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footing∗
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Abstract

We extend the theory of neural fields which has been developed in a deter-
ministic framework by considering the influence spatio-temporal noise. The
outstanding problem that we here address is the development of a theory
that gives rigorous meaning to stochastic neural field equations, and condi-
tions ensuring that they are well-posed. Previous investigations in the field
of computational and mathematical neuroscience have been numerical for the
most part. Such questions have been considered for a long time in the theory
of stochastic partial differential equations, where at least two different ap-
proaches have been developed, each having its advantages and disadvantages.
It turns out that both approaches have also been used in computational and
mathematical neuroscience, but with much less emphasis on the underlying
theory. We present a review of two existing theories and show how they can
be used to put the theory of stochastic neural fields on a rigorous footing. We
also provide general conditions on the parameters of the stochastic neural field
equations under which we guarantee that these equations are well-posed. In so
doing we relate each approach to previous work in computational and math-
ematical neuroscience. We hope this will provide a reference that will pave
the way for future studies (both theoretical and applied) of these equations,
where basic questions of existence and uniqueness will no longer be a cause
for concern.
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1 Introduction

Neural field equations have been widely used to study spatiotemporal dynamics of
cortical regions. Arising as continuous spatial limits of discrete models, they pro-
vide a step towards an understanding of the relationship between the macroscopic
spatially structured activity of densely populated regions of the brain, and the un-
derlying microscopic neural circuitry. The discrete models themselves describe the
activity of a large number of individual neurons with no spatial dimensions. Such
neural mass models have been proposed by Lopes da Silva and colleagues [22, 23]
to account for oscillatory phenomena observed in the brain, and were later put on a
stronger mathematical footing in the study of epileptic-like seizures in [20]. When
taking the spatial limit of such discrete models, one typically arrives at a nonlinear
integro-differential equation, in which the integral term can be seen as a nonlocal
interaction term describing the spatial distribution of synapses in a cortical region.
Neural field models build on the original work of Wilson and Cowan [34, 35] and
Amari [1], and are known to exhibit a rich variety of phenomena including stationary
states, traveling wave fronts, pulses and spiral waves. For a comprehensive review
of neural field equations, including a description of their derivation, we refer to [5].

More recently several authors have become interested in stochastic versions of
neural field equations (see for example [2, 3, 7, 8, 21]), in order to (amongst other
things) model the effects of fluctuations on wave front propagation. In particular,
in [7] a multiplicative stochastic term is added to the neural field equation, resulting
in a stochastic nonlinear integro-differential equation of the form

dY (t, x) =

[
−Y (t, x) +

∫

R

w(x, y)G(Y (t, y))dy

]
dt+ σ(Y (t, x))dW (t, x), (1.1)

for x ∈ R, t > 0, and some functions G (referred to as the nonlinear gain function),
σ (the diffusion coefficient) and w (the neural field kernel, sometimes also called the
connectivity function). Here (W (t, x))x∈R,t > 0 is a stochastic process (notionally a
“Gaussian random noise”) that depends on both space and time, and which may
possess some spatial correlation.

In [7] (1.1) is used in a slightly informal way to derive some interesting phenom-
ena. However, from a more rigorous point of view one must be careful to understand
what exactly is meant by the equation (1.1), and indeed, what do we understand by
a solution. The main point is that any solution must involve an object of the form

“

∫
σ(Y (t, x))dW (t, x)” (1.2)

which must be precisely defined. Of course, in the case where there is no spatial
dimension, the theory of such stochastic integrals is widely disseminated, but for
integrals with respect to space-time white noise (for example) it is far less well-
known. It is for this reason that we believe it be extremely worthwhile making a
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detailed study of how to give sense to these objects, and moreover to solutions to
(1.1) when they exist.

There are in fact two distinct approaches to defining and interpreting the quantity
(1.2), both of which allow one to build up a theory of stochastic partial differential
equations (SPDEs). Although (1.1) does not strictly classify as a SPDE (since there
is no derivative with respect to the spatial variable), both approaches provide a
rigorous underlying theory upon which to base a study of such equations.

The first approach generalizes the theory of stochastic processes in order to
give sense to solutions of SPDEs as random processes that take their values in a
Hilbert space of functions (as presented by Da Prato and Zabczyk in [11] and more
recently by Prévôt and Röckner in [28]). With this approach, the quantity (1.2) is
interpreted as a Hilbert space-valued integral i.e. “

∫
σ(Y (t))dW (t)”, where (Y (t))t > 0

and (W (t))t > 0 take their values in a Hilbert space of functions, and σ(Y (t)) is an
operator between Hilbert spaces. The second approach is that of J. B. Walsh (as
described in [33]), which, in contrast, takes as its starting point a PDE with a
random and highly irregular “white-noise” term. This approach develops integration
theory with respect to a class of random measures (called martingale measures), so
that (1.2) can be interpreted as a random field in both t and x.

In the theory of SPDEs, there are advantages and disadvantages of taking both
approaches. This is also the case with regards to the stochastic neural field equation
(1.1), as described in the conclusion below (Section 5), and it is for this reason
that we here develop both approaches, with the view that one or other will suit a
particular reader’s needs. Taking the functional approach of Da Prato and Zabczyk
is perhaps more straightforward for those with knowledge of stochastic processes,
and the existing general results can be applied more directly in order to obtain,
for example, existence and uniqueness. This was the path taken in [29] where the
emphasis was on large deviations, though in a much less general setup than we
consider here (see Remark 2.7). However, it can certainly be argued that solutions
constructed in this way are “non-physical”, since the functional theory tends to
ignore any spatial regularity properties (solutions are typically L2-valued in the
spatial direction). We argue that the approach of Walsh is more suited to looking
for “physical” solutions that are at least continuous in the spatial dimension, though
we must restrict slightly the type of noise that is permitted. A comparison of the
two approaches in a general setting is presented in [14], and in Section 4 in our
specific setting.

