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Abstract

Inverse modelling techniques can be used to estimate the amount of radionuclides and the temporal profile of the
source term released in the atmosphere during the accident of the Fukushima Daiichi nuclear power plant in March
2011. In Winiarek et al. (2012b), the lower bounds of the caesium-137 and iodine-131 source terms were estimated
with such techniques, using activity concentration measurements. The importance of an objective assessment of prior
errors (the observation errors and the background errors) was emphasised for a reliable inversion. In such critical
context where the meteorological conditions can make the source term partly unobservable and where only a few
observations are available, such prior estimation techniques are mandatory, the retrieved source term being very
sensitive to this estimation.

We propose to extend the use of these techniques to the estimation of prior errors when assimilating observations
from several data sets. The aim is to compute an estimate of the caesium-137 source term jointly using all available
data about this radionuclide, such as activity concentrations in the air, but also daily fallout measurements and total
cumulated fallout measurements. It is crucial to properly and simultaneously estimate the background errors and
the prior errors relative to each data set. A proper estimation of prior errors is also a necessary condition to reliably
estimate the a posteriori uncertainty of the estimated source term. Using such techniques, we retrieve a total released
quantity of caesium-137 in the interval 11.6 − 19.3 PBq with an estimated standard deviation range of 15− 20%
depending on the method and the data sets. The “blind” time intervals of the source term have also been strongly
mitigated compared to the first estimations with only activity concentration data.

This article has been published in Atmospheric Environmentwith the reference:
Winiarek, V., Bocquet, M., Duhanyan, N., Roustan, Y., Saunier, O., Mathieu, A., 2014. Estimation of the caesium-137
source term from the Fukushima Daiichi nuclear power plant using a consistent joint assimilation of air concentration
and deposition observations.Atmos. Env.82. 268-279.
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1. Introduction

1.1. The Fukushima Daiichi accident

On March 11, 2011, 05:46 UTC, a magnitude 9.0
(Mw) undersea megathrust earthquake occurred in the
Pacific Ocean and an extremely destructive tsunami
hit the Pacific coast of Japan approximately one hour
later. These events caused the automatic shut-down of

Email address:bocquet@cerea.enpc.fr (Marc Bocquet)

4 power plants in Japan. Diesel backup power sys-
tems should have sustained the reactors cooling process.
In Fukushima Daiichi these backup devices were un-
fortunately inoperative mainly because of the damages
caused by the tsunami.

The Fukushima Daiichi NPP has six nuclear reactors.
At the time of the earthquake, reactor 4 had been de-
fuelled and reactors 5 and 6 were in a cold shut-down
for planned maintenance.

In the hours that followed, the situation quickly be-
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came critical. Reactors 1, 2 and 3 experienced at least
partial meltdown and hydrogen explosions. Addition-
ally, fuel rods stored in pools in each reactor building
began to overheat as water levels in the pools dropped.

All these events caused a massive discharge of ra-
dioactive materials in the atmosphere. The total quan-
tities of released radionuclides as well as the time evo-
lution of these releases have to be estimated in order to
assess the sanitary and environmental impact of the ac-
cident.

Mathieu et al. (2012) used core inventories and in-
situ data (pressure and temperature measurements in the
reactors andγ-dose rates in the NPP) as well as first
available observations over Japan to build a source term,
which was used in Korsakissok et al. (2013) to assess
the highγ-dose rates zones at a local scale. Chino et al.
(2011) used a few activity concentration measurements
in the air to calibrate the magnitude of some identified
releases of131I and137Cs. Katata et al. (2012) and Ter-
ada et al. (2012) updated these estimations as new data
were available. Stohl et al. (2012) performed an inverse
modelling estimation using activity concentrations in
the air, as well as deposition data at a global scale to
estimate the release of133Xe and137Cs. However their
estimation was shown to be quite sensitive to the prior
information on the source used in the inversion. At the
same time, Winiarek et al. (2012b) proposed a method
to properly estimate the prior errors to perform inverse
modelling using activity concentrations in the air. They
applied it to estimate the source terms of131I and137Cs.

1.2. Objectives and outline
In Winiarek et al. (2012b) we emphasised the impor-

tance of a proper estimation of prior errors in the inverse
modelling algorithm. We proposed new methods to esti-
mate two hyper-parameters: the variance of observation
errors and the variance of background errors, assuming
that all observation errors have the same variance. This
assumption is acceptable when using only one type of
data in the algorithm. On the other hand the general
lack of data in accidental situations stresses the need for
algorithms that would use all available data in the same
inversion. The first objective of this paper is to extend
the methods proposed in Winiarek et al. (2012b) to the
simultaneous estimation of prior errors when using dif-
ferent data sets in the inversion. The second objective
is to apply these methods to the challenging reconstruc-
tion of the caesium-137 source term of the Fukushima
Daiichi accident, as well as to obtain an objective un-
certainty on this estimation.

In Section 2 we briefly recall the methodology for the
inverse modelling of accidental releases of pollutants.

The algorithm is sensitive to the statistics of the errors so
that we propose methods based on the maximum like-
lihood principle to estimate these errors. This general
maximum likelihood scheme takes into account the pos-
itivity of the source and the presence of several types of
data.

In Section 3 we apply this new method to the re-
construction of the atmospheric release of137Cs from
the Fukushima Daiichi power plant. The inversions are
computed using three data sets: activity concentrations
in the air, daily measurements of deposited material
and total cumulated deposition. The new source terms
are discussed and compared to earlier estimations. The
posterior uncertainties of the retrieved sources are also
computed.

Results are summarised and conclusions are given in
Section 4.

2. Methodology

2.1. Inverse modelling of accidental releases and esti-
mation of errors

To reconstruct the source term of an accidental re-
lease of a pollutant into the atmosphere, inverse mod-
elling techniques are a powerful alternative to a trial and
error approach with direct numerical models, which is
still widely used in such situations. Inverse modelling
techniques can objectively estimate the source term us-
ing the information content of an observation set and
a numerical model that simulates the dispersion event.
The atmospheric transport model (ATM), which is lin-
ear in our case for gaseous and particulate matter, pro-
vides the relationship between the source term and the
observation set through the source-receptor equation

µ = Hσ + ǫ , (1)

whereµ in R
d is the measurement vector,σ in R

N is the
source vector, andH is the Jacobian matrix of the trans-
port model which incorporates the observation operator
as well. The vectorǫ in R

d, called the observation er-
ror in this article, represents the instrumental errors, the
representativeness errors and a fraction of model error
altogether.

