
HAL Id: hal-00907161
https://inria.hal.science/hal-00907161

Submitted on 21 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CEDO: Content-Centric Dissemination Algorithm for
Delay-Tolerant Networks

Francisco de Meneses Neves Ramos dos Santos, Benjamin Ertl, Chadi
Barakat, Thrasyvoulos Spyropoulos, Thierry Turletti

To cite this version:
Francisco de Meneses Neves Ramos dos Santos, Benjamin Ertl, Chadi Barakat, Thrasyvoulos Spy-
ropoulos, Thierry Turletti. CEDO: Content-Centric Dissemination Algorithm for Delay-Tolerant Net-
works. The 16th ACM/IEEE International Conference on Modeling, Analysis and Simulation of
Wireless and Mobile Systems, Nov 2013, Barcelone, Spain. pp.377-386, �10.1145/2507924.2507931�.
�hal-00907161�

https://inria.hal.science/hal-00907161
https://hal.archives-ouvertes.fr

CEDO: Content-Centric Dissemination Algorithm for
Delay-Tolerant Networks∗

Francisco Neves dos
Santos

EPFL, Switzerland
fmnsantos@gmail.com

Benjamin Ertl
University of Nice, France

benjamin.ertl@asamnet.de

Chadi Barakat
INRIA, France

Chadi.Barakat@inria.fr

Thrasyvoulos
Spyropoulos

Eurecom, France
spyropou@eurecom.fr

Thierry Turletti
INRIA, France

Thierry.Turletti@inria.fr

ABSTRACT

Emerging challenged networks require new protocols and
strategies to cope with a high degree of mobility, high de-
lays and unknown, possibly non-existing routes within the
network. Researchers have proposed different store-carry-
and-forward protocols for data delivery in challenged net-
works. These have been complemented with appropriate
drop and scheduling policies that deal with the limitations
of the nodes’ buffers and the limited duration of opportunis-
tic encounters in these networks. Nevertheless, the vast
majority of these protocols and strategies are designed for
end-to-end transmissions. Yet, a paradigm shift from the
traditional way of addressing the endpoints in the network
has been occurring towards content-centric networking. To
this end, we present CEDO, a content-centric dissemination
algorithm for challenged networks. CEDO aims at maximiz-
ing the total delivery-rate of distributed content in a setting
where a range of contents of different popularity may be
requested and stored, but nodes have limited resources. It
achieves this by maintaining a delivery-rate utility per con-
tent that is proportional to the content miss rate and that is
used by the nodes to make appropriate drop and scheduling
decisions. This delivery-rate utility can be estimated locally
by each node using unbiased estimators fed by sampled infor-
mation on the mobile network obtained by gossiping. Both
simulations and theory suggest that CEDO achieves its set
goal, and outperforms a baseline LRU-based policy by 72%,
even in relatively small scenarios. The framework followed
by CEDO is general enough to be applied to other global
performance objectives as well.

∗This work is supported by the French national project
ANR Connect and the European ICT Labs Activity on
Information-Centric Networking (ITA 12191).

Author version

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Categories and Subject Descriptors

C.2 [Computer-Communication Networks]: Network
Architecture and Design

Keywords

Delay-Tolerant Networks; Content-Centric Networks; Stor-
age management and content scheduling.

1. INTRODUCTION
Challenged networks like tactical networks, exotic media

networks (e.g. underwater, interplanetary), sensor networks,
and pocket-switched networks require new protocols and
strategies to handle a high degree of mobility, high delays
and unknown, possibly non-existing routes between nodes in
these networks [4]. Many researchers have proposed differ-
ent protocols to overcome these emerging challenges within
the area of delay tolerant networking (DTN) [23]. Most of
the propositions imply a paradigm shift from the traditional
network architecture of addressing the endpoints in the net-
work with the current TCP/IP model towards a ”bundle”
overlay or named content network architecture. However,
these new architectures also pose new challenges for exam-
ple in the field of routing, security or buffer management.

To deal with the high degree of mobility and possibly
unknown or non-existing paths between the source node(s)
and the target node(s) in these networks, researchers have
proposed routing protocols based on the store-carry-and-
forward routing principle [9][10][18][22]. Following this prin-
ciple, nodes store messages or contents in their buffers and
carry them until an opportunity to forward or replicate them
arises. These routing protocols disseminate data in an epi-
demic, probabilistic, or utility-based manner, with recent
protocols trying to exploit known and measured patterns in
human mobility in a sophisticated manner [25].

Nevertheless, such long-term storage and heavy replica-
tion impose a heavy toll on the resources of the nodes in-
volved. While the focus of existing routing protocols has
been on the selection of the right next hop(s), the per-
formance of these protocols is tightly coupled to the stor-
age capacity of the nodes in the network as well as the
amount of bandwidth available during a contact with an-
other node. It is thus key to implement efficient buffer
management policies for dropping data upon nodes’ buffers

saturation and scheduling it for transmission upon nodes’
encounters [13]. To this end, researchers have studied the
effect of simple policies such as Drop Last, Drop Front, Drop
Oldest, etc. [24]. Furthermore, a theoretically optimal buffer
management policy, along with an efficient distributed im-
plementation for it have been proposed in [14].

However, in the majority of these works, the buffer man-
agement and scheduling problem is formulated and solved
in the context of end-to-end traffic sent by one device to an-
other well defined device. Yet, an increase in user demand
for content has been observed, due to multimedia stream-
ing and data sharing. This has led the Internet commu-
nity to shift towards content-centric architectures that care
less about addressing specific endpoints and more about the
content and data themselves (e.g. CCN [9][23]). Wireless
and opportunistic networks are no exception to this trend,
with cellular traffic being dominated by content related to
streaming and social applications [15]. It becomes of prime
importance to be able to inject new content and rely on
network architecture to forward it to all nodes that request
it. Yet, given the increasing abundance and size of con-
tent available, and the limited, in comparison, resources
of handheld nodes, interesting questions arise in this con-
text, especially when the number of requesting nodes varies
over time and from one content to another: How can one
optimize (or even define) the global performance of such a
network? How can one serve content requests in a “fair”
manner? While such questions are not new, when it comes
to content-centric approaches, answering them in the con-
text of DTNs poses interesting new challenges. As a result,
developing efficient drop and scheduling policies for content-
centric delay-tolerant networks is an important research ob-
jective [7][8][20][21][25].