The main aim of this article is thus two fold: firstly it is to present a review of
an existing theory, which is accessible to readers unfamiliar with stochastic partial
differential equations, that puts the study of stochastic neural field equations on
a rigorous mathematical footing. Secondly, we will give general conditions on the
functions G, σ and w that are certainly satisfied for most typical choices, and under
which we guarantee that there exists a solution to the neural field equation (1.1) in
some sense. We hope this will provide a reference that will pave the way for future
studies (both theoretical and applied) of these equations, where basic questions of
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existence and uniqueness will no longer be a cause for concern.
The layout of the article is as follows. We first present in Section 2 the necessary

material in order to consider the stochastic neural field equation (1.1) as an evolution
equation in a Hilbert space. This involves introducing the notion of a Q-Wiener
process taking values in a Hilbert space and stochastic integration with respect to
Q-Wiener processes, before quoting a general existence and uniqueness result for
solutions of stochastic evolution equations from [11]. This theorem is then applied
in Section 2.4 to yield a unique solution to (1.1) interpreted as a Hilbert space-valued
process, both in the case when the noise has a spatial correlation and when it does
not. The second part of the paper switches tack, and describes Walsh’s theory
of stochastic integration with respect to martingale measures (Section 3.1), with a
view of giving sense to a solution to (1.1) as a random field in both time and space.
To avoid dealing with distribution-valued solutions, we in fact consider a Gaussian
noise that is smoothed in the spatial direction (Section 3.2), and show that, under
some weak conditions, the neural field equation driven by such a smoothed noise has
a unique solution in the sense of Walsh that is continuous in both time and space
(Section 3.3). We finish with a comparison of the two approaches in Section 4, and
summarize our findings in a conclusion (Section 5).

Notation: Throughout the article (Ω,F , (Ft)t > 0,P) will be a filtered probability
space, where the filtration (Ft)t > 0 satisfies the usual conditions (i.e. complete and
right-continuous), and L2(Ω,F ,P) will be the space of square-integrable random
variables on (Ω,F ,P). We will use the standard notation B(T ) to denote the Borel
σ-algebra on T for any topological space T . The Lebesgue space of p-integrable
(with respect to the Lebesgue measure) functions over RN for N ∈ N = {1, 2, . . . }
will be denoted by Lp(RN), p > 1, as usual, while Lp(RN , ρ), p > 1, will be the
Lebesgue space weighted by a measurable function ρ : RN → RN .

2 Stochastic neural field equations as evolution equa-

tions in Hilbert spaces

In this section we will need the following operator spaces. Let U and H be two
separable Hilbert spaces. We will write L0(U,H) to denote the space of all bounded
linear operators form U to H with the usual norm (with the shorthand L0(H) when
U = H), and L2(U,H) for the space of all Hilbert-Schmidt operators from U to H ,
i.e. those bounded linear operators B : U → H such that

∑

k > 1

‖B(ek)‖2H < ∞,

for some (and hence all) complete orthonormal systems {ek}k > 1 of U . Finally, a
bounded linear operator Q : U → U will be said to be trace-class if Tr(Q) :=∑

k > 1〈Q(ek), ek〉U < ∞, again for some (and hence all) complete orthonormal sys-
tems {ek}k > 1 of U .
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2.1 Hilbert space valued Q-Wiener processes

Let U be a separable Hilbert space and Q : U → U a non-negative, symmetric
bounded linear operator on U such that Tr(Q) < ∞.

Definition 2.1. A U-valued stochastic process W = (W (t))t > 0 is called a Q-Wiener
process on U with respect to (Ft)t > 0 if: (i) W (0) = 0; (ii) t 7→ W (t) is continuous
as a map from [0,∞) → U ; (iii) (W (t))t > 0 is adapted to (Ft)t > 0; (iv) W has
independent increments; and (v) for all 0 6 s 6 t the law of W (t)−W (s) on U is
Gaussian with mean 0 and covariance operator (t− s)Q.

Since Q is non-negative and trace-class, there exists a complete orthonormal
basis {ek}k > 1 for U and a sequence of non-negative real numbers (λk)k > 1 such that
Qek = λkek and

∞∑

k=1

λk < ∞.

By [11, Proposition 4.1], for arbitrary t > 0, W has the expansion

W (t) =
∞∑

k=1

√
λkβk(t)ek, (2.1)

where (βk(t))t > 0, k = 1, 2, . . . are mutually independent standard real-valued Brow-
nian motions on (Ω,F ,P), and the series is convergent in L2(Ω,F ,P).

2.2 Stochastic integration with respect to Q-Wiener processes

Again let U be a separable Hilbert space, Q : U → U a non-negative, symmetric
bounded linear operator on U such that Tr(Q) < ∞, and W = (W (t))t > 0 be a
Q-Wiener process on U with respect to (Ft)t > 0 (given by (2.1)).

Let H be another separable Hilbert space, and let Q
1

2 (U) be the subspace of U ,
which is a Hilbert space under the inner product

〈u, v〉
Q

1
2 (U)

:= 〈Q− 1

2u,Q− 1

2 v〉U , u, v ∈ Q
1

2 (U).

The space L2(Q
1

2 (U), H) of all Hilbert-Schmidt operators from Q
1

2 (U) into H plays
an important role in the theory of stochastic evolution equations, and for this reason
we detail the following trivial example:

Example 2.2. Let B : U → H be a bounded linear operator from U to H i.e.
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B ∈ L0(U,H). Then

‖B‖2
L2(Q

1
2 (U),H)

=
∞∑

k=1

‖B(Q
1

2 (ek))‖2H

6 ‖B‖2L0(U,H)

∞∑

k=1

‖Q 1

2 (ek)‖2U

= ‖B‖2L0(U,H)

∞∑

k=1

〈Q(ek), ek〉U = ‖B‖2L0(U,H)Tr(Q) < ∞,

since Tr(Q) < ∞, where {ek}k > 1 is again a complete orthonormal system for U .

In other words B ∈ L0(U,H) ⇒ B ∈ L2(Q
1

2 (U), H).

Let T > 0 be arbitrary. By following the construction detailed in Chapter 4 of
[11], we have that for a process (Φ(t))t∈[0,T ] the integral

∫ t

0

Φ(s)dW (s) (2.2)

has a sense as an element of H when Φ(t) ∈ L2(Q
1

2 (U), H), t ∈ [0, T ], is predictable
(with respect to the filtration (Ft)t > 0) and if

P

(∫ T

0

‖Φ(s)‖2
L2(Q

1
2 (U),H)

ds < ∞
)

= 1.

Thus, for example, we have that
∫ t

0

BdW (t)

has a sense in H if and only if

‖B‖2
L2(Q

1
2 (U),H)

< ∞.

When B : U → H is bounded, this certainly holds by the previous example.