In an accidental context the number of observations
is very often limited. Specific meteorological condi-
tions, like during the Fukushima accident, can also
lead to a weak observability of a part of the source
term. In these cases, the source-receptor relationship
defined by Eq. (1) constitutes an ill-posed inverse prob-
lem (Winiarek et al., 2011).
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One solution to deal with the lack of constraints is to
implement parametric methods where the source to re-
trieve is reduced to a very limited number of parameters.
The inverse problem isde factoregularised and it can
be solved using different techniques, such as stochastic
sampling techniques which allow to access the parame-
ters posterior distributions (Delle Monache et al., 2008;
Yee et al., 2008). Nevertheless if the true source does
not match the parametric model, the inversion may fail
or yield a meaningless solution.

Another option is the use of non-parametric methods
to retrieve a general source field. This field can be dis-
cretised, for example to match the model discretisation,
but the number of variables remains large and may still
be larger than the number of observations in the data
set. The non-parametric approach is robust and flexi-
ble since no strong a priori assumptions are made on
the source but it has its own constraints. If Gaussian
statistics are assumed for observation errors, the inver-
sion relies on the minimisation of the cost function

L(σ) =
1
2

(µ −Hσ)T R−1 (µ −Hσ) , (2)

where R is the observation error covariance matrix:
R = E

[

ǫǫT
]

, whereǫ has been defined by Eq. (1). One
simple choice is to neglect correlations between obser-
vation errors and to takeR diagonal. If all the obser-
vations are of the same type, one can even assume that
R = r2Id, r2 being the variance of the observation errors
(Id is the identity matrix inR

d×d). With a low num-
ber of observations and/or a poor observability of sev-
eral source term parts, the minimisation of Eq. (2) gives
infinitely many solutions. One needs to regularise the
inverse problem, usually by adding a Tikhonov term in
the cost function:

L(σ) =
1
2

(µ −Hσ)T R−1 (µ −Hσ)

+
1
2

(σ − σb)T B−1 (σ − σb) . (3)

The solution of the inverse problem is now unique,
but two additional (vector and matrix) parameters have
been introduced:σb is the first guess for the source (or
background term) andB is the background error covari-
ance matrix:B = E

[

(σ − σb) (σ − σb)T
]

.
In an accidental situation and particularly in the

Fukushima accident context, the choice ofσb = 0 is
relevant because (i) many of the parameters are likely
to be zero (ii) it guarantees an independent estimate (iii)
it avoids the risk of aninversion crime, since most of
the first guess built by physics models are eventually
calibrated using early observations. One can refer to

Bocquet (2005); Davoine and Bocquet (2007); Winiarek
et al. (2012b) for extended discussions on this choice.

Still in an accidental context, off-diagonal terms in
B are often negligible. For example theγ-dose mea-
surements made in the Fukushima nuclear power plant
(NPP) indicate that the source term is probably com-
posed of uncorrelated events1. This is the reason why
we takeB = m2IN in this article.

As it was shown in the Chernobyl case in Davoine
and Bocquet (2007) or in the Fukushima case in
Winiarek et al. (2012b) or Stohl et al. (2012), the re-
trieved source is very sensitive to the matricesR and
B, hence to the two hyper-parametersr andm. This is
the reason why hyper-parameters estimation techniques
are required. In Davoine and Bocquet (2007); Krysta
et al. (2008); Saide et al. (2011), the L-curve technique
of Hansen (1992) was successfully used to estimate the
ratio r/m or both parameters. In the recent years sev-
eral methodological developments in the data assimila-
tion for weather forecast have focused on the estima-
tion of the hyper-parameters of the prior errors. They
are mostly based on either cross-validation technique or
on the maximum likelihood principle (e.g. Mitchell and
Houtekamer, 1999; Chapnik et al., 2004, 2006; Ander-
son, 2007; Li et al., 2009). These techniques have also
been implemented in the context of atmospheric chem-
istry inverse modelling, using for example theχ2 crite-
rion (Ménard et al., 2000; Elbern et al., 2007; Davoine
and Bocquet, 2007), the maximum likelihood princi-
ple (Michalak et al., 2004), or statistical diagnostics
(Schwinger and Elbern, 2010).

In Winiarek et al. (2012b) we implemented several
methods for the estimation ofr and m. One of these
methods relies on the L-curve coupled with aχ2 crite-
rion. Another one is based on the maximum likelihood
principle and takes into account without approximation
the positivity of the source. This study only exploited
activity concentrations in the air. In the case where sev-
eral types of data are used in the inversion algorithm,
the number of hyper-parameters to estimate increases.
One can for instance try to estimate one value of the
variance of observation errors for each data set, that is
an r2 attached to each data set. This simultaneous esti-
mation of prior errors is the methodological objective of
this article.

1http://www.tepco.co.jp/en/nu/monitoring/index-e.

html
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2.2. Prior errors statistics and cost function minimisa-
tion

The observation errors defined by Eq. (1) are assumed
normally distributed, with a probability density function
(pdf):

pe(ǫ) =
e−

1
2 ǫ

TR−1ǫ

√

(2π)d|R|
, (4)

where|R| is the determinant of the observation error co-
variance matrixR. R is assumed diagonal (it is an ap-
proximation as model errors may introduce some corre-
lations). Besides, it is assumed that the errors made on
observations of the same type have the same variance,
so that ifRi represents the sub-block ofR relative to the
data seti, one hasRi = r2

i Idi , wheredi is the number of
observations in data seti (

∑i=Nd

i=1 di = d, Nd is the number
of different data sets) andr2

i is the corresponding error
variance. Note that due to the limited number of obser-
vations and in order to avoid a too severely undercon-
strained problem, it is essential to keep the number of
hyper-parameters that defineR as small as possible (Nd

hyper-parameters in our case:(r i)1≤i≤Nd
). For instance,

an approach such as the one put forward by Desroziers
et al. (2005) or Schwinger and Elbern (2010) is likely to
be unaffordable in this accidental context.

