Adaptive Management of Migratory Birds Under Sea Level Rise

Samuel Nicol 1 Olivier Buffet 2 Takuya Iwamura 3 Iadine Chadès 1
2 MAIA - Autonomous intelligent machine
Inria Nancy - Grand Est, LORIA - AIS - Department of Complex Systems, Artificial Intelligence & Robotics
Abstract : The best practice method for managing ecological systems under uncertainty is adaptive management (AM), an iterative process of reducing uncertainty while simultaneously optimizing a management objective. Existing solution methods used for AM problems assume that the system dynamics are stationary, i.e., described by one of a set of pre-defined models. In reality ecological systems are rarely stationary and evolve over time. Importantly, the effects of climate change on populations are unlikely to be captured by stationary models. Practitioners need efficient algorithms to implement AM on real-world problems. AM can be formulated as a hidden model Markov Decision Process (hmMDP), which allows the state space to be factored and shows promise for the rapid resolution of large problems. We provide an ecological dataset and performance metrics for the AM of a network of shorebird species utilizing the East Asian-Australasian flyway given uncertainty about the rate of sea level rise. The non-stationary system is modelled as a stationary POMDP containing hidden alternative models with known probabilities of transition between them. We challenge the POMDP community to exploit the simplifications allowed by structuring the AM problem as an hmMDP and improve our benchmark solutions.
Type de document :
Communication dans un congrès
Francesca Rossi. IJCAI - 23rd International Joint Conference on Artificial Intelligence - 2013, Aug 2013, Pékin, China. AAAI Press, pp.2955-2957, 2013, Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence. 〈dl.acm.org/ft_gateway.cfm?id=2540555&ftid=1410309&dwn=1&CFID=265861503&CFTOKEN=96725518〉
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00907334
Contributeur : Olivier Buffet <>
Soumis le : jeudi 21 novembre 2013 - 10:25:06
Dernière modification le : jeudi 11 janvier 2018 - 06:25:23
Document(s) archivé(s) le : samedi 22 février 2014 - 04:32:47

Fichier

ijcai13a.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00907334, version 1

Collections

Citation

Samuel Nicol, Olivier Buffet, Takuya Iwamura, Iadine Chadès. Adaptive Management of Migratory Birds Under Sea Level Rise. Francesca Rossi. IJCAI - 23rd International Joint Conference on Artificial Intelligence - 2013, Aug 2013, Pékin, China. AAAI Press, pp.2955-2957, 2013, Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence. 〈dl.acm.org/ft_gateway.cfm?id=2540555&ftid=1410309&dwn=1&CFID=265861503&CFTOKEN=96725518〉. 〈hal-00907334〉

Partager

Métriques

Consultations de la notice

227

Téléchargements de fichiers

219