M. [. Amenta and . Bern, Surface Reconstruction by Voronoi Filtering, Discrete & Computational Geometry, vol.22, issue.4, pp.481-504, 1999.
DOI : 10.1007/PL00009475

S. [. Amenta, T. K. Choi, N. Dey, and . Leekha, A SIMPLE ALGORITHM FOR HOMEOMORPHIC SURFACE RECONSTRUCTION, International Journal of Computational Geometry & Applications, vol.12, issue.01n02, pp.125-141, 2002.
DOI : 10.1142/S0218195902000773

D. P. Alliez, O. Cohen-steiner, B. Devillers, M. Lévy, and . Desbrun, Anisotropic polygonal remeshing, Conference Proc, pp.485-493, 2003.
DOI : 10.1145/882262.882296

URL : https://hal.archives-ouvertes.fr/inria-00099624

D. [. Alliez, M. Cohen-steiner, M. Yvinec, and . Desbrun, Variational tetrahedral meshing, ACM Transactions on Graphics, vol.24, issue.3, pp.617-625, 2005.
DOI : 10.1145/1073204.1073238

URL : https://hal.archives-ouvertes.fr/inria-00226418

C. [. Antani, P. Delage, A. Azernikov, and . Fischer, Mesh sizing with additively weighted Voronoi diagrams Anisotropic meshing of implicit surfaces, 16th International Meshing Roundtable Proc. of the Int. Conf. on Shape Modeling and Applications (SMI'05), pp.335-346, 2005.

J. Boissonnat and A. Ghosh, Manifold reconstruction using Tangential Delaunay Complexes, Proc. of the 26th Symposium on Computational Geometry, 2010.
DOI : 10.1145/1810959.1811013

URL : https://hal.archives-ouvertes.fr/inria-00440337

. Bgh-+-97-]-houman, P. L. Borouchaki, F. George, P. Hecht, E. Laug et al., Delaunay mesh generation governed by metric specifications. part I algorithms, Finite Elem. Anal. Des, vol.25, issue.12, pp.61-83, 1997.

P. [. Bossen and . Heckbert, A pliant method for anisotropic mesh generation, 5th International Meshing Roundtable, 1996.

J. Boissonnat and S. Oudot, Provably good sampling and meshing of surfaces, Graphical Models, vol.67, issue.5, pp.405-451, 2005.
DOI : 10.1016/j.gmod.2005.01.004

URL : https://hal.archives-ouvertes.fr/hal-00488829

J. Boissonnat, C. Wormser, and M. Yvinec, Locally uniform anisotropic meshing, Proceedings of the twenty-fourth annual symposium on Computational geometry , SCG '08, pp.270-277, 2008.
DOI : 10.1145/1377676.1377724

URL : https://hal.archives-ouvertes.fr/inria-00275430

J. Boissonnat, C. Wormser, and M. Yvinec, Anisotropic Delaunay Mesh Generation, SIAM Journal on Computing, vol.44, issue.2, 2011.
DOI : 10.1137/140955446

URL : https://hal.archives-ouvertes.fr/inria-00615486

S. Cheng, T. K. Dey, E. A. Ramos, and R. Wenger, Anisotropic surface meshing, Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm , SODA '06, pp.202-211, 2006.
DOI : 10.1145/1109557.1109581

G. D. Canas and D. J. Gortler, Orphan-Free Anisotropic Voronoi Diagrams, Discrete & Computational Geometry, vol.15, issue.3, 2011.
DOI : 10.1007/s00454-011-9372-6

. Cga and . Cgal, Computational Geometry Algorithms Library

]. L. Che93 and . Chew, Guaranteed-quality mesh generation for curved surfaces, Proceedings of the ninth annual symposium on Computational geometry, SCG '93, pp.274-280, 1993.

[. Cazals and M. Pouget, Estimating differential quantities using polynomial fitting of osculating jets, Computer Aided Geometric Design, vol.22, issue.2, pp.121-146, 2005.
DOI : 10.1016/j.cagd.2004.09.004

URL : https://hal.archives-ouvertes.fr/hal-00103047

J. [. Dey and . Levine, Delaunay Meshing of Piecewise Smooth Complexes without Expensive Predicates, Algorithms, vol.2, issue.4, pp.1327-1349, 2009.
DOI : 10.3390/a2041327

R. [. Azevedo and . Simpson, On optimal interpolation triangle incidences

D. [. Du and . Wang, Anisotropic Centroidal Voronoi Tessellations and Their Applications, SIAM Journal on Scientific Computing, vol.26, issue.3, pp.737-761, 2005.
DOI : 10.1137/S1064827503428527

M. [. Heckbert and . Garland, Optimal triangulation and quadric-based surface simplification, Computational Geometry, vol.14, issue.1-3, pp.49-65, 1999.
DOI : 10.1016/S0925-7721(99)00030-9

]. J. Hug03 and . Hughes, Differential geometry of implicit surfaces in 3-space-a primer, Report, 2003.

A. [. Jiao, X. Colombi, J. C. Ni, and . Hart, Anisotropic mesh adaptation for evolving triangulated surfaces, 15th International Meshing Roundtable, pp.173-190, 2006.

[. Li, Generating well-shaped d-dimensional Delaunay Meshes, Theoretical Computer Science, vol.296, issue.1, pp.145-165, 2003.
DOI : 10.1016/S0304-3975(02)00437-1

G. Leibon and D. Letscher, Delaunay triangulations and Voronoi diagrams for Riemannian manifolds, Proceedings of the sixteenth annual symposium on Computational geometry , SCG '00, pp.341-349, 2000.
DOI : 10.1145/336154.336221

Y. [. Lévy and . Liu, Lp centroidal voronoi tessellation and its applications, ACM Transactions on Graphics, vol.29, issue.4, p.119, 2010.

[. Labelle and J. R. Shewchuk, Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation, Proceedings of the nineteenth conference on Computational geometry , SCG '03, pp.191-200, 2003.
DOI : 10.1145/777792.777822

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

[. Li and S. Teng, Generating well-shaped delaunay meshed in 3d Biting ellipses to generate anisotropic mesh, SODA '01: Proc. of the 12th annual ACM-SIAM symposium on Discrete algorithms 8th International Meshing Roundtable, pp.28-37, 1999.

J. Mirebeau, Optimal meshes for finite elements of arbitrary order. Constructive approximation, pp.339-383, 2010.

J. Schoen, Robust, guaranteed-quality anisotropic mesh generation, 2008.

[. Shewchuk, What is a good linear finite element? Interpolation , conditioning, anisotropy, and quality measures, 2002.

]. J. She05 and . Shewchuk, Star splaying: an algorithm for repairing Delaunay triangulations and convex hulls, SCG '05: Proc. of the 21st Symposium on Computational Geometry ACM. Inria RESEARCH CENTRE SOPHIA ANTIPOLIS ? MÉDITERRANÉE 2004 route des Lucioles -BP 93, pp.237-246, 2005.