As far as background errors are concerned, we could
also use Gaussian statistics. The advantages of this
choice would be analytical solutions for both the source
term estimation and the related uncertainty based on the
Best Linear Unbiased Estimator (BLUE) theory. How-
ever, such a Gaussian assumption could lead to negative
values in the retrieved source term, because of the lack
of sufficient observations to constrain the source term.
To avoid non-physical results, truncated normal statis-
tics for background errors are considered, enforcing the
positivity of the retrieved source term. It is known
to provide valuable information to the data assimila-
tion system (Bocquet et al., 2010) and was successfully
used in the context of the Fukushima Daiichi accident
(Winiarek et al., 2012b). The corresponding pdf of this
normalised truncated normal distribution reads in the
general case























if σ ≥ 0 p (σ) =
(∫

s≥0
e−

1
2 (s−σb)TB−1(s−σb)ds

)−1

×e−
1
2 (σ−σb)TB−1(σ−σb)

otherwise p (σ) = 0 .
(5)

The normalisation factor can be simplified in our case
whereB is diagonal andσb = 0 to yield the following

semi-Gaussian pdf:






















if σ ≥ 0 p (σ) =
e−

1
2σ

TB−1σ

√

(π/2)N|B|
otherwise p (σ) = 0 ,

(6)

where|B| is the determinant of the background error co-
variance matrixB.

Bayes’ rule helps to formulate the inference, after the
acquisition of the measurement vectorµ:

p(σ|µ) =
p(µ|σ)p(σ)

p(µ)
=

pe(µ −Hσ)p(σ)
p(µ)

∝ exp

{

−
1
2

(µ −Hσ)T R−1 (µ −Hσ)

−
1
2
σTB−1σ

}

Iσ≥0 , (7)

whereIσ≥0 is equal to 1 whenσi ≥ 0, for everyi ≤ N.
Otherwise its value is 0.

From this inference, the source term is estimated us-
ing the maximum a posteriori estimator (MAP), denoted
σa:

σa = argmax
σ

p(σ|µ) . (8)

Maximising p(σ|µ) is equivalent to maximising
ln p(σ|µ), which is equivalent to maximising the term
in the exponential under the constraint of positivity,
which is ultimately equivalent to minimising cost func-
tion Eq. (3) under the constraint of positivity. Since
there is no analytical solution to this problem, the pos-
itivity of σ should be enforced during the numerical
minimisation which is performed with a bounded quasi-
Newton algorithm (Byrd et al., 1995).

In practice, because of the low number of observa-
tions, the estimated source term is very sensitive to the
matricesR andB, i.e. to the hyper-parameters (r i)1≤i≤Nd

andm. This is the reason why we have to estimate these
parameters rigorously. We propose to extend the meth-
ods developed in Winiarek et al. (2012b) to the use of
several different data sets by simultaneously estimating
the respective hyper-parameters.

2.3. Estimation of hyper-parameters
2.3.1. Unapproximated maximum likelihood values

screening
The estimation of the prior errors’ magnitude pro-

posed in this section relies on the maximum likelihood
paradigm (Dee, 1995). As the prior probabilities depend
on the hyper-parameters, the likelihood of the observa-
tion set, which can be written

p(µ|θ) =
∫

dσp(µ|σ; θ)p(σ|θ) , (9)
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is a function of the hyper-parameters vector
θ = (r1, ..., rNd ,m)T. The pdfs p(µ|σ; θ) and
p(σ|θ) are the prior pdfs defined by Eq. (4) and Eq. (6).
If it exists, the vectorθ that maximisesp(µ|θ) is the
most likely vector of hyper-parameters consistent with
the observation setµ.

The most direct way to estimate these optimal hyper-
parameters is to screen the likelihood function for a
range of values ofθ. With our hypothesis on the errors
statistics, the covariance matrices and the first guess, the
likelihood can be written:

p (µ|θ) =
e−

1
2µ

T(R+HBHT)−1
µ

√

(2π)d|HBHT + R|

×

∫

σ≥0

e−
1
2 (σ−σ)TP−1


(σ−σ)

√

(π/2)N|P

|

dσ , (10)

whereσ


is the BLUE estimator, which in our case
reads:

σ

= BHT

(

R +HBHT
)−1
µ , (11)

andP


is the corresponding analysis error covariance
matrix:

P

= B − BHT

(

R +HBHT
)−1

HB . (12)

The integral term in Eq. (10) has no analytical solu-
tion, but can be numerically computed using a stochas-
tic method, such as the GHK simulator from Hajivassil-
iou et al. (1996). Nevertheless, if the dimension ofθ is
high, the size of the space to screen can lead to a costly
computation.

For details about the calculation of the likelihood ex-
pression, and in particular the general case expression,
and for details about the use of the GHK simulator to
estimate the integral of a truncated normal distribution,
one can refer to Winiarek et al. (2012b) and Winiarek
et al. (2012a).

As a statistical consistent method, we considered it as
our reference method, denoted ML in this study. Faster
but approximate alternatives can nonetheless be con-
sidered and tested against this statistically consistent
method.

2.3.2. Iterative scheme à-la-Desroziers
As an alternative to the costly computation of the

likelihood, the use of an iterative scheme which would
quickly converge to the maximum likelihood is relevant.
In Winiarek et al. (2012b) we used such an iterative
algorithm for the estimation of two hyper-parameters.
This iterative algorithm was shown to converge to a
fixed-point that corresponds, in the context of Gaussian

statistics, to the pair of hyper-parameters of maximum
likelihood. This algorithm is only an approximation in
the context of semi-Gaussian statistics but it yielded ac-
ceptable, through slightly different, results. Building on
Desroziers and Ivanov (2001) we propose an extension
of this online tuning scheme to the simultaneous esti-
mation of several prior errors variances. The formulae
read:

m2 =
2 Jb(σa)

N − tr
(

P


B−1
) , (13)

r2
i =

2 Joi(σa)

di − tr
(

HiPHT
i R−1

i

) , (14)

whereHi andRi are the sub-blocks of respectively the
Jacobian matrixH and the observation error covariance
matrix R related to data seti, whose observation vector
is notedµi . P


is defined by Eq. (12).Jb and Joi are

defined by:

Jb(σ) =
1
2
σTσ , (15)

Joi(σ) =
1
2

(

µi −Hiσ
)T (

µi −Hiσ
)

. (16)

The source vectorσa is obtained from the minimisation
of the cost function:

L(σ) =
Jb(σ)
m2

+

Nd
∑

i=1

Joi(σ)

r2
i

(17)

under the constraintσ ≥ 0. These equations can be used
in an iterative scheme which we shall call Desroziers’
scheme later on. This algorithm quickly converges (3-4
iterations here) to a fixed-point giving estimated hyper-
parameters and the related source term.