To this end, in this paper we formulate and propose effi-
cient content-delivery strategies for Delay Tolerant Networks
(DTN). We consider a setting where different contents of
varying popularity exist in the network, and where nodes
can store copies for only a small subset of them due to stor-
age limitations. This turns the scheduling and drop problem
into a storage allocation problem. Our main contribution in
this paper is to study this problem in depth, in the context
of DTN, proposing both optimal and practical (i.e. imple-
mentable) solutions. Specifically, our contributions can be
summarized as follows:

• We formulate the centralized optimization version of
the problem and derive the theoretically optimal allo-
cation that maximizes network-wide content hit rate as
a function of content popularity distribution, number
of nodes, rate of mobility, and nodes’ buffer capacity.

• We use the above formulation to derive appropriate
utilities per content, that can be used locally by each
node to make drop and scheduling decisions; this dis-
tributed implementation of the optimal policy, based
on content utilties, can be shown to converge to the
globally optimal one.

• In order to obtain global quantities (e.g. popularity,
measured as request rate) needed to calculate a con-
tent’s utility, we propose appropriate (unbiased) esti-
mators. This leads to our practical policy for the prob-
lem in hand, where nodes: (a) estimate key quantities
(per content), (b) use them to derive the utility of a

content (i.e. marginal gain from keeping or replicating
it), and (c) use the utilities to choose which content
to drop or forward, when encountering other nodes.
This sequence of actions, while not provably optimal
at all times, is designed to closely resemble the optimal
actions in the average sense.

• Finally, we have implemented our distributed solution,
called CEDO, within the CCN architecture [9, 3] and
evaluated its performance using different simulation
scenarios in NS-3 [6]. CCN is a promising architecture
for content-centric networking and provides a set of
building blocks that allow a smooth support of CEDO.
Our first results suggest that, even in small networks,
CEDO outperforms baseline policies, as for example
60 − 72% higher throughput than with LRU (Least
Recently Used), in different mobility scenarios.

In the following section, we describe our solution CEDO
and the storage allocation problem behind. Section 3 dis-
cusses the implementation of CEDO and explains the details
of its integration with the CCNx architecture. Simulation
results over synthetic mobility traces are presented in Sec-
tion 4. Section 5 concludes the paper with some perspectives
on our future research.

2. CONTENT-CENTRIC DISSEMINATION

ALGORITHM (CEDO)
We cast the problem of scheduling and drop as a network-

wide content allocation problem where the question is how
nodes should replicate contents so that the network through-
put is maximized. We formulate the problem as follows.
Suppose there are L nodes in the network, each of which
has a buffer of capacity B, which can be used to store con-
tents. We assume that each node generates at random times
requests for random contents, and that each such request
has some “deadline” (denoted as TTL) after which it disap-
pears from the requesting node and the network. Whenever
a node E comes within transmission range of node F , and
is interested in a content available in the buffer of F , E can
retrieve the content. If E successfully retrieves the content
before the deadline (i.e. less than TTL time units since it
issued the request), we say that the request is satisfied. If
not, then there is a miss.

It is clear from the above discussion that, the more nodes
store a copy of a given content, the faster on average can
this content be found by an interested node (with the actual
statistics depending on the mobility model). However, if we
assume that many different contents exist in the network,
then each node can use its buffer space to store only a small
subset of them. Hence, having more copies for content X in
the network implies fewer copies for some other content Y ,
which creates a tradeoff behind the allocation problem we
are interested in.

Furthermore, we assume that different contents might have
different request rates, as some might be more popular than
others. This is highly realistic as skewed popularity distri-
butions have commonly been observed in a variety of con-
texts [2][5][19]. In this case, intuition suggests that more
popular content should be allocated more buffer space. But
how much? To what extent and under which network con-
ditions can popular contents ”kill” less popular ones?

Next, we first elaborate on our assumptions and formu-
late an optimization problem that aims at maximizing the

long-term rate of satisfied requests (referred to as “delivery
rate”hereafter), in the setting described above (Section 2.1).
We then use this formulation to come up with a distributed
solution for the problem: this solution is based on the no-
tion of utility per content that each node can calculate lo-
cally and use to rank contents it stores. In this case, the
drop strategy is simply to remove contents with minimum
utilities and the scheduling strategy is to forward contents
to encountered nodes by decreasing order of utilities (Sec-
tion 2.2). Nevertheless, these utilities require the knowledge
of content-related metrics (e.g. popularity), which are not
available locally. Thus, as a final step, we show how each
node can estimate these quantities locally so as to derive
reliable estimates of the optimal utilities (Section 2.3).

2.1 Formulation of the Optimal Content Allo-
cation Problem

For tractability reasons, we consider that nodes’ inter-
meeting times are IID, following an exponential distribution
with a constant parameter λ; in other words, if node E meets
node F , it expects to meet F again after 1/λ seconds. This
assumption is commonly made in related work, and has also
received some support (as a useful approximation) by re-
cent trace analysis [11]. To further validate our policies, we
will use in Section 4 a simulation scenario that greatly de-
parts from this assumption. With the above assumption,
the probability that a receiver obtains a replica of content i
can be easily derived as (see e.g. [13]):

Lemma 2.1. Given the node meeting rate λ, the average
lifetime for a content request TTL, and the number of repli-
cas of content i, n(i), the probability that a node obtains a
copy of content i is: p(i) = 1− exp{−λTTL · n(i)}.

Hence, by duplicating content i (i.e., increasing n(i)), re-
laxing the request deadline TTL, or augmenting the meeting
rate λ, we improve the likelihood p(i) that a device obtains
a copy of content i.

The above probability refers to the success of a single re-
quest for content i. If we look at all requests for content
i, we can define its delivery rate DR(i) that measures the
number of replicas of this content successfully delivered to
the intended destinations per unit of time:

Definition 2.2. Given the request rate for content i, q(i),
and the probability of receiving a replica of content i, p(i),
we define the delivery rate for content i as DR(i) = q(i) ·p(i).