2.3 Solutions to stochastic evolution equations

Let U and H be two separable Hilbert spaces. Consider the stochastic evolution
equation

dY (t) = (AY (t) + F(t, Y (t))) dt+B(t, Y (t))dW (t), Y (0) = Y0 ∈ H, (2.3)

where W is a U -valued Q-Wiener process with respect to (Ft)t > 0, with Q : U → U
a non-negative, symmetric bounded linear operator on U such that Tr(Q) < ∞ as
above.
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We use Gt to denote the predictable σ-field on [0, t]× Ω i.e. Gt is the σ-algebra
generated by all left-continuous stochastic processes on [0, t] adapted to (Fs)s∈[0,t]
for all t > 0.

Fix an arbitrary finite horizon T > 0. We work with the following hypotheses.

(H1) A is the generator of a strongly continuous semigroup S(t) = etA, t > 0, in H .

(H2) The mapping F : [0, T ]×Ω×H → H is measurable from ([0, T ]×Ω×H,GT ×
B(H)) into (H,B(H)).

(H3) The mapping B : [0, T ]×Ω×H → L2(Q
1

2 (U), H) is measurable from ([0, T ]×
Ω×H,GT × B(H)) into (L2(Q

1

2 (U), H),B(L2(Q
1

2 (U), H))).

(H4) There exists a constant C such that

‖F(t, ω, g)− F(t, ω, h)‖H + ‖B(t, ω, g)−B(t, ω, h)‖
L2(Q

1
2 (U),H)

6 C‖g − h‖H ,

and
‖F(t, ω, h)‖2H + ‖B(t, ω, h)‖2

L2(Q
1
2 (U),H)

6 C2(1 + ‖h‖2H),

for all g, h ∈ H , t ∈ [0, T ] and ω ∈ Ω.

We now make precise what we mean by a mild solution to (2.3).

Definition 2.3 (Mild solution). A predictable H-valued process (Y (t))t∈[0,T ] is said
to be a mild solution of (2.3) on [0, T ] if

P

(∫ T

0

‖Y (s)‖2Hds < ∞
)

= 1 (2.4)

and, for arbitrary t ∈ [0, T ], we have

Y (t) = S(t)Y0 +

∫ t

0

S(t− s)F(s, Y (s))ds+

∫ t

0

S(t− s)B(s, Y (s))dW (s), P− a.s.

Note that under the conditions (H1) - (H4), (2.4) implies that the integrals in this
expression are well-defined.

The following existence and uniqueness result is quoted from [11] (Theorem 7.4).

Theorem 2.4 (Da Prato - Zabczyk). Assume that conditions (H1) - (H4) are sat-
isfied, and that Y0 is an F0-measurable H-valued random variable with finite p-
moments for all p > 2. Then there exists a unique (up to equivalence in the Hilbert
space H) mild solution (Y (t))t∈[0,T ] of (2.3). Moreover, it has a continuous modifi-
cation.

In addition, for all p > 2, there exists a constant C
(p)
T > 0 such that

sup
t∈[0,T ]

E [ ‖Y (t)‖pH ] 6 C
(p)
T (1 + E [ ‖Y0‖pH ]) , (2.5)
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and for all p > 2

E

[
sup

t∈[0,T ]

‖Y (t)‖pH

]
6 C

(p)
T (1 + E [ ‖Y0‖pH ]) . (2.6)

2.4 The stochastic neural field equation: existence and unique-

ness of a Hilbert-space valued solution

In this section we describe our precise interpretation of the stochastic neural field
equation (1.1) in the language of Hilbert space valued stochastic evolution equations
(equation (2.7) below), and study existence and uniqueness properties of this equa-
tion. Note that as opposed to (1.1), we here work in the more general setup when
the underlying space is N -dimensional.

Let ρ : RN → R
N be in L∞(RN ). Consider the stochastic evolution equation

dY (t) = (−Y (t) + F(Y (t))) dt+σ(Y (t))◦BdW (t), Y (0) = Y0 ∈ L2(RN , ρ), (2.7)

where ◦ indicates the composition of operators, W is an L2(RN)-valued Q-Wiener
process with respect to (Ft)t > 0, with Q a non-negative, symmetric bounded linear
operator on L2(RN) such that Tr(Q) < ∞, as usual. Here

• B : L2(RN) → L2(RN , ρ) is defined by

B(u)(x) =

∫

RN

ϕ(x− y)u(y)dy, x ∈ R
N , u ∈ L2(RN ), (2.8)

for some ϕ ∈ L1(RN)1;

• σ : L2(RN , ρ) → L0(L
2(RN , ρ)) is such that

‖σ(g)− σ(h)‖L0(L2(RN ,ρ)) 6 Cσ‖g − h‖L2(RN ,ρ), g, h ∈ L2(RN , ρ);

• F is an operator on L2(RN , ρ) defined by

F(h)(x) =

∫

RN

w(x, y)G(h(y))dy, x ∈ R
N , h ∈ L2(RN , ρ), (2.9)

where w : RN × RN → R is the neural field kernel, and G : R → R is the
nonlinear gain function, assumed to be bounded and globally Lipschitz i.e such
that there exists a constant CG with supa∈R |G(a)| 6 CG and

|G(a)−G(b)| 6 CG|x− y|, ∀a, b ∈ R.

1This is well-defined since ‖B(u)‖L2(RN ,ρ) 6 ‖ρ‖1/2
L∞(RN )

‖u‖L2(RN )‖ϕ‖L1(RN ), for all u ∈ L2(RN ).
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Typically the nonlinear gain function G is taken to be a sigmoid function, for
example G(a) = (1 + e−a)−1, a ∈ R.

Of particular interest to us are the conditions on the neural field kernel w which
will allow us to prove existence and uniqueness of a solution taking its values in the
space L2(RN , ρ) for some ρ through Theorem 2.4.

In [29, footnote 1] it is suggested that the condition
∫

RN

∫

RN

|w(x, y)|2dxdy < ∞ (C1)

together with symmetry of w is enough to ensure that there exists a unique L2(RN)-
valued solution to (2.7). However, the problem is that it does not follow from (C1)
that the operator F is stable on the space L2(RN). For instance, suppose that in
fact G ≡ 1 (so that G is trivially globally Lipschitz). Then for h ∈ L2(RN) (and
assuming w > 0) we have that

‖F(h)‖2L2(RN ) =

∫

RN

‖w(x, ·)‖2L1(RN )dx. (2.10)

The point is that we can chose positive w such that (C1) holds, while (2.10) is not
finite. For example in the case N = 1 we could take w(x, y) = (1+ |x|)−1(1 + |y|)−1

for x, y ∈ R. In such a case the equation (2.7) is ill-posed: if Y (t) ∈ L2(R) then
F (t, Y (t)) is not guaranteed to be in L2(R), which in turn implies that Y (t) 6∈ L2(R)!