3. Applications to the Fukushima accident

3.1. Observations

In order to illustrate the proposed methods, observa-
tions from three different data sets will be considered:

• The activity concentration in the air over Japan
as described and referred to in Winiarek et al.
(2012b). This data set contains 104 observations.

• Starting from 18 March 2011, daily measurements
of deposited137Cs in 22 prefectures, which repre-
sents a total of 198 observations2.

2http://www.mext.go.jp/english/incident/1305529.

htm
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• Measurements of total deposited137Cs in an area
near the NPP (approximately 100 km around).
Among the 2180 deposition measurements pro-
vided by the Ministry of Education, Culture,
Sports, Science and Technology (MEXT) during
May and June 20113, 16 were filtered out because
they are impacted by near-field effects that are not
represented by larger scale ATMs, so that 2164 ob-
servations, that are distant enough from the NPP,
were considered. As shown in Fig. 5(a), they are
densely distributed in space, but on the downside
there is no scale of time in these observations.

The distribution of the observation sites led to use a
mesoscale domain approximately covering Japan. Be-
cause of the spatial extension and density of the sites,
and because of the frequency of the observations, the
ATM needs a rather limited simulation domain with
high resolution in space and in time.

3.2. Modelling the atmospheric dispersion

3.2.1. Meteorological fields
ECMWF meteorological fields with a spatial resolu-

tion of 0.25◦×0.25◦ and a temporal resolution of 3 hours
are too coarse to be used for our need. That is the rea-
son why we computed mesoscale meteorological fields
with the Weather Research and Forecasting (WRF) nu-
merical model (Skamarock et al., 2008). The main ob-
jective is to obtain meteorological fields with a spatial
resolution of approximately 5 km and a temporal reso-
lution of 1 h. The computed meteorological fields are
inputs for the atmospheric transport model. Physical
parametrisations as well as the design of simulation do-
mains are summarised in Tab. 1 and the simulation do-
mains are displayed in Fig. 1. One of the key feature
is the use of several thousands of meteorological obser-
vations to constrain the meteorological fields through
nudging techniques (Stauffer and Seaman, 1994).

As shown in Fig. 2, WRF simulations show a good
ability to model the occurrence of rain episodes but have
the general tendency to overestimate precipitation rates
(Katata et al. (2012) observed the same behaviour using
MM5). This bias is a severe drawback when looking at
deposition processes as this study aims to do. To avoid
overestimating wet deposition, we used ground obser-
vations of rain rates in Fukushima and Ibaraki prefec-
tures to compute a global debiasing coefficient, that we

3http://www.mext.go.jp/b_menu/shingi/chousa/

gijyutu/017/shiryo/__icsFiles/afieldfile/2011/09/

02/1310688_1.pdf

found equal to 2.4, by which were divided all precipita-
tion rates computed by the WRF model. We have also
tested local corrections of the precipitation fields using
data assimilation techniques but we did not find them to
be as robust and reliable as a simpler global debiasing
correction.

3.2.2. Atmospheric transport model
The simulations of the dispersion of radionuclides

from the Fukushima Daiichi nuclear power plant have
been performed with the chemistry-transport model P-
3D, the Eulerian model of the P platform.
It has been validated for the simulation of radionuclides
transport on the European Tracer Experiment, on the Al-
geciras incident and on the Chernobyl accident (Quélo
et al., 2007).

The model integrates the concentration fieldc of
137Cs, following the transport equation

∂c
∂t
+ div (uc) = div

(

ρK∇
(

c
ρ

))

−Λs c−Λd c+σ (18)

whereρ is the air density,Λs is the scavenging rate,Λd

represents the radioactive decay andσ is the point-wise
source.K is the matrix of turbulent diffusion, diagonal
in practice. The vertical component is given byKz, com-
puted with Louis parametrisation (Louis, 1979). The
horizontal componentKH is taken constant. The bound-
ary condition on the ground is

Kz∇c · n = −vdepc (19)

wheren is the upward oriented unitary vector, andvdep

is the dry deposition velocity of137Cs.
Two domains of simulation are considered. The finest

domain of simulation is a mesoscale domain covering
Japan, from 131.03◦E to 144.53◦E and from 30.72◦N to
43.72◦N with a spatial resolution of 0.05◦ × 0.05◦. The
number of grid points in this domain is 270× 260. Be-
cause of the small size of the domain there is a risk of
re-circulation of the plume outside the domain so that
the model could fail to account for radionuclides re-
entries. To avoid such situation and in order to com-
pute the boundary conditions to this domain by a nest-
ing technique, another more extended domain of sim-
ulation with a coarser resolution is used. It covers a
region from 115.03◦E to 165.03◦E and from 25.02◦N to
60.02◦N with a resolution of 0.25◦ × 0.25◦. This con-
figuration is displayed in Fig. 1. For both domains the
P3D model is configured with 15 vertical levels
ranging from 0 to 8000 m.

Caesium-137 is modelled as monodispersed passive
particulate matter with a radioactive decay of 11000
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Table 1: Configuration and physical parametrisations of the WRFmodel. A two-way nesting technique is used between domain 1 anddomain 2.

Domain 1 2
Spatial resolution 18 km 6 km
Number of grid points 340× 250 241× 241
Number of vertical levels 27 27
Numerical time-step 60 s 20 s
Output time-step 3600 s 3600 s
Planetary boundary layer Yonsei University Yonsei University
Micro-physics Kessler WRF Single Moment 3
Cumulus physics Grell-Devenyi Grell-Devenyi
Longwave radiation RRTM RRTM
Shortwave radiation Dudhia Dudhia
Surface layer MM5 similarity MM5 similarity
Land surface Noah LSM Noah LSM
Nudging Grid nudging Grid nudging
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Figure 1: Map of the simulation domains used in WRF (dashed-linedomains) and in P3D (full-line domains). Two-way nesting is used in
the WRF simulations and one-way nesting in the P3D simulation. A triangle marks the location of the Fukushima Daiichi nuclear power
plant.
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Figure 2: Comparison between WRF calculations (dashed lines)and observations (full lines) for cumulated precipitation (in mm) at some surface
weather stations in Fukushima prefecture.

days. Dry deposition is modelled using a simple scheme
with a constant deposition velocity:vdep = 0.15 cm.s−1

(Bocquet, 2012) over land, andvdep = 0.01 cm.s−1 over
the ocean (see Estournel et al. (2012) and references
within). As far as wet deposition is concerned, the
parametrisation used in this study is a below-cloud scav-
enging scheme of the form:

Λs = a

(

p
p0

)b

(20)

where p stands for the precipitation rate andp0 =

1 mm.h−1, a and b being two constants respectively
equal to 8.4 10−5 s−1 and 0.79 following Maryon et al.
(1991).