Our framework, CEDO, attempts to maximize the total
delivery rate, which is the sum of the delivery rates of all
contents, subject to the following constraints: (i) the total
number of replicas of all content cannot exceed the amount
of storage of all nodes, (ii) a node cannot store duplicate
copies of a content i, and (iii) there must exist at least one
replica of each content i in the network. This corresponds
to the following optimization problem:

maximize
n(1),...,n(k)

f(n(1), . . . , n(k)) =
∑k

i=1 DR(i)

subject to
∑k

i=1 n
(i) − L.B ≤ 0,

n(i) − L ≤ 0 for all content i,

n(i) ≥ 1 for all content i.

(1)

k is the number of contents, L is the number of mobile nodes
and B is the buffer capacity of each node.

Given that the constraints in (1) are linear [13], that the

objective function is concave, and assuming that n(1), . . . , n(k)

are real random variables, we get a convex optimization
problem that is tractable and has a unique solution in terms
of the number of replicas per content [13]. A key differ-
ence compared to the problem in [13] (end-to-end case) is
that, in addition to the success probability of a request, the
delivery rate per content is now also directly proportional
to its popularity value. This will push the optimal algo-
rithm towards an unbalanced allocation of resources (n(i))
to contents, favoring popular contents (as expected). Yet,
the concave nature of the delivery probability implies dimin-
ishing returns when further and further turning the balance
in favor of more popular contents. The optimal allocation is
thus the tradeoff between these two “forces”.

2.2 Deriving per Content Utilities
While the above problem leads to the optimal allocation,

in the context of DTNs, we cannot access all the buffers of
all nodes in parallel and in one shot, choosing exactly n(i)

nodes to store content i, n(j) nodes to store content j, etc.
Instead, each node is faced with a local decision, whenever
it encounters another node: it has to decide which contents
to forward and which contents to drop, if its buffer is full
and the encountered node has new contents to offer.

Since the above problem is convex, it can be generally
solved with a gradient ascent strategy. CEDO allows for a
distributed implementation inspired by [13]. When a given
allocation exists in the network, taking the gradient of the
objective function w.r.t the number of replicas, n(i), leads to
a sum of the marginal gains in the total delivery rate with
respect to increasing (or reducing) the number of replicas,

n(i), for each content i. Hence, this marginal gain is the
utility of content i with respect to the problem of maximiz-
ing the delivery rate. Each node can then use these utilities
to locally compare different contents between which it must
make a drop or transmission decision. This leads to a dis-
tributed implementation of the global algorithm that can be
proven to converge to the optimal solution.

Definition 2.3. Given the delivery rates for all available
contents, DR(1), . . . , DR(k), the delivery-rate utility for a
content i is defined as:

U (i) =
∂

∂n(i)

k∑

j=1

DR(j). (2)

Using this definition of the utility and the expression of
the delivery rate given above, we can express U (i) in a more
convenient form, as explained next.

Lemma 2.4. The delivery-rate utility is proportional to
the request-rate for content i, q(i), and decays exponentially
with the number of replicas n(i):

U (i) = q(i)(λTTL)exp{−λTTL · n(i)}. (3)

The above result follows easily by taking the derivative of
the expression for DR(i) given by Definition 2.2 and Lemma
2.1. In other words, as nodes replicate a particular content
i, the marginal gain in the delivery rate of i is gradually
smaller; as n(i) tends to infinity, U (i) tends to zero. This
effect allows less popular contents to not “starve”, provided

there is some minimum buffer space available. We will re-
turn to the issue of starvation and fairness later.

With these utilities in hand, the optimal policy for each
node is simply (a) to drop the contents with the minimum
utility, when its buffer is full, and (b) when it encounters
another node, to replicate the contents with the maximum
utility (among the ones that the latter node does not already
have). Consequently, the optimal policy essentially attempts
to equalize the utilities of all contents: according to Eq. (3),

action (a) reduces the number of replicas n(i) of content i
thus increasing its utility; action (b) increases the number of

replicas n(i) of content i thus decreasing its utility.
The following lemma converts the per-content utility into

a different form that: (a) provides us with additional insight
as to what the optimal allocation is really aiming at, and (b)
will allow us to derive efficient estimators for these utilities
(in the next section).

Lemma 2.5. The delivery-rate utility for content i, U (i),
can alternatively be expressed as:

U (i) = λTTL(q(i) −DR(i)). (4)

Proof. We can rewrite (3) as follows:

U (i) = q(i)(λTTL)exp{−λTTL · n(i)},

= q(i)(λTTL)(1− (1− exp{−λTTL · n(i)})),

= λTTL(q(i) − q(i) · p(i)),

= λTTL(q(i) −DR(i)).

Eq. (4) suggests that a content’s utility is in fact propor-
tional to the miss rate, defined as the number of unsatisfied
requests for content i per second: MR(i) = q(i) − DR(i).
Since the optimal policy, as we saw, attempts to equalize
utilities in order to solve the optimal allocation problem,
this is in fact equivalent to equalizing the miss rate of con-
tents, irrespective of their request rate or popularity.

This latter interpretation allows to have a practical imple-
mentation of the optimal policy, that we call CEDO. CEDO
essentially estimates miss rates of contents and manages
buffer and scheduling accordingly. When a device’s buffer
is full, CEDO discards the content replica with the small-
est rate of unsatisfied requests; by definition, this replica
has the smallest impact on the total delivery rate. When
a node meets another node, it sends first the content with
the highest rate of unsatisfied requests; by replicating this
item, the device will increase the probability that a receiver
obtains a copy of this content. This gradient ascent strat-
egy, illustrated in Figure 1, shall converge to the number
of replicas per content that maximizes the objective func-
tion f in (1), provided the iteration step is such that CEDO
reaches the efficient allocation before the network changes
substantially [13]. Note that the iteration step is decided by
the speed at which nodes move. For a proper functioning of
CEDO, there should be enough node encounters before the
traffic demand changes.

Although we now have a distributed implementation of
the optimal policy, miss rates are global quantities (one needs
to know every request made and whether this was success-
ful), but need to be known locally by each node. Hence,
miss rates must be estimated, in an efficient manner, by
each node in order to calculate (or rather estimate) utilities
and apply the above algorithm. This brings us to the final,
and important, component of CEDO.

Figure 1: CEDO strategy for scheduling and drop as a func-
tion of content popularity and content miss rate.

