algorithms. Our analysis and JHMDB dataset should facilitate a deeper understanding of action recognition algorithms.
Type de document :
Communication dans un congrès
ICCV - IEEE International Conference on Computer Vision, Dec 2013, Sydney, Australia. IEEE, pp.3192-3199, 2013, 〈10.1109/ICCV.2013.396〉
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger
Contributeur : Thoth Team <>
Soumis le : mardi 10 décembre 2013 - 14:18:31
Dernière modification le : jeudi 7 février 2019 - 16:16:56
Document(s) archivé(s) le : vendredi 14 mars 2014 - 09:26:53


Fichiers éditeurs autorisés sur une archive ouverte




Hueihan Jhuang, Jurgen Gall, Silvia Zuffi, Cordelia Schmid, Michael J. Black. Towards understanding action recognition. ICCV - IEEE International Conference on Computer Vision, Dec 2013, Sydney, Australia. IEEE, pp.3192-3199, 2013, 〈10.1109/ICCV.2013.396〉. 〈hal-00906902〉



Consultations de la notice


Téléchargements de fichiers