The advection is implemented thanks to a third-order
direct space-time scheme, with a Koren-Sweby flux lim-
iter function. Because of the plume sharp gradients, it
is important that such a limiter is used. The diffusion
scheme is integrated through an implicit second-order
Rosenbrock scheme, with a three-point spatial scheme,
and directional splitting.

This study attempts to reconstruct the source term
from March 11 to April 1 (which representsN = 504
one-hour time-steps). However the simulations run over
a longer period (from March 11 to April 5) in order to
exploit the information content of later observations. A
total of 504 direct simulations are thus performed to fill
the Jacobian matrixH column by column, and no ad-
joint model is needed in this process following Abida
and Bocquet (2009); Winiarek et al. (2011).

3.3. Inverse modelling results only using activity con-
centrations in the air

The proposed methods can of course be applied to in-
verse modelling using only one data set, such as activity
concentration in the air data (the first data set described
in Section 3.1 and which contains 104 observations). In
this case, the formulae are rigorously equivalent to the
ones presented in Winiarek et al. (2012b). It is nonethe-
less interesting to perform such inversion. It allows to
check and confirm the consistency of the model, even
though the meteorological fields and the removal pro-
cesses parameterisations are different.

3.3.1. Estimation of parameters and total released ac-
tivity

The estimated hyper-parameters and the estimated to-
tal released activities are reported in Tab. 2 together with
results found in Winiarek et al. (2012b) using the same
data set. The estimated hyper-parameters as well as the
total released activities in the case of the ML method are
close and confirm the consistency of this approach.

As discussed in Winiarek et al. (2012b) Desroziers’
scheme is based on Gaussian assumptions and thus has
to be considered an approximation in the case of semi-
Gaussian assumptions for background errors statistics.
In the situation where only few data are available it
could yield results different from the maximum likeli-
hood estimation. Nevertheless the gap here is smaller
than it was in Winiarek et al. (2012b) with the same
data. It may be caused by the use of a mesoscale model
with a better resolution in space and in time which in-
creases the general consistency in the system. The clear
decrease ofr, that represents the magnitude of the ob-
servational error, including representativeness error and
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part of model error, was to be expected and may be due
to a better resolved model hence reducing the impact of
model error in the inversion.

Using the maximum likelihood estimation, the to-
tal released activity of137Cs is estimated to be 1.1 ×
1016 Bq. This is consistent with other estimations:
1.2 × 1016Bq for Winiarek et al. (2012b) and Chino
et al. (2011), 1.3 × 1016 Bq for Terada et al. (2012),
1.6 × 1016 Bq for Saunier et al. (2013), 2.1 × 1016 Bq
for Mathieu et al. (2012) or 3.6×1016 Bq for Stohl et al.
(2012).

3.3.2. Temporal profile and uncertainty reduction

Due to the meteorological conditions which have of-
ten transported the radionuclides towards the Pacific
Ocean, and to the low number of activity concentration
data, the observability of the plume is reduced. That is
why inverse modelling methods are only able to recon-
struct the source term in some specific time intervals.
Consequently the estimated total released activities have
to be considered as lower bound estimates of the actual
releases.

The reconstructed source term and its uncertainty are
displayed in Fig. 3(a). The posterior uncertainty has
been computed from a Monte Carlo analysis, where the
observations and the background term are perturbed us-
ing their prior errors definition and the hyper-parameters
estimates (2× 104 draws and inversions are performed).
Then the standard deviation of the estimators ensemble
is used to estimate the posterior uncertainty of the re-
constructed source term. The uncertainty on the total
released activity is around 65%.

The time intervals of observability are clearly visible
in the shape of the uncertainty. Three periods are par-
ticularly well observed: the first one lies approximately
from 14 March to 15 March, the second one lies from
19 March to 22 March and the last one from 24 March
to 26 March. Once again the temporal profiles of the
source term and its uncertainty are very consistent with
the inversion made in Winiarek et al. (2012b).

Compared to source term estimates constructed from
in-situ events monitoring and core inventories (Mathieu
et al., 2012), a few events are not retrieved: the first
hydrogen explosions in Unit 1 on 12 March, the vent-
ings of Unit 3 on 13 March and the events concerning
Unit 2 and 3 on 16 March and 18 March. On the other
hand, the multiple events of 14 March and 15 March are
present in the reconstructed source term, even though in
an incomplete way since the last release, probably be-
tween 7:00 UTC and 12:00 UTC on 15 March, is miss-
ing. This release is partly accounting for the north-west

pattern on the deposition map, but no activity concen-
tration observation is available to help reconstruct this
event. The releases of 20 March and the ones from 21
March to 23 March are also retrieved. As far as the re-
lease around 25 March is concerned, there seems to be
a slight offset of 12 hours in the reconstruction. The re-
leases reconstructed on 19 March are not mentioned by
these inventories, but seem compatible with the in-situ
measurements ofγ-dose rates from operator TEPCO4,
for example on the northside of main office or near the
west gate of the NPP. They are also retrieved by Stohl
et al. (2012). They precede the attempts of emergency
cooling with Tokyo Fire Department means. Finally, the
releases around 30 March, not mentioned by the former
inventories, are also retrieved by Terada et al. (2012).

The scatter plot of all observations is displayed in
Fig. 4(a). The simulation using the source term re-
constructed with activity concentration data only does
not show any systematic bias when estimating the de-
posited activities. Again, this shows the consistency
of the model and in particular of the removal processes
(wet and dry deposition).