2.3 Estimating the delivery-rate utility
To calculate the miss rate for a content i (as explained

earlier the utility is proportional to the miss rate), a node
must estimate the corresponding request and delivery rate.
CEDO performs this estimate by requiring each node to
record the time when the application running on it requests
content i and when the corresponding request is fulfilled.
This provides a first local estimation. To refine this local es-
timation, the node merges its own rate estimate with those
received from other encountered nodes. Using the two ap-
proximate values for the request and delivery rate, the node
computes the utility of content i by applying (4). Next, we

define our unbiased estimators for q(i) and p(i). Without
loss of generality, we consider in the sequel their normalized
values with respect to the network size.

Definition 4 Let X
(i)
n be a random variable denoting the

n-th measurement of the number of requests for content i
per node, issued by the n-th encountered node in the past W

seconds, such that E[X
(i)
n] = q(i)W . Then our estimator for

the request rate for content i per node, q(i), is given by

q̂(i)n = αq̂
(i)
n−1 + (1− α)X(i)

n /W, (5)

where q̂
(i)
n is the value of the estimator q̂(i) after considering

the n-th node meeting and α ∈ (0, 1) is the weight given to

the old estimate of the request-rate for content i, q̂
(i)
n−1.

In other words, the estimator for the request rate of con-
tent i is computed as the exponentially weighted moving av-

erage (EWMA) of the observed samples X
(i)
0 , X

(i)
1 , . . . , X

(i)
n ,

applying a weight of (1 − α) to the most recent sample,

X
(i)
n . This allows on one hand to average over different mea-

surements, and on the other hand to forget about the very
past ones for reactivity reasons. One can easily show that
this estimator is consistent and unbiased, i.e., E[q̂(i)] = q(i),
meaning that its average over all nodes approaches the real
popularity and it moves towards the real popularity as long
as we add more samples.

In a similar way, we define the estimator for the delivery
rate of content i per node, DR(i).

Definition 5 Let Y
(i)
n be a random variable denoting the

n-th measurement of the number of satisfied requests for con-
tent i issued in the past t seconds, where t ∈ [TTL,W +

TTL], and such that E[Y (i)] = p(i)q(i)W . Then our estima-

tor for the delivery rate of content i, D̂R
(i)
, is given by

D̂R
(i)

n = βD̂R
(i)

n−1 + (1− β)Y (i)
n /W, (6)

where D̂R
(i)

n is the value of the estimator after considering
the n-th node meeting and β ∈ (0, 1) is the weight given to

the previous estimate of DR(i).
In other words, the estimator for the delivery rate of con-

tent i is computed as the exponentially weighted moving

average of the observed samples Y
(i)
0 , Y

(i)
1 , . . . , Y

(i)
n , apply-

ing a weight of (1−β) to the most recent sample, Y
(i)
n . Here

we shift back the time window by TTL seconds to allow the
content requests issued in the last TTL seconds to receive
an answer or, if none is received, to be classified as ”unsat-
isfied”. As the previous estimator for request rate, this one

is also consistent and unbiased, i.e., E[D̂R
(i)
] = DR(i).

In addition to refining the estimators for request and de-
livery rates using local measurements at other encountered
nodes, a mobile node might also have the possibility to com-
bine its estimators with those at other encountered nodes, if
available. This allows local estimates to permeate the net-
work. If two estimates for the same content i are available at
two nodes that meet, CEDO combines them as a weighted
sum with the weight of each estimator being inversely pro-
portional to its variance [12][13].

3. ALGORITHM IMPLEMENTATION
We present hereafter details on the implementation of our

algorithm and the main functions and building blocks re-
quired for its support. We start by a general description of
the implementation, supported by pseudo code for the dif-
ferent modules (Modules 1-5), then move into a specification
to the CCNx architecture [3][9]. CCNx is a promising so-
lution for content-centric networking that provides a set of
functions allowing a smooth support of CEDO.

3.1 Outlining the algorithm
Our content-centric dissemination algorithm resides be-

tween the application and the network layer: it receives in-
terest messages from the application and attempts to find
matching content cached in the mobile device’s buffer or
available from a neighbouring node. When CEDO fails to
find matching content in the local buffer, it writes the query
to the pending interest table of the underlying CCNx pro-
tocol [3] until it can satisfy the request. Periodically, each
mobile device issues a hello message (HM) that signals its
presence. When CEDO captures a hello message, it prepares
a message with all its pending queries, known as the pend-
ing interests message (PIM). A mobile node within range
attempts to satisfy the pending requests by searching its lo-
cal storage and sending all matching content. CEDO relies
on a node’s ability to estimate the request and delivery rate,

q̂(i) and D̂R
(i)
, for each content i, in order to compute the

delivery-rate utility for this content, U (i), as stated in the
previous sections. To reduce the load on nodes and avoid
them storing and continuously updating estimators for dif-
ferent contents, we assume that each content i carries in its
header the estimates for the two rates, which are initialized
by the content origin server and updated by intermediate
nodes thanks to gossiping. When a mobile device’s buffer is
full, CEDO uses the content utility to erase the least use-
ful content from the memory. Similarly, when exchanging
content with a neighbour, it prioritizes transmissions by de-
creasing utility. This ensures that the most useful content
reaches the other node in case the connection stops before

all requested content is transmitted. In the following, we
will present the different steps performed by the algorithm.

Module 1 Processing interest messages received by the ap-
plication at a device

Require: interest for content i from application
1: record time of request for i in statistics table
2: if buffer contains i then
3: deliver content i to application
4: record time when request for i satisfied in statistics

table
5: else
6: write interest to pending interest table
7: end if

Module 2 Processing hello messages

Require: hello message from network
1: if a hello message is waiting to be sent then
2: delay transmission of hello message
3: end if
4: create new pending interests message
5: for each interest in the pending interest table do
6: write interest to pending interests message
7: end for
8: schedule transmission of pending interests message

Module 3 Processing pending interests messages

Require: pending interests message from network
1: if a pending interests message is waiting to be sent then
2: delay transmission of pending interests message
3: end if
4: for each interest in the pending interests message do
5: if exists matching content i in buffer then
6: write content i to list
7: end if
8: end for
9: sort list in order of decreasing DR utility
10: for each content i in list do
11: write request and delivery rate to content i
12: schedule transmission of content i
13: end for

3.1.1 Processing application queries

When the application issues a content query, expressed as
an interest message (IM), CEDO records the time at which
it receives the interest in the statistics table and searches the
mobile device’s buffer for matching content. The statistics
table is a data structure, independent of the content buffer,
that stores the time when requests are issued and when they
are satisfied, from which CEDO calculates the request and
delivery rate of each content seen. If the buffer contains
the desired content, CEDO delivers this data immediately
to the application; otherwise, the device stores the query in
the pending interest table. The pending interest table is a
data structure that stores all the unsatisfied queries issued
by the application. Note that the interest remains in the
pending interest table until CEDO retrieves this data from
an encountered node. Periodically, CEDO iterates through

the statistics table to update the request and delivery rate
of all content seen using Equations (5) and (6).