With this in mind we argue two points. Firstly, if we want a solution in L2(RN),
we must make the additional strong assumption that

∀x ∈ R
N (y 7→ w(x, y)) ∈ L1(RN), and ‖w(x, ·)‖L1(RN ) ∈ L2(RN). (C2)

Indeed, below we will show that (C1) together with (C2) are enough to yield the
existence of a unique L2(RN)-valued solution to (2.7).

On the other hand, if we don’t want to make the strong assumptions that (C1)
and (C2) hold, then we have to work instead in a weighted space L2(RN , ρ), in order
to ensure that F is stable. In this case, we will see that if

∃ ρw ∈ L1(RN) ∩ L∞(RN), s.t.

∫

RN

|w(x, y)|ρw(x)dx 6 Λwρw(y) ∀y ∈ R
N ,

(C1’)
for some Λw > 0, and

∀x ∈ R
N (y 7→ w(x, y)) ∈ L1(RN), and sup

x∈RN

‖w(x, ·)‖L1(RN ) 6 Cw (C2’)

for some constant Cw, then we can prove the existence of a unique L2(RN , ρw)-valued
solution to (2.7).

Condition (C1’) is in fact a non-trivial eigenvalue problem, and it is not straight-
forward to see whether it is satisfied for a given function w. However, we chose to
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state the theorem below in a general way, and then below provide some important
examples of when it can be applied.

In particular, one case of interest is when w is homogeneous i.e. w(x, y) =
w(x − y) for all x, y ∈ RN , with w ∈ L1(RN ). This is an especially important
case, since the homogeneity of w is a very common assumption that is made in the
literature (see for example [6, 7, 8, 19, 21, 24]). However, when w is homogeneous it
is clear that neither (C1) nor (C2) are satisfied, and so we instead must try to show
that (C1’) is satisfied ((C2’) trivially holds). This is done in the second example
below.

Remark 2.5. If we replace the spatial coordinate space R
N by a bounded domain

D ⊂ RN , so that the neural field equation (2.7) describes the activity of a neuron
found at position x ∈ D then these kinds of issues do not come into play, and
everything becomes rather trivial (under appropriate boundary conditions). Indeed,
in this case one can then check the conditions of Theorem 2.4 to see that there exists
a unique L2(D)-valued solution to (2.7) under the condition (C2’) only (with RN

replaced by D). Although working in a bounded domain seems more physical (since
any physical section of cortex is clearly bounded), the unbounded case is still often
used, see [7] or the review [5], and is mathematically more interesting. The problem
in passing to the unbounded case stems from the fact that the nonlocal term in (2.7)
naturally ‘lives’ in the space of bounded functions, while the noise naturally lives in
an L2 space. These are not compatible when the underlying space is unbounded.

Theorem 2.6. Suppose that the neural field kernel w either

(i) satisfies conditions (C1) and (C2); or

(ii) satisfies conditions (C1’) and (C2’).

If (i) holds set ρw ≡ 1, while if (ii) holds let ρw be the function appearing in condition
(C1’).

Then, whenever Y0 is an F0-measurable L2(RN , ρw)-valued random variable with
finite p-moments for all p > 2, the neural field equation (2.7) has a unique mild
solution taking values in the space L2(RN , ρw). To be precise, there exists a unique
L2(RN , ρw)-valued process (Y (t))t > 0 such that for all T > 0

P

(∫ T

0

‖Y (s)‖2L2(RN ,ρw)ds < ∞
)

= 1

and,

Y (t) = e−tY0 +

∫ t

0

e−(t−s)
F(Y (s))ds+

∫ t

0

e−(t−s)σ(Y (s)) ◦BdW (s), P− a.s.

Moreover, (Y (t))t > 0 has a continuous modification, and satisfies the bounds (2.5)
and (2.6) for every T > 0 (with H = L2(RN , ρw)).
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Proof. We check the hypotheses (H1)-(H4) in both cases (i) and (ii) in order to be
able to apply Theorem 2.4, with U = L2(RN) and H = L2(RN , ρw).

(H1): In our case A = −Id, and so (H1) is trivially satisfied in both cases.

(H2): We check that the function F : L2(RN , ρw) → L2(RN , ρw). In case (i) this
holds since ρw ≡ 1 and for any h ∈ L2(RN)

‖F(h)‖2L2(RN ) =

∫

RN

∣∣∣∣
∫

RN

w(x, y)G(h(y))dy

∣∣∣∣
2

dx

6 C2
G

∫

RN

‖w(x, ·)‖2L1(RN )dx < ∞,

by assumption (C2). Similarly in case (ii) for any h ∈ L2(RN , ρw)

‖F(h)‖2L2(RN ,ρw) =

∫

RN

∣∣∣∣
∫

RN

w(x, y)G(h(y))dy

∣∣∣∣
2

ρw(x)dx

6 C2
G sup

x∈RN

‖w(x, ·)‖2L1(RN )‖ρw‖L1(RN ) < ∞.

Hence in either case F in fact maps L2(RN , ρw) into a metric ball in L2(RN , ρw).

(H3): To show (H3) in both cases it suffices to check that for any h ∈ L2(RN , ρw)

the operator σ(h) ◦ B is in the space L2(Q
1

2 (U), H). We know by Example 2.2
that it suffices to prove that σ(h) ◦ B : L2(RN) → L2(RN , ρw) is bounded for any
h ∈ L2(RN , ρw). To this end, for any u ∈ L2(RN), we have by definition

‖σ(h) ◦B(u)‖2L2(RN ,ρw) 6 ‖σ(h)‖2L0(L2(RN ,ρw))‖B(u)‖2L2(RN ,ρw)

= ‖σ(h)‖2L0(L2(RN ,ρw))

∫

RN

|B(u)(x)|2ρw(x)dx

= ‖σ(h)‖2L0(L2(RN ,ρw))

∫

RN

(∫

RN

ϕ(x− y)u(y)dy

)2

ρw(x)dx

6 ‖σ(h)‖2L0(L2(RN ,ρw))‖ρw‖∞‖ϕ‖2L1(RN )‖u‖2L2(RN ) < ∞,

since ρw is bounded (in either case) and ϕ ∈ L1(RN).