3.4. Results of the inverse modelling using the three raw
data sets

The total deposited137Cs measurements offer no in-
formation about the time of deposition as they are mea-
surements performed a posteriori, in May and June
2011. When only these measurements are used to
attempt reconstructing the source term, the total re-
leased estimated activity seems consistent (between
1.1 × 1016 Bq and 1.2 × 1016 Bq). However, the tem-
poral profile, displayed in Fig. 3(b), is highly doubtful.
Only releases on 23 and on 25 March are clearly visi-
ble. Indeed, the system has too much freedom to fit the
data. The only constraint is the background term in the
cost function, which in the case where the first guess
is taken null (as we do) only defines a scale of ampli-
tude. Therefore, even if these observations are abun-
dant with a good spatial distribution, we propose in the
next sections to jointly use them with other measure-
ments with a good temporal resolution, such as activity
concentrations in the air and daily measurements of de-
posited material. Consequently we propose to use the
three data sets described in Section 3.1 in the same in-
version. In this aim the prior errors have to be estimated
simultaneously for the background and the three data
sets (Nd = 3).

4http://www.tepco.co.jp/en/nu/monitoring/index-e.

html
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Table 2: Estimation of parameters and corresponding reconstructed released activity for caesium-137 source reconstruction using only activity
concentration observations in the air.

parameter method Regional scale model Mesoscale model
Winiarek et al. (2012b) This study

r (Bq m−3)
Desroziers’ scheme 5.4 2.1
Maximum likelihood 3.3 1.9

m(Bq s−1)
Desroziers’ scheme 5.3× 1010 8.9× 1010

Maximum likelihood 2.0× 1011 1.6× 1011

Released activity (Bq)
Desroziers’ scheme 3.3× 1015 7.2× 1015

Maximum likelihood 1.2× 1016 1.1× 1016
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Figure 3: Full line: Temporal profile of reconstructed caesium-137 source term using (a): activity concentration of137Cs measurements in the air
only, (b): total cumulated deposited137Cs measurements only, (c): the activity concentration in the air, the daily fallout measurements and the
total cumulated deposition raw measurements, (d): the activity concentration in the air, the daily fallout measurements andthe super-observations
computed from the total cumulated deposited137Cs. Dashed lines: posterior uncertainty of the source term computed using a Monte Carlo
simulation.

10



10
✁6

10
✁2

10
2

10
6

Observations

10
✁610
✁210
2

10
6

S
im

u
la
ti
o
n
s

(a)

10
✁6

10
✁2

10
2

10
6

Observations

(b)

10
✁6

10
✁2

10
2

10
6

Observations

(c)

Figure 4: Scatter plots of137Cs activity concentration in the air (green crosses in Bq m−3), daily measurements of deposited137Cs (red crosses in
Bq m−2) and total cumulated deposited137Cs (blue crosses in Bq m−2). (a) inversion only using activity concentrations in the air. (b) inversion
using the three raw data sets. (c) inversion using the three data sets including super-observations. The dashed lines represent a misfit of a factor 10
between observations and modelled values.

3.4.1. Estimation of parameters and total released ac-
tivity

As expected, when the number of available obser-
vations increases, the results yielded by Desroziers’
scheme tend to get closer to the maximum likelihood
estimation.

The estimated hyper-parameters as well as the esti-
mated total released activities are reported in Tab. 3.
Excepted for the daily measurements hyper-parameter,
the values of estimated hyper-parameters do not differ
much when using Desroziers’ scheme or the maximum
likelihood method.

Using these data sets, the total released activity of
137Cs is estimated to be between 1.2 × 1016 Bq and
1.3× 1016 Bq.

3.4.2. Temporal profile and uncertainty reduction
The reconstructed source term and its uncertainty are

displayed in Fig. 3(c).
The observability of the accident is improved com-

pared to the inversion using only activity concentrations
in the air. The time windows where the uncertainty is
reduced are much larger, specially before 14 March and
between 19 March and 26 March. The uncertainty on
the total released activity has been reduced from around
65% when using only activity concentration to around
25% in this case.

The events that were retrieved in the first inversion
are still reconstructed with this data set. The time offset
on the release of 25 March has disappeared. The system
is now able to reconstruct the late release of 15 March,
from 7:00 UTC to 9:00 UTC and hence to model the

north-west pattern of deposited137Cs. The maps of ob-
served and simulated total deposition are displayed in
Fig. 5(a,b,c,d).

3.5. Results of the inverse modelling using super-
observations computed from the three raw data
sets

As mentioned above, measurements of the third data
set are very densely distributed. This proximity cer-
tainly induces correlations in the observation errors
(mainly through model errors) that are not taken into ac-
count in our system. One way to take into account these
correlations would be to use a non-diagonalR matrix.
This method would increase the computation cost as the
inverse ofR is needed for the minimisation of the cost
function Eq. (3). Besides, this would introduce addi-
tional hyper-parameters in the correlation model which
would have to be properly estimated as well. Such an
estimation could be a difficult task in a situation with
a low number of observations. Another route that can
be chosen to deal with densely distributed data is the
thinning of observations which consists in the optimal
selection of observations. These techniques are already
used in the assimilation of satellite data in the weather
forecast community (Liu and Rabier, 2002). Yet another
method would consist in computing super-observations
by averaging all the observations contained in a model
grid cell (the model resolution is 0.05◦ × 0.05◦), in or-
der to mitigate the spatial correlation in the errors. This
is the method that we chose. From the 2180 measure-
ments initially in the third data set, we computed 523
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Figure 5: Map of observed and simulated deposited137Cs. Upper left (a): measurements from MEXT. Upper right (b): simulation with source
reconstructed using only137Cs activity concentrations in the air. Lower left (c): simulation with source reconstructed using137Cs activity concen-
trations in the air, daily measurements of deposited137Cs and measurements of total cumulated deposited137Cs. Lower right (d): simulation with
source reconstructed using137Cs activity concentrations in the air, daily measurements of deposited137Cs and super-observations computed from
measurements of total cumulated deposited137Cs. The displayed values are in kBq m−2

12



Table 3: Estimation of parameters and corresponding reconstructed released activity for caesium-137 source using activity concentration, fallout
daily measurements and total deposition data.r1, r2 andr3 represents respectively the errors variances of these three data sets.

parameter method with deposition with deposition
raw data super-observations

r1 (Bq m−3)
Desroziers’ scheme 3.8 2.9
Maximum likelihood 3.3 2.3

r2 (Bq m−2)
Desroziers’ scheme 580 540
Maximum likelihood 210 240

r3 (Bq m−2)
Desroziers’ scheme 325000 240000
Maximum likelihood 320000 230000

m(Bq s−1)
Desroziers’ scheme 1.2× 1011 1.3× 1011

Maximum likelihood 1.0× 1011 1.0× 1011

Released activity (Bq)
Desroziers’ scheme 1.3× 1016 1.9× 1016

Maximum likelihood 1.2× 1016 1.8× 1016

super-observations from which we eliminated 4 super-
observations located too close to the NPP, hence leaving
519 super-observations to be used as the new third data
set. Note that it is not necessary to estimate the reduced
variance of a super-observation since this is implicitly
accounted for in the related hyper-parameter estimation.