A mobile device cannot satisfy all content requests with
its cache alone; in such a case, the device stores the query
in the pending interest table while waiting for a response.
Periodically, a device emits a hello message, which serves to
alert other nodes of its presence; the delay for transmitting
the next hello message, dhello, is calculated as follows:

dhello = dmin
hello(bhello + r), (7)

where dmin
hello is the minimum delay between hello messages,

bhello ∈ [0, bmax
hello] is the hello backoff-counter, bmax

hello is the
maximum hello backoff, and r ∈ [0, 1] is a uniform random
value. By randomizing the transmission delay of the hello
message, CEDO reduces the probability of interfering with
ongoing but yet undetected transmissions. When a mobile
device receives a hello message, it delays the transmission
of its own message by increasing the backoff counter, bhello,
as shown in lines 1-3 of Module 2; this avoids congesting
the network with an excessive amount of hello messages.
As a response to a hello message, CEDO prepares a pending
interests message, comprising requests in its pending interest
table, and schedules the transmission of the message to all
devices within range; see lines 4-8 of Module 2.

Module 4 Processing incoming content

Require: datagram with content i from network
1: if a pending interest exists for content i then
2: deliver content i to application
3: record time when request for i satisfied in statistics

table
4: end if
5: average request-rate in statistics table and rate in data-

gram
6: average delivery-rate in statistics table and rate in

datagram
7: if buffer contains i then
8: discard content i
9: else
10: store-content(i)
11: end if

Module 5 Storing content in the buffer

1: function store-content(i)
2: if buffer not full then
3: write content i to buffer
4: return true
5: end if
6: let m← content with lowest DR utility in buffer
7: if i’s utility > m’s utility then
8: replace replica m with i in buffer
9: return true
10: end if
11: discard content i
12: return false
13: end function

CEDO computes the transmission delay of the pending
interests message, dPIM, as following:

dPIM = dmin
PIM(bPIM + r), (8)

where dmin
PIM is the minimum waiting time before transmit-

ting the pending interests message (PIM), bPIM ∈ [0, bmax
PIM]

is the PIM backoff-counter, bounded by 0 and the maxi-
mum backoff bmax

PIM, and r ∈ [0, 1] is a random value. When
a node receives a pending interests message, it defers the
transmission of a possibly pending PIM by increasing the
backoff-counter, bPIM, see lines 1-3 of Module 3; this enables
a mobile device to satisfy a part or all of its own pending
interests by overhearing the upcoming data exchange, thus
reducing the number of entries in its next PIM. To process an
incoming PIM, a node retrieves from its buffer all the content
items that satisfy the interests expressed in the message, see
lines 4-8 of Module 3. It then orders the sought content by
decreasing utility order and updates their estimated request
and delivery rates, see lines 9-13 of Module 3.

3.1.2 Processing incoming content

Whenever a mobile device receives a content object, it
checks the pending interests table for interests corresponding
to this data; in case the content object matches an interest
in the table, CEDO delivers the data to the application and
records the time at which the interest was satisfied, see lines
1-4 of Module 4. As each mobile device may have its own
estimate of the request and delivery rates, CEDO computes
the arithmetic mean of the two estimates and updates the
statistics table, as shown in lines 5-6 of Module 4. Finally,
CEDO caches the replica of content i if no such copy exists
in the device’s buffer, see line 10 of Module 4.

The function store-content() implements CEDO’s buffer
management strategy, see Module 5. It accepts to store all
unique content published by the user and replicas of other
content received from the network as long as there is enough
storage capacity, see lines 2-5 of Module 5. Whenever the
buffer is full, the function selects the replica with the lowest
delivery-rate utility from memory, say m, and compares it
with the utility of replica i; it keeps only the replica with
the highest utility from the pair {i,m}, see lines 6-12. By
definition, the replica with the lowest utility has the lowest
impact on the total content delivery-rate, if dropped.

3.2 Integration within CCNx
We implemented CEDO on the PARC CCNx implemen-

tation [3], version 0.6.0, which is based upon the Content-
Centric Networking (CCN) architecture [9]. This open source
software reference implementation is available under the GNU
General Public License version 2. It is divided into two main
components: (i) the client, which acts as a mediator between
the server and the application and provides an interface for
the application to issue interests and obtain content objects
from the network, and (ii) the server, which propagates
interests to the network and obtains content objects from
other servers. The main changes required to deploy CEDO
over CCNx consist in modifying the header of the content
object to include the request and delivery rate estimates,
disabling the propagation of interest messages to network
peers, and introducing two control packets that implement
the hello and pending interests messages.

A content object contains four units: Signature, Name,
SignedInfo and Content, as illustrated in Figure 2. The
Signature contains a digest of the Name, SignedInfo and
Content components, computed using a signature algorithm
[3]; the Name unit holds the hierarchical CCNx name of the
content; the SignedInfo component specifies the signer of

the message, the time when the object was signed, the type
of content conveyed and the message’s expiration time.

The original CCNx server stores each content object re-
ceived from the network in a hash table. For each content
replica received, the server divides the content object into
two parts: (i) the first part comprises the Signature and
Name units and (ii) the second consists of the remaining com-
ponents of the content object. The server computes a hash
value of the first part of the content object to index each
replica stored in the buffer. We introduce the estimates of
the request and delivery rates as two integer fields in the
SignedInfo section of the message. Because the Signed-

Info section belongs to the second half of the content object,
recomputing the two rate estimates for each stared replica
does not affect its hash value; hence, the server can still lo-
cate content in the buffer after updating the rate estimates
of the stored replicas.