(H4): To show (H4), we first want F : L2(RN , ρw) → L2(RN , ρw) to be globally
Lipschitz. To this end, for any g, h ∈ L2(RN , ρw), we see that in either case

‖F(g)− F(h)‖2L2(RN ,ρw) =

∫

RN

|F(g)− F(h)|2(x)ρw(x)dx

6

∫

RN

(∫

RN

|w(x, y)| |G(g(y))−G(h(y))| dy
)2

ρw(x)dx

6 C2
G

∫

RN

(∫

RN

|w(x, y)| |g(y)− h(y)| dy
)2

ρw(x)dx,

11



where we have used the Lipschitz property of G. Now in case (i) it clearly follows
from the Cauchy-Schwartz inequality that

‖F(g)− F(h)‖2L2(RN ) 6 C2
G

(∫

RN

∫

RN

|w(x, y)|2dxdy
)
‖g − h‖L2(RN ) ,

so that by condition (C1), F is indeed Lipschitz.
In case (ii), by Cauchy-Schwartz and the specific property of ρw given by (C1’),

we see that

‖F(g)− F(h)‖2L2(RN ,ρw)

6 C2
G sup

x∈RN

‖w(x, ·)‖L1(RN )

∫

RN

|g(y)− h(y)|2
(∫

RN

|w(x, y)|ρw(x)dx
)
dy

6 C2
GΛw sup

x∈RN

‖w(x, ·)‖L1(RN )‖g − h‖2L2(RN ,ρw),

so that again F is Lipschitz.
The final step is to show that σ(·) ◦ B : H → L2(Q

1

2 (U), H) with U = L2(RN)
and H = L2(RN , ρw) is Lipschitz. Again, by Example 2.2 we have for any g, h ∈ H

‖σ(g) ◦B − σ(h) ◦B‖2
L2(Q

1
2 (U),H)

6 Tr(Q)‖σ(g) ◦B − σ(h) ◦B‖2L0(U,H)

6 Tr(Q)‖σ(g)− σ(h)‖2L0(H)‖B‖2L0(U,H)

6 C2
σTr(Q)‖B‖2L0(U,H)‖g − h‖2H ,

where ‖B‖L0(U,H) is finite since ρw is bounded (in either case).

As mentioned we now present two important cases where the conditions (C1’)
and (C2’) are satisfied.

Example 1: |w| defines a compact integral operator. Suppose that

• given ε > 0, there exists δ > 0 and R > 0 such that for all θ ∈ RN with |θ| < δ

(i) for almost all x ∈ RN ,
∫

RN\B(0,R)

|w(x, y)|dy < ε,

∫

RN

|w(x, y + θ)− w(x, y)|dy < ε,

(ii) for almost all y ∈ RN ,
∫

RN\B(0,R)

|w(x, y)|dx < ε,

∫

RN

|w(x+ θ, y)− w(x, y)|dx < ε,

where B(0, R) denotes the ball of radius R in RN centered at the origin;

12



• There exists a bounded subset Ω ⊂ RN of positive measure such that

inf
y∈Ω

∫

Ω

|w(x, y)|dx > 0, or inf
x∈Ω

∫

Ω

|w(x, y)|dy > 0;

• w satisfies (C2’) and moreover

∀y ∈ R
N (x 7→ w(x, y)) ∈ L1(RN), and sup

y∈RN

‖w(·, y)‖L1(RN ) < ∞.

We claim that these assumptions are sufficient for (C1’) so that we can apply
Theorem 2.6 in this case. Indeed, let X be the Banach space of functions in
L1(RN) ∩ L∞(RN) equipped with the norm ‖ · ‖X = max{‖ · ‖L1(RN ), ‖ · ‖L∞(RN )}.
Thanks to the last point above, we can well-define the map J : X → X by

Jh(y) =

∫

RN

|w(x, y)|h(x)dx, h ∈ X.

Moreover, it follows from [16, Corollary 5.1] that the first condition we have here
imposed on w is in fact necessary and sufficient for both the operators J : L1(RN) →
L1(RN) and J : L∞(RN ) → L∞(RN) to be compact. We therefore clearly also have
that the condition is necessary and sufficient for the operator J : X → X to be
compact.

Note now that the space K of positive functions in X is a cone in X such that
J(K) ⊂ K, and that the cone is reproducing (i.e. X = {f − g : f, g ∈ K}). If we
can show that r(J) is strictly positive, we can thus finally apply the Krein-Rutman
Theorem (see for example [15, Theorem 1.1]) to see that r(J) is an eigenvalue with
corresponding non-zero eigenvector ρ ∈ K.

To show that r(J) > 0, suppose first of all that there exists a bounded Ω ⊂ R
N of

positive measure such that infy∈Ω
∫
Ω
|w(x, y)|dx > 0. Define h = 1 on Ω, 0 elsewhere,

so that ‖h‖X = max{1, |Ω|}. Then, trivially,

‖Jh‖X > sup
y∈RN

∫

Ω

|w(x, y)|dx > inf
y∈Ω

∫

Ω

|w(x, y)|dx =: m > 0,

by assumption. Replacing h by h̃ = h/max{1, |Ω|} yields ‖h̃‖X = 1 and

‖Jh̃‖X > m/max{1, |Ω|}.

Thus ‖J‖ > m/max{1, |Ω|}. Similarly

‖J2h‖X > sup
y∈RN

∫

RN

|w(x1, y)|
(∫

Ω

|w(x2, x1)|dx2

)
dx1

>

∫

RN

|w(x1, y)|
(∫

Ω

|w(x2, x1)|dx2

)
dx1, ∀y ∈ R

N

> inf
x1∈Ω

(∫

Ω

|w(x2, x1)|dx2

)∫

Ω

|w(x1, y)|dx1, ∀y ∈ R
N .

13



Therefore

‖J2h‖X > m2,

so that ‖J2‖ > m2/max{1, |Ω|}. In fact we have ‖Jk‖ > mk/max{1, |Ω|} for
all k > 1, so that, by the spectral radius formula, r(J) > m > 0. The case
where infx∈Ω

∫
Ω
|w(x, y)|dy > 0 holds instead is proved similarly, by instead taking

h = 1/|Ω| on Ω (0 elsewhere) and working with the L1(RN) norm of Jh in place of
the L∞(RN) norm.

We have thus found a non-negative, non-zero function ρ = ρw ∈ L1(RN) ∩
L∞(RN) such that

∫

RN

|w(x, y)|ρw(x)dx = r(J)ρw(y), ∀y ∈ R
N ,

so that (C1’) is satisfied.