3.5.1. Estimation of parameters and total released ac-
tivity

The estimated hyper-parameters as well as the esti-
mated total released activities are reported in Tab. 3. As
expected, the estimated standard deviation of the error
in the cumulated fallout (r3) is significantly decreased
by about 28%.

Using these data sets, the total released activity of
137Cs is estimated to be between 1.8 × 1016 Bq and
1.9× 1016 Bq.

3.5.2. Temporal profile and uncertainty reduction
The reconstructed source term and its uncertainty are

displayed in Fig. 3(d). The uncertainty on the total re-
leased activity is estimated to be around 15% from a
Monte Carlo study of 2× 104 draws. However, it is the
same absolute standard deviation, of about 3 PBq, as in
the raw data sets inversion.

All the previously mentioned events are now retrieved
with these data sets:

• Around 12 March: identified as the hydrogen ex-
plosion in Unit 1.

• On 13 March: identified as the ventings on Unit 3.

• On 14 and 15 March: multiple ventings and hy-
drogen explosions mainly concerning Unit 2 and

Unit 3. The late release on 15 March is now re-
trieved (from 7:00 to 9:00 UTC) even if its magni-
tude might appear weak (see section 3.6.1 for a dis-
cussion on the magnitude of the retrieved peaks).

• On 16 March: unidentified events but which corre-
spond to pressure drops in Unit 2 and Unit 3.

• On 18 March: unidentified events probably related
to Unit 3.

• On 19 March: unidentified events which corre-
spond to an increase in several in-situγ-dose rate
measurements. The attempts of emergency cooling
with the Tokyo Fire Department means began just
after these events.

• On 20 March: unidentified events concerning at
least Unit 2 and Unit 3.

• From 21 March to 23 March: events corresponding
to smokes emitted from Unit 2 and Unit 3.

• On 25 March: unidentified event possibly concern-
ing Unit 2. The magnitude of this peak might ap-
pear over-estimated (see section 3.6.1 for a discus-
sion on the magnitude of the retrieved peaks).

• On 30 March: unidentified event.

From the scatter plots of Fig. 4(b,c), it is clear that
the simulated cumulated deposition data are comparable
when using the source term built from raw data or from
super-observations. This is also visible on the deposi-
tion maps in Fig. 5(c,d). On the other hand the system’s
ability to simulate the two other data sets is slightly im-
proved when using the source term retrieved from the
super-observations. The assumption that the observa-
tion errors are uncorrelated led the system to give too
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much weight to the third raw data set in the inverse
modelling algorithm. This over-confidence may be cor-
rected when using super-observations so that the infor-
mation content in the system is better balanced.

3.6. Discussion about the retrieved sources
These inversions offer an objective estimation using

data assimilation techniques of what can be extracted
from the data sets and the numerical model. The assim-
ilated observations may or may not suffice to constrain
the source term parameters. We showed that the cumu-
lated deposition data alone are not sufficient to offer a
satisfying chronology of the source term and that the
joint assimilation of the three data sets helped to bet-
ter constrain the chronology. Yet, the magnitude of the
identified peaks remains questionable. The data may or
may not be able to constrain them well enough, although
the estimate of the total released activity seems robust.

3.6.1. On the magnitude of the peaks
It is generally thought that the main releases have oc-

curred around March 15. These releases probably con-
tributed the most to the north-west pattern of the deposi-
tion map. Our system, where the cumulated deposition
data do not contain any information in time, may not be
constrained enough by air concentration observations or
daily measurements of fallout (specially before March
18) to precisely balance the contributions of the releases
of March 14-15 (around 15% of the total retrieved ac-
tivity), March 20 (around 13%) and March 25 (around
15%).

The peaks of March 20 and March 25 are not only re-
constructed with the help of deposition measurements.
They are both additionally explained by measurements
of activity in the air from a particular monitoring sta-
tion, located in Fukushima city, which measured an ac-
tivity concentration of about 32 Bq.m−3 around March
20 and about 14 Bq.m−3 around March 25. It is possible
that these measurements are caused by a re-suspension
of previously deposited caesium-137. But resuspension
is not implemented in our model, so that resuspension
events are likely to be accounted for by fictitious re-
leases in the source term. We tried and performed a new
inversion using the same data as in Section 3.5 but with-
out the measurements of this station. Indeed, the results
from the super-observations showed an increase of the
released activity on March 14 and 15, from 2.6 to 3.0
PBq (from 13% to 16% of an unchanged total emitted
activity of 19 PBq), and a decrease on March 20, from
2.6 to 2.0 PBq (from 13% to 11% of the total emitted
activity). Yet, no consequences were observed on the
magnitude of the peak on March 25.

We also performed inversions using a non-null first
guess inferred from independentγ-dose measurements
(Saunier et al., 2013), which indicates to the system that
most of the releases occurred before March 18. As a
result, the total estimated released activity increased by
about 15%, but the peak on March 25 still remained al-
most at the same level.

As a more drastic test and to force the system to
reconstruct higher releases before March 18, we re-
duced the inversion window to this period. As a con-
sequence the releases of March 15 increased (from
0.6 PBq to 2.6 PBq using the three raw data sets, and
from 0.9 PBq to 3.9 PBq using the three data sets with
super-observations as the third data set), but the total es-
timated releases decreased (respectively from 12 PBq to
5 PBq, and from 18 PBq to 11 PBq). It is consistent with
the inversion using only activity concentration in the air
where approximatively 6 PBq were estimated to be re-
leased after this date. At the same time the reanalysis
of deposition map has been degraded especially in the
central area of the north-west pattern which is the most
contaminated. This shows that: (i) considering only this
shorter time window, the system can not properly recon-
struct the deposition pattern shown in Fig. 5(a). (ii) Re-
leases probably occurred after March 19 and may have
contributed to the north-west pattern of the deposition
map, but their magnitude is still difficult to estimate be-
cause of the lack of observations with a temporal infor-
mation (such as activity concentration in the air) in this
area. (iii) This may highlight the difficulty to model the
removal processes and specially the wet deposition. It is
also possible that the cumulated deposition map, whose
measurements have been made several months after the
accident, is not anymore faithful to the deposition events
of the accident.