A message in the CCNx protocol is encoded using the
CCNx binary (CCNB) format [3]. Each section of a mes-
sage is labelled by a DTAG, which is an unique identifier
drawn from an internal dictionary. The parser or decoder
outputs the byte number at which each message element
starts and ends. We encode each estimate as a four-byte
BLOB, representing an integer value, enclose each estimate
with a DTAG and modify the content-object parser so as to
locate the boundaries of the two values. By using BLOBs of
fixed length, we can recompute the estimates for the two
rates, encode them using the CCNB format and replace the
old values in the content object without generating a new
message-header. Figure 2 illustrates the components of the
content object, including the section where we encode the
two estimated rates.

To compute the value of the two rates, we added a statis-
tics table to the server that records the history of content
requests; by storing content requests as a separate data
structure, we ensure that its lifespan is independent of other
server events, such as the removal of stale content from the
buffer. Each table entry contains a list of all requests is-
sued and satisfied in the preceding W + TTL seconds for a
specific content, where W denotes the measurement period
and TTL is the maximum lifetime of an information request;
each entry is indexed by the CCNx name of the content being
tracked. To calculate the value of the request-rate estimator,

q̂(i), we apply (5) and measure X
(i)
n by counting the num-

ber of requests sent in the preceding W seconds recorded in
the content-requests table. We estimate the delivery rate,

D̂R
(i)
, using (6), and evaluate Y

(i)
n by tallying all the satis-

fied requests transmitted in the preceding [TTL,W + TTL]

seconds. Knowing the two estimates, q̂(i) and D̂R
(i)
, we

determine the utility of content i using (4) and record this
value alongside each replica stored in the buffer. Whenever
the buffer exceeds a storage threshold, which is controlled
by the parameter CCND_CAP [3], we sort the buffer in order of
increasing utility and discard the least-useful replicas until
the buffer size is below the storage limit.

Finally, we implement CEDO’s hello and pending inter-
ests messages as content objects. The hello message consists
of a content object with Name set to /CEDO/hello, the type

field set to CCN_CONTENT_HELLO, and having an empty Con-

tent section. A pending interests message has a CCNx name
of /CEDO/pit, a type field set to CCN_CONTENT_PIT and the
Content section of the message holds a list of the content-

Figure 2: Structure of the CCNx content object [3][9]. Fields
with ”?” are optional. Red fields, param-A and param-B,
carry the request and delivery rates.

names requested by the application and stored in the source
node’s pending interests table; this message is generated as a
response to a hello message. Upon receiving a pending inter-
ests message, CEDO reads each name entry in the pending
interests message’s payload and locates matching content in
the device’s memory; the algorithm sorts all matching con-
tent by decreasing utility before scheduling each transmis-
sion. We use CCNx’s built-in scheduler to implement the
transmission delay equations (7) and (8) for the pending
interests message and the hello message, respectively. Addi-
tionally, we rely on CCNx’s procedure for sending data that
introduces an additional random delay before each trans-
mission; this helps reducing the likelihood of collision with
ongoing communications.

The CCNx’s forwarding-information base comprises a list
of IP addresses for dispatching interest messages for which
there is no matching content in the local content-store. Be-
cause we use the hello and pending interests messages for
a similar purpose, we disabled the interest-forwarding pro-
cedure found in CCNx. However, we use the forwarding-
information base table to store a default entry with CCNx
name ”/” that points to CEDO’s multicast address; a device
always uses this address to send data to other devices.

4. EVALUATION
In this section, we aim verify if CEDO exhibits the be-

havior predicted in Section 2 for the optimal policy. The
practical implementation of CEDO is based on estimated
values of the content utilities (rather than actual ones), and
also involves a number of additional implementation steps.
It is thus important to examine the extent to which these
factors affect the desired behavior. To this end, we first
check whether CEDO succeeds in equalizing the delivery-
rate utility of disseminated content, which, as explained in
Section 2, is what an optimal policy should be doing. We
then compare our policy to a baseline policy, to evaluate the
potential performance benefits.

4.1 Simulation Setting
We simulate a mobile delay-tolerant scenario using the

network simulator NS-3 [6] and use the direct-code execu-

tion (DCE) feature [16] to deploy the same version of CEDO
conceived for real mobile-devices on the simulated nodes.
Although this simulation method poses a significant perfor-
mance penalty (in terms of simulation speed), we believe it
increases the credibility of our results and facilitate a future
deployment of CEDO on real devices.

We have based our simulations on two mobility mod-
els: (i) the simple Random Direction model (RD), which
has approximately exponentially-distributed inter-meeting
times [13], consistent with our assumptions, and (ii) the
Self-Similar Least-Action Human Walk (SLAW) synthetic
mobility model, whose inter-contact times follow a trun-
cated power-law [17]. This latter model thus departs from
our assumption, but has been shown to better capture inter-
contact times and contact durations observed in a large num-
ber of real mobility traces. The mobility trace file from
each model was generated with the BonnMotion mobility
scenario generation tool according to the simulation param-
eters in [1]. Finally, all mobile devices communicate using
IEEE 802.11b radios with a PHY data rate of 1 Mbps and
a transmission range of 50 to 100m.

We further assume that each node publishes one or more
content items and requests one or more content items pub-
lished by other nodes (the exact numbers are random) with
a given randomized rate for requests, to avoid synchronous
queries. We model the popularity of content according to
a Zipf distribution with parameter α = 0.8 (this is consis-
tent with estimated values from measurements reported for
web content popularity [2][5][19]). Hence, each new request
issued by a node will be for a specific content i with a proba-
bility that is defined according to this distribution. We also
assume that published content does not expire (only requests
for it do), and that there always exists at least one replica
for each content in the network (at the node publishing it).
For each content, we collect the number of requests and the
number of satisfied requests and average the data gathered
over independent trials.

Table 1: Simulation parameters.