Example 2: Homogeneous case. Suppose that

• w is homogeneous i.e w(x, y) = w(x− y) for all x, y ∈ RN ;

• w ∈ L1(RN) and is continuous;

•
∫
RN |x|2N |w(x)|dx < ∞.

These conditions are satisfied for many typical choices of the neural field kernel in
the literature (e.g. the “Mexican hat” kernel [4, 17, 24, 32]). However, it is clear
that we are not in the case of the previous example, since for any R > 0

sup
x∈RN

∫

RN\B(0,R)

|w(x− y)|dy = ‖w‖L1(RN ),

which is not uniformly small. We thus again show that (C1’) is satisfied in this
case so that (since (C2’) is trivially satisfied) Theorem 2.6 yields the existence of a
unique L2(RN , ρw)-valued solution to (2.7).

In order to do this, we use the Fourier transform. Let v = |w|, so that v is
continuous and in L1(RN). Let Fv be the Fourier transform of v i.e.

Fv(ξ) :=

∫

RN

e−2πix.ξv(x)dx, ξ ∈ R
N .

Therefore Fv is continuous and bounded by

sup
ξ∈RN

|Fv(ξ)| 6 ‖v‖L1(RN ) = ‖w‖L1(RN ).

Now let Λw = ‖w‖L1(RN ) + 1, and z(x) := e−|x|2/2, x ∈ RN , so that z is in the
Schwartz space of smooth rapidly decreasing functions, which we denote by S(RN ).
Then define

ρ̂(ξ) :=
Fz(ξ)

Λw − Fv(ξ)
.

14



We note that the denominator is continuous and strictly bounded away from 0
(indeed by construction Λw − Fv(ξ) > 1 for all ξ ∈ RN). Thus ρ̂ is continuous,
bounded and in L1(RN) (since Fz ∈ S(RN ) by the standard stability result for the
Fourier transform on S(RN )).

We now claim that F−1ρ̂(x) ∈ L1(RN), where the map F−1 is defined by

F−1g(x) :=

∫

RN

e2πix.ξg(ξ)dξ, g ∈ L1(RN).

Indeed, we note that for any k ∈ {1, . . . , N},

∂2N
k Fv(ξ) = (−2πi)2N

∫

RN

e−2πix.ξx2N
k v(x)dx,

which is well-defined and bounded thanks to our assumption on the integrability
of x 7→ |x|2N |w(x)|. Since Fz is rapidly decreasing, we can thus see that the func-
tion ρ̂(ξ) is 2N times differentiable with respect to every component and ∂2N

k ρ̂(ξ)
is absolutely integrable for every k ∈ {1, . . .N}. Finally, since F−1(∂2N

k ρ̂)(x) =
(2πi)2Nx2N

k F−1ρ̂(x) for each k ∈ {1, . . . , N}, we have that

|F−1ρ̂(x)| 6
∑N

k=1 |F−1(∂2N
k ρ̂)(x)|

(2π)2N
∑N

k=1 x
2N
k

6
NN−1

∑N
k=1 ‖∂2N

k ρ̂‖L1(RN )

(2π)2N |x|2N ,

for all x ∈ RN . Thus there exists a constant K such that |F−1ρ̂(x)| 6 K/|x|2N .
Moreover, since we also have the trivial bound

|F−1ρ̂(x)| 6 ‖ρ̂‖L1(RN ),

for all x ∈ R
N , it follows that |F−1ρ̂(x)| 6 K/(1 + |x|2N), by adjusting the constant

K. Since this is integrable over RN , the claim is proved.
Now, by the classical Fourier Inversion Theorem (which is applicable since ρ̂ and

F−1ρ̂ are both in L1(RN)), we thus have that

F
(
F−1ρ̂

)
(ξ) = ρ̂(ξ),

for all ξ ∈ RN .
By setting ρ(x) = F−1ρ̂(x), we see that

ΛwFρ(ξ)− Fρ(ξ)Fv(ξ) := Fz(ξ).

We may finally again apply the inverse Fourier transform F−1 to both sides, so that
by the Inversion Theorem again (along with the standard convolution formula) it
holds that

Λwρ(y)−
∫

RN

v(x− y)ρ(x)dx = e−
|y|2

2 , y ∈ R
N .

It then follows that∫

RN

|w(x− y)|ρ(x)dx 6 Λwρ(y), y ∈ R
N ,

as claimed.
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Remark 2.7 (Large Deviation Principle). The main focus of [29] was a large de-
viation principle for the stochastic neural field equation (2.7) with small noise, but
in a less general situation than we consider here. In particular, the authors only
considered the neural field equation driven by a simple additive noise, white in both
space and time.

We would therefore like to remark that in our more general case, and under
much weaker conditions than those imposed in [29], an LDP result still holds and
can be quoted from the literature. Indeed, such a result is presented in [26, Theorem
7.1]. The main conditions required for the application of this result have essentially
already been checked above (global Lipschitz properties of F and σ(·)◦B), and it thus
remains to check conditions (E.1) – (E.4) as they appear in [26]. In fact these are
trivialities, since the strongly continuous contraction semigroup S(t) is generated by
the identity in our case.

2.5 Color of the noise in stochastic neural field equation (2.7)

It is important to understand the properties of the noise term in the neural field
equation (2.7) which we now know has a solution in some sense, and in particular
why we have have chosen the particular form (2.8) for the ‘coefficient’ B (although
it is really an operator). Recall that by definition

B(u)(x) =

∫

RN

ϕ(x− y)u(y)dy, x ∈ R
N , u ∈ L2(RN),

for some ϕ ∈ L1(RN). The first point is that we have deliberately made the definition
for ϕ ∈ L1(RN) so that it is possible to (at least formally) take ϕ as the Dirac
delta function. More rigorously we can take smooth approximations in L1(RN) that
integrate to 1. Anyhow, the operator B is then simply the identity and Theorem
2.6 still holds.

However, when ϕ is not the Dirac function, we claim that the noise term BdW (t)
in (2.7) is in fact spatially correlated. This is important in applications. For example
in [7] it is actually a spatially correlated noise that is added to the deterministic
neural field equation.

To see the spatial correlation, consider B as a map from L2(RN) → L2(RN , ρ)
for some bounded ρ ∈ L1(RN). As noted above, B is then bounded, and hence the
process (U(t))t > 0 defined by

U(t) =

∫ t

0

BdW (s), t > 0,

is a well-defined L2(RN , ρ)-valued process. Moreover, by Theorem 5.2 of [11],
(U(t))t > 0 is Gaussian with mean zero and

Cov (U(t)U(s)) = s ∧ tBQB∗, s, t > 0,
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where B∗ : L2(RN , ρ) → L2(RN) is the adjoint of B. In other words, for all g, h ∈
L2(RN , ρ), s, t > 0, we have that

E
[
〈g, U(s)〉L2(RN ,ρ)〈h, U(t)〉L2(RN ,ρ)

]
= s ∧ t〈BQB∗g, h〉L2(RN ,ρ).