We also tested a different reconstruction resolution.
Instead of reconstructing a source term with a one-hour
time-step (N = 504), an inversion was carried out on
a source term with a three-hour time-step (N = 168).
It is generally admitted that the inversion is sensitive to
the resolution of the control space (Bocquet et al., 2011)
and that the system cannot generally provide reliable in-
formation at a too precise resolution (for instance the
model resolution). Nevertheless, estimating the prior
errors allows to compensate the impact of the control
space resolution by tuning regularisation in the inver-
sion, so that the dependence in the resolution should be
mitigated. The estimated source term, using the same
data sets as in Section 3.5, as well as its uncertainty
are displayed in Fig. 6. The total released activity is
now estimated to be 1.6 × 1016 Bq with an uncertainty
of 18%. The estimated released quantities were mainly
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Figure 6: Full black line: Temporal profile of reconstructed caesium-
137 source term with a reconstruction resolution of 3 h usingthe
activity concentration in the air, the daily fallout measurements and
the super-observations computed from the total cumulated deposited
137Cs. Dashed line: posterior uncertainty of the source term computed
using a Monte Carlo simulation. Thin blue line: Temporal profile of
reconstructed caesium-137 source term with a reconstruction resolu-
tion of 1 h using the same data.

reduced on March 30 (from 2.1 PBq to 1.3 PBq), on
March 20 (from 2.6 PBq to 2.1 PBq) and on March 25
(from 2.9 PBq to 2.8 PBq), but remain at a high level.
At the same time, the estimated released quantities in-
creased on March 14-15 from 2.6 PBq to 4.1 PBq. Many
of the low magnitude peaks with a high uncertainty have
been reduced or have disappeared.

3.6.2. On the difference between the sources recon-
structed with raw data and super-observations

Comparing the source profile obtained from the
super-observations (Fig. 3(d)) with the source pro-
file obtained from the inversion of the raw data sets
(Fig. 3(c)), 2 PBq of caesium-137 are found to increase
already existing peaks.

Moreover, when using super-observations instead of
raw data, new release episodes appear in the source re-
constructed term. Compared to the raw data sets in-
version, 4 PBq of caesium-137 are found in new time
slots.Yet the related uncertainty is still high and even
above the retrieved peaks. Nonetheless, the new re-
leases episodes that appear in the inversion do not seem
to be artefacts of the inversion algorithm. They do cor-
respond to observed events in the NPP and to events re-
constructed by other studies (Stohl et al., 2012; Saunier
et al., 2013).

Judging from the r i , the errors of the super-
observations as well as their use by the model is di-

agnosed as more reliable than the use of the raw data
sets. By contrast, the Tikhonov regularising term is less
constraining and new peaks can more easily form in the
reconstructed source term.

On a physical level, the appearance of the new peaks
results from the smoothing of the deposition observa-
tions that in turn leads to a smoothing in the retrieved
source. This is probably why the only peak which is re-
duced when using super-observations is the highest one
on March 25. This peak is mainly induced by the137Cs
deposit observations of the north-west very thin pattern.
Hence, a smoothing of this pattern can lead to a new bal-
ance of the peaks (March 15, March 20 or March 25).

4. Conclusion

In order to reconstruct source terms of accidental pol-
lutant releases into the atmosphere, we have proposed
an inverse modelling algorithm able to use all avail-
able data in the same inversion (concentrations in the
air, measurements of fallout, integrated measurements,
etc.). The algorithm relies on the relationship provided
by the atmospheric transport model between the source
vector and the observation set and on prior errors in-
troduced in the system: the background errors and the
observation errors. To properly balance the information
content in the system a proper estimation of these prior
errors is crucial.

In this aim, we proposed two methods relying on
the maximum likelihood principle that we applied to
the challenging reconstruction of the137Cs source term
released during the Fukushima Daiichi nuclear power
plant accident in March 2011. Three data sets were
used in the inversion process: activity concentrations in
the air, daily measurements of fallout and total cumu-
lated deposition data. Consequently, the prior estima-
tion concerned 4 hyper-parameters: the variance of the
background errors and the variance of each observation
set errors. Averaged observations (called in the article
super-observations) have also been considered for the
third data set in order to reduce correlation in errors that
had been neglected in the algorithm. Posterior uncer-
tainty related to the estimated releases have also been
estimated through a Monte Carlo analysis. Such an es-
timation is only possible with properly estimated prior
errors.

With these methods and without super-observations,
the total released activity is estimated to be between
1.2 − 1.3 × 1016 Bq with a related uncertainty around
25%. When using super-observations instead of raw
fallout data, the total released activity is estimated to be
between 1.8 − 1.9 × 1016 Bq with a related uncertainty
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around 15%. From our estimations the main137Cs con-
tamination over Japan results from releases on 14-15
March, 19-20 March, 25 March and 30 March. Nev-
ertheless, the uncertainty of each retrieved peak still re-
mains high. Consequently the exact magnitude of the
retrieved peaks has to be handled carefully. Some other
significant releases might also have occurred when the
wind was blowing directly towards the Pacific Ocean
and are thus not totally reconstructed by our method us-
ing only data over Japan.

With the given data sets, the reconstruction of the
source term could be improved on the condition that
model error be better constrained. Two main influen-
tial sources of error were identified in the course of this
study. Firstly, the reconstruction was found to be highly
sensitive to the precipitation fields of the meteorological
model. Even if the spatial distribution and chronology
of the precipitation events were matching independent
precipitation observations, we found it difficult to prop-
erly estimate the magnitude of those events. Secondly,
with the given precipitation fields, the reconstruction re-
mains sensitive to the physical process parameterisation
in the ATM. One promising route to better constrain
those processes is the inverse modelling of physical pa-
rameters (Bocquet, 2012).

Finally it seems promising to develop methods able
to simultaneously reconstruct source terms of several
radionuclides using all available data includingγ-dose
rates (Saunier et al., 2013). The number of observa-
tions, and in particular observations with an information
of time, would then increase substantially. But the in-
volved methods would certainly be more complex own-
ing to correlations in observation errors and higher prior
uncertainties in the data assimilation system.
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