Parameter Value
Simulation time 4,000s
Network size 50 nodes
Deployment field 500 m x 500 m
Mobility model random-direction, SLAW
Node speed 2 m/s (constant)
Node travel direction changes every 2s
Content published per node 1 content item
Content requested per node 15
Content request lifetime 30s
Radio IEEE 802.11b, PHY rate = 1 Mbps
Transmission range 50 m, 100 m
Data collected number of requests per content
Number of Trials 10 independent test runs

Finally, regarding the actual implementation, each node
runs an instance of the CCNx server process which contains
the implementation of CEDO. We model the behaviour of
the user’s application by generating events from within the
simulation script. Initially, each application calls the CCNx
client process to create a default entry in the forwarding-
information base, named ”/”, that points to the CCNx mul-
ticast address 255.1.2.4 and multicast port 9695 through
which all inter-device communication takes place. Because
content does not expire, each application publishes content

once, at the beginning of the simulation, and stores it per-
manently in the node’s buffer. The application requests con-
tent by generating an interest message with the name of the
desired content. All processes interchange data using Unix
sockets and all nodes transmit data using the UDP transport
protocol running over an IP network.

All simulation parameters are listed in Table 1. The source
code of CEDO along with the simulation scripts are also
available in the public domain1 so as to be able to repro-
duce the figures presented in this paper.

4.2 Results
In our first scenario, captured in Figure 3, we consider a

mobility generated by the Random Direction model and a
wireless range of 100m. The figure shows the total number of
requests (blue), the number of satisfied requests (green) and
the number of unsatisfied requests or miss rate (red) for each
content, listed in order of decreasing popularity. The first in-
teresting observation is that there is no correlation between
the number of unsatisfied requests per content, and the con-
tent popularity. This is the desired behaviour that maxi-
mizes the total delivery rate, as suggested by our previous
analysis. The second observation is that more requests are
satisfied for more popular contents, as also expected. While
this is indeed the behavior consistent with optimizing the to-
tal delivery rate, this also implies that, when resources are
quite limited in relation to the amount of different contents,
low popularity contents might suffer significantly when it
comes to the percentage of their satisfied requests. This
is better captured in Figure 3b, where we plot the relative
number of unsatisfied requests over the total number of re-
quests for a given content, in other words the probability of
satisfying a request for content i.

Digressing slightly, we could modify the objective function
f in Equation (1), to achieve fairness in relative terms:

f(n(i), . . . , n(k)) =

k∑

i=1

DR(i)

q(i)
, (9)

and derive the utility function for each content i as

U (i)(DR/q) =
∂

∂n(i)
f(n(i), . . . , n(k)). (10)

In this case, we would expect the plot in Figure 3b to ex-
hibit a constant line, implying the same success probability
for each content, regardless of its popularity. This is a com-
pletely different objective than our original one aiming to
maximize the network throughput. Clearly, a number of in-
termediate policies in between these two extremes could be
derived, by manipulating the objective function between Eq.
(1) and (9). We defer this investigation to future work.

Table 2: Requests’ statistics w/o CEDO.

Policy Mobility Range Total Requests Satisfied (%) Unsatisfied (%)

LRU RD 100m 26,493 14,322 (54%) 12,171 (46%)
CEDO RD 100m 22,629 18,125 (80%) 4,504 (20%)

LRU SLAW 100m 25,821 14,951 (58%) 10,870 (42%)
CEDO SLAW 100m 22,261 18,499 (83%) 3,762 (17%)

LRU SLAW 50m 28,367 12,315 (43%) 16,052 (57%)
CEDO SLAW 50m 27,056 13,722 (51%) 13,334 (49%)

In Figure 4, we turn our attention to a network which is
more “challenged”, where we reduce the transmission range
1see URL http://planete.inria.fr/Software/CEDO/

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25 30 35 40 45 50

#
 R

eq
ue

st
s

Content rank

Total requests
Satisfied requests

Unsatisfied requests

(a) Constant Miss Rate.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20 25 30 35 40 45 50

M
is

s
ra

te
 /

To
ta

l r
eq

ue
st

s

Content rank

(b) Increasing MissRate
TotalRequestsRate

.

Figure 3: CEDO maximizes the total delivery-rate by equalizing the number of unsatisfied requests for all content. As
expected, the plot in Figure 3a evidences a constant number of unsatisfied requests for all content, for ranked on the x-axis
by decreasing popularity. CEDO does not attempt to equalize the MR/q value, hence the proportion of unsatisfied requests
per number of requests increases as the popularity of content decreases; this phenomenon is illustrated in Figure 3b.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25 30 35 40 45 50

#
 R

eq
ue

st
s

Content rank

Total requests
Satisfied requests

Unsatisfied requests

(a) Random direction.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25 30 35 40 45 50

#
 R

eq
ue

st
s

Content rank

Total requests
Satisfied requests

Unsatisfied requests

(b) Self-Similar Least-Action Human Walk (SLAW).

Figure 4: The number of total requests, satisfied and unsatisfied, for all content ranked on the x-axis by decreasing popularity.
The figures correspond to a challenged scenario with a reduced transmission range of 50m and therefore less number of
encounters within the transmission range. For both random mobility, Figure 4a, and SLAW mobility, Figure 4b, CEDO can
still achieve an almost constant miss rate for all content.

to 50m. With a simulation time of 4, 000s, this results
in nodes having fewer encounters and of shorter duration,
which makes the need for good scheduling decisions (and
thus CEDO) during these encounters more pressing. We
also consider now two mobility scenarios, RD and SLAW.
As is evident by this figure, CEDO achieves an almost con-
stant miss rate for all content regardless of popularity, but
higher than that of Figure 3, for both mobility scenarios.
The effect of limited resources is even more evident for the
random direction scenario, where the resources are so limited
that requests are only satisfied for the 15-20 most popular
contents. Consequently, as predicted by our analysis, when
there are enough resources, the optimal policy will favor
popular contents but will still allow requests for less popu-
lar contents to obtain a good chance of success (Figure 3).
However, when resources become too limited, the optimal
policy introduces a “cutoff” below which less popular con-
tents are starved (i.e. they will only be served directly by
their sources in this case).

In our final scenario, we compare CEDO to a reasonable
baseline policy where nodes implement Least Recently Used

(LRU) as drop policy in a non-collaborative way (this is
often the default policy in CCN), and that schedule content
upon encounters according to a simple First-In First-Out
policy. Results for both mobility scenarios are shown in
Table 2 and Figure 5. As can be seen there, CEDO achieves
a 72% improvement in terms of satisfied requests for the
random direction model and a 60% improvement for the
SLAW mobility trace with a transmission range of 100m.
Even with a reduced transmission range of 50m, CEDO still
achieves a 19% improvement in terms of satisfied requests
compared to LRU as indicated.