That is, for any g, h ∈ L2(RN , ρ)

∫

RN

∫

RN

E [U(s, x)U(t, y) ] g(x)h(y)ρ(x)ρ(y)dxdy = s ∧ t 〈QB∗h,B∗g〉L2(RN )

= s ∧ t

∫

RN

QB∗g(z)B∗h(z)dz

. = s ∧ t

∫

RN

Q1/2B∗g(z)Q1/2B∗h(z)dz. (2.11)

Now, by definition, for u ∈ L2(RN ) and f ∈ L2(RN , ρ)

∫

RN

u(y)B∗(f)(y)dy =

∫

RN

B(u)(x)f(x)ρ(x)dx

=

∫

RN

u(y)

∫

RN

ϕ(x− y)f(x)ρ(x)dxdy

so that B∗(f)(y) =
∫
RN ϕ(x− y)f(x)ρ(x)dx. Using this in (2.11), we see that

∫

RN

∫

RN

E [U(s, x)U(t, y) ] g(x)h(y)ρ(x)ρ(y)dxdy

= s ∧ t

∫

RN

Q
1

2

(∫

RN

ϕ(x− z)g(x)ρ(x)dx

)
Q

1

2

(∫

RN

ϕ(y − z)h(y)ρ(y)dy

)
dz

= s ∧ t

∫

RN

(∫

RN

Q
1

2ϕ(x− z)g(x)ρ(x)dx

)(∫

RN

Q
1

2ϕ(y − z)h(y)ρ(y)dy

)
dz,

for all g, h ∈ L2(RN , ρ), since Q is a linear operator and is self-adjoint. We can then
conclude that

E [U(s, x)U(t, y) ] = s ∧ t

∫

RN

Q
1

2ϕ(x− z)Q
1

2ϕ(y − z)dz = (s ∧ t)c(x− y), (2.12)

where c(x) = Q
1

2ϕ ∗ Q 1

2 ϕ̃(x) and ϕ̃(x) = ϕ(−x). Hence (U(t))t > 0 is white in time
but stationary and colored in space with covariance function (s ∧ t)c(x). This is
exactly the rigorous interpretation of the noise described in [7], when interpret-
ing a solution to the stochastic neural field equation as a process taking values in
L2(RN , ρw).
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3 Stochastic neural fields as Gaussian random fields

In this section we take an alternative approach, and try to give sense to a solution
to the stochastic neural field equation (1.1) as a random field, using Walsh’s theory
of integration.

This approach generally takes as its starting point a deterministic PDE, and
then attempts include a term which is random in both space and time. With this
in mind, consider first the well studied deterministic neural field equation

∂tY (t, x) = −Y (t, x) +

∫

RN

w(x, y)G(Y (t, y))dy, x ∈ R
N , t > 0. (3.1)

Under some conditions on the neural field kernel w (boundedness, condition (C2’)
above and L1-Lipschitz continuity), this equation has a unique solution (t, x) 7→
Y (t, x) that is bounded and continuous in x and continuously differentiable in t,
whenever x 7→ Y (0, x) is bounded and continuous ([27]).

The idea then is to directly add a noise term to this equation, and try and give
sense to all the necessary objects in order to be able to define what we mean by a
solution. Indeed, consider the following stochastic version of (3.1),

∂tY (t, x) = −Y (t, x) +

∫

RN

w(x, y)G(Y (t, y))dy + σ(Y (t, x))Ẇ (t, x) (3.2)

where Ẇ is a “space-time white noise”. The definition of Ẇ will be made precise
below, but informally we may think of the object Ẇ (t, x) as the random distribution
which, when integrated against a test function h ∈ L2(R+ × RN )

Ẇ (h) :=

∫ ∞

0

∫

RN

h(t, x)Ẇ (t, x)dtdx, h ∈ L2(R+ × R
N),

yields a zero-mean Gaussian random field (Ẇ (h))h∈L2(R+×RN ) with covariance

E

[
Ẇ (g)Ẇ (h)

]
=

∫ ∞

0

∫

RN

g(t, x)h(t, x)dxdt, g, h ∈ L2(R+ × R
N).

The point is that with this interpretation of space-time white noise, since equa-
tion (3.2) specifies no regularity in the spatial direction (the map x 7→ Y (t, x) is
simply assumed to be Lebesgue measurable so that the integral makes sense), it is
clear that any solution will be distribution-valued in the spatial direction, which is
rather unsatisfactory. Indeed, consider the extremely simple linear case when G ≡ 0
and σ ≡ 1, so that (3.2) reads

∂tY (t, x) = −Y (t, x) + Ẇ (t, x). (3.3)

Formally, the solution to this equation is given by

Y (t, x) = e−tY (0, x) +

∫ t

0

e−(t−s)Ẇ (s, x)ds, t > 0, x ∈ R
N ,
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and since the integral is only over time it is clear (at least formally) that x 7→
Y (t, x) is a distribution for all t > 0. This differs significantly from the usual SPDE
situation, when one would typically have an equation such as (3.3) where a second
order differential operator in space is applied to the first term on the right-hand
side (leading to the much studied stochastic heat equation). In such a case, the
semigroup generated by the second order differential operator can be enough to
smooth the space-time white noise in the spatial direction, leading to solutions that
are continuous in both space and time (at least when the spatial dimension is 1 –
see for example [25, Chapter 3] or [33, Chapter 3]).