5. CONCLUSION
We designed CEDO, a content delivery algorithm for dis-

seminating named data over a delay-tolerant network. We
showed that the delivery rate is maximal when the delivery-
rate utility of all contents equals a constant. We also showed
that for this particular global objective function, the deliv-
ery rate utility for a content is no other than its miss rate.
Hence, CEDO must strive to equalize the miss rates of all

contents in order to optimize the network throughput. Com-
pared to a Least Recently Used baseline drop policy, CEDO
achieves up to 72% better performance on delivered content
in the network as claimed by our simulation results. Al-
though the initial results are promising, we must perform
additional tests with larger networks, comprising hundreds
of nodes that publish and subscribe a greater amount of
content and measure the convergence time of the utility es-
timators. We also need to extend CEDO to account for other
global performance objectives than network throughput.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25 30 35 40 45 50

To
ta

l r
eq

ue
st

s

Content rank

CEDO Total requests
CEDO Unsatisfied requests

LRU Total requests
LRU Unsatisfied requests

Figure 5: CEDO shows a constant number of unsatisfied
requests, regardless of content popularity. LRU from its
side shows a high satisfaction rate for very popular content,
which means that unlike CEDO, it can not satisfy requests
for unpopular content in favour of very popular content.

6. ACKNOWLEDGMENTS
Experiments presented in this paper were carried out us-

ing the Grid’5000 experimental testbed, being developed un-
der the INRIA ALADDIN development action with support
from CNRS, RENATER and several Universities as well as
other funding bodies (see https://www.grid5000.fr).

7. REFERENCES
[1] BonnMotion, A mobility scenario generation and

analysis tool. URL http://net.cs.uni-bonn.de/wg/

cs/applications/bonnmotion/

[2] Lee Breslau, Pei Cue, Pei Cao, Li Fan, Graham
Phillips, Scott Shenker. Web Caching and Zipf-like
Distributions: Evidence and Implications.In Infocom.
March 1999.

[3] Project CCNx. URL http://ccnx.org/.

[4] Kevin Fall. A Delay-Tolerant Network Architecture for
Challenged Internets. In ACM Sigcomm. August 2003.

[5] Christine Fricker, Philippe Robert, James Roberts,
Nada Sbihi. Impact of Traffic Mix on Caching
Performance in a Content-Centric Network. Technical
report, 1202.0108v1 INRIA. February 2012.

[6] Thomas R. Henderson, Mathieu Lacage, George F.
Riley. Network Simulations with the ns-3 Simulator. In
ACM Sigcomm (demo session). August 2008.

[7] Liang Hu, Jean-Yves Le Boudec, and Milan Vojnovic.
Optimal channel choice for collaborative ad-hoc
dissemination. In IEEE Infocom. 2010.

[8] Stratis Ioannidis, Laurent Massoulie, Augustin
Chaintreau. Distributed caching over heterogeneous
mobile networks. In ACM Sigmetrics. 2010.

[9] Van Jacobson, Diana K. Smetters, James D. Thornton,
Michael F. Plass, Nicholas H. Briggs, Rebecca L.
Braynard. Networking Named Content. In ACM
CoNEXT. December 2009.

[10] Sushant Jain, Kevin Fall, Rabin Patra. Routing in
Delay Tolerant Network. In ACM Sigcomm. August
2004.

[11] Thomas Karagiannis, Jean-Yves Le Boudec EPFL,
Milan Vojnovic. Power law and exponential decay of
inter contact times between mobile devices. In ACM
Mobicom. New York 2007.

[12] Timothy Keller, Ingram Olkin. Combining Correlated
Unbiased Estimators of the Mean of a Normal
Distribution. Technical report, Stanford. 2002.

[13] Amir Krifa, Chadi Barakat, Thrasyvoulos
Spyropoulos. Message Drop and Scheduling in DTNs:
Theory and Practice. in IEEE Transactions on Mobile
Computing, vol. 11, no. 9, 2012.

[14] Amir Krifa, Chadi Barakat, Thrasyvoulos
Spyropoulos. Optimal Buffer Management Policies for
Delay Tolerant Networks. In IEEE SECON. June 2008.

[15] Amir Krifa, Chadi Barakat, Thrasyvoulos
Spyropoulos. MobiTrade: Trading Content in
Disruption Tolerant Networks. In ACM Chants.
September 2011.

[16] M. Lacage. Outils d’expérimentation pour la recherche
en réseaux. Ph.D. thesis, Université de Nice
Sophia-Antipolis. 2010.

[17] Kyunghan Lee, Seongik Hong, Seong Joon Kim,
Injong Rhee, Song Chong. SLAW: Self-Similar
Least-Action Human Walk. In IEEE/ACM
Transactions on Networking. July 2011.

[18] Anders Lindgren, Avri Doria, Olov Schelén.
Probabilistic routing in intermittently connected
networks. In ACM Sigmobile. July 2003.

[19] Anirban Mahanti, Carey Williamson, Derek Eager.
Traffic analysis of a web proxy caching hierarchy. In
IEEE Network, Vol. 14, June 2000.

[20] Joshua Reich, Augustin Chaintreau. The age of
impatience: optimal replication schemes for
opportunistic networks. In ACM Conext. 2009.

[21] Giuseppe Sollazzo, Mirco Musolesi, Cecilia Mascolo.
TACO-DTN: a time-aware content-based dissemination
system for delay tolerant networks. In MobiOpp
Workshop. 2007.

[22] Amin Vahdat, David Becker. Epidemic Routing for
Partially-Connected Ad Hoc Networks. Technical
report, CS-200006. April 2000.

[23] Athanasios V. Vasilakos, Yan Zhang, Thrasyvoulos
Spyropoulos. Delay Tolerant Networks Protocols and
Applications. CRC Press. 2012.

[24] Xiaolan Zhang, Giovanni Neglia, Jim Kurose, Don
Towsley. Performance modelling of epidemic routing. In
IFIP Networking. May 2006.

[25] Xuejun Zhuo, Qinghua Li, Guohong Cao, Yiqi Dai,
Boleslaw Szymanski, Tom La Porta. Social-Based
Cooperative Caching in DTNs: A Contact Duration
Aware Approach. In IEEE MASS. 2011.