Of course one can develop a theory of distribution-valued processes (as is done in
[33, Chapter 4]) to interpret solutions of (3.2) in the obvious way: one says that the
random field (Y (t, x))t > 0,x∈RN is a (weak) solution to (3.2) if for all φ ∈ C∞

0 (RN) it
holds that

∫

RN

φ(x)Y (t, x)dx = e−t

∫

RN

φ(x)Y (0, x)dx

+

∫ t

0

∫

RN

e−(t−s)φ(x)

∫

RN

w(x, y)G(Y (s, y))dydxds

+

∫ t

0

∫

RN

e−(t−s)φ(x)σ(Y (s, x))Ẇ (s, x)dxds,

for all t > 0. Here all the integrals can be well-defined, which makes sense in-
tuitively if we think of Ẇ (t, x) as a distribution. In fact it is more common to
write

∫ t

0

∫
RN e−(t−s)φ(x)W (dsdx) for the stochastic integral term, once it has been

rigorously defined.
However, we argue that it is not worth developing this theory here, since distri-

bution valued solutions are of little interest physically. It is for this reason that we
instead look for other types of random noise to add to the deterministic equation
(3.1) that will produce solutions that are real-valued random fields, and are at least
Hölder continuous in both space and time. In the theory of SPDEs, when the spatial
dimension is 2 or more, the problem of an equation driven by space-time white noise
having no real-valued solution is a well-known and much studied one (again see for
example [25, Chapter 3] or [33, Chapter 3] for a discussion of this). To get around
the problem, a common approach ([13, 18, 30]) is to consider random noises that
are smoother than white noise, namely a Gaussian noise that is white in time but
has a smooth spatial covariance. Such random noise is known as either spatially
colored or spatially homogeneous white-noise. One can then formulate conditions
on the covariance function to ensure that real-valued Hölder continuous solutions to
the specific SPDE exist.

It should also be mentioned, as remarked in [13], that in trying to model physical
situations, there is some evidence that white-noise smoothed in the spatial direction
is more natural, since spatial correlations are typically of a much larger order of
magnitude than time correlations.

19



In the stochastic neural field case, since we have no second order differential
operator, our solution will only ever be as smooth as the noise itself. We therefore
look to add a noise term to (3.1) that is at least Hölder continuous in the spatial
direction, and then proceed to look for solutions to the resulting equation in the
sense of Walsh.

The section is structured as follows. First we briefly introduce Walsh’s theory of
stochastic integration with respect to martingale measures, for which the classical
reference is [33] although we instead follow closely the more recent explanation given
by D. Khoshnevisan in [12]. This theory will be needed to well-define the stochastic
integral in our definition of a solution to the neural field equation. We then introduce
the spatially smoothed space-time white noise that we will consider, before finally
applying the theory to analyze solutions of the neural field equation driven by this
spatially smoothed noise under certain conditions.

3.1 Integration with respect to the white noise process

Consider the centered Gaussian random field2

Ẇ := (Ẇ (A))A∈B(R+×RN )

indexed by A ∈ B(R+ × RN) (where R+ := [0,∞)) with covariance function

E

[
Ẇ (A)Ẇ (B)

]
= |A ∩B|, A, B,∈ B(R+ × R

N), (3.4)

where |A ∩ B| denotes the Lebesgue measure of A ∩ B. We say that Ẇ is a white
noise on R+×RN . We then define the white noise process W := (Wt(A))t > 0,A∈B(RN )

by
Wt(A) := Ẇ ([0, t]× A), (3.5)

for all t > 0, and we suppose that (Wt(A))t > 0 is adapted to the filtration (Ft)t > 0

for all A ∈ B(RN ).
We would like to build up a theory of stochastic integration with respect to this

process. With this in mind, one may hope that Wt is a signed measure on RN for
all t > 0. However, for all such t it holds that

lim
n→∞

2n−1∑

j=0

∣∣∣∣Wt

([
j − 1

2n
,
j

2n

])∣∣∣∣ = ∞

almost surely (see Exercise 3.16 [12, Chapter 1]), so that Wt is in fact not σ-finite
with any positive probability.

2Recall that a collection of random variables X = {X(θ)}θ∈Θ indexed by a set Θ is a Gaussian
random field on Θ if (X(θ1), . . . , X(θk)) is a k-dimensional Gaussian random vector for every
θ1, . . . , θk ∈ Θ. It is characterized by its mean and covariance functions.
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On the other hand, we can prove that

P

(
Wt

(
∞⋃

i=1

Ai

)
=

∞∑

i=1

Wt(Ai)

)
= 1

for all disjoint sets A1, A2, · · · ∈ B(RN ) and all t > 0, and that the sum is convergent
in L2(Ω,F ,P) (see Lemma 5.3 [12, Chapter 1]). In this sense Wt is instead an
L2(Ω,F ,P)-valued (random) measure i.e. Wt : B(RN ) → L2(Ω,F ,P).

Moreover, it is straightforward to show that for all A ∈ B(RN ), (Wt(A))t > 0 is a
centered martingale (with respect to (Ft)t > 0). In summary we have that the white
noise process W := (Wt(A))t > 0,A∈B(RN ) is such that

(i) W0(A) = 0 almost surely, for all A ∈ B(RN );

(ii) for all t > 0, Wt is a σ-finite L2(Ω,F ,P)-valued signed measure;

(iii) for all A ∈ B(RN), (Wt(A))t > 0 is a centered martingale with respect to the
filtration (Ft)t > 0.

In general, a family of random variables indexed by t > 0 and A ∈ B(RN) satisfying
(i)-(iii) is defined to be a martingale measure (with respect to (Ft)t > 0).

One can in fact build stochastic integrals with respect to general martingale
measures under a condition known as worthiness ([33, Chapter 2]). However, for
our needs and to keep things simple, we concentrate on this construction for the
white noise process (which turns out to be worthy).

Indeed, starting with elementary functions f : R+ × RN × Ω → R of the form

f(t, x, ω) = X(ω)1(a,b](t)1A(x) (3.6)

where a, b ∈ R+, X : Ω → R is bounded and Fa-measurable, and A ∈ B(RN), we
first define the stochastic integral process of f with respect to W as

(f ·W )t(B)(ω) := X(ω) [Wt∧b(A ∩ B)−Wt∧a(A ∩B)] (ω), t > 0, B ∈ B(RN ).

It is important to note that f · W is itself a new martingale measure (exactly as
Itô integrals with respect to martingales are martingales). As usual we then build
up the definition to accommodate integrands of linear combinations of elementary
functions. We call such functions simple functions, and denote the set of all simple
functions by S. We will also say that a function (t, x, ω) 7→ f(t, x, ω) is predictable
if it is measurable with respect to the σ-algebra generated by S, which we denote
by P. In other words, P is the smallest σ-algebra on R+ × RN × Ω such that all
simple functions are measurable.

As with the construction of the Itô integral, to go beyond linear combinations of
elementary functions the quadratic variation process plays a role. Indeed, we define

QW ([0, t), A, B) :=< W·(A),W·(B) >t, ∀t > 0, A, B ∈ B(RN ),
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where < ·, · >t is the standard cross-variation process between two martingales. The
point is that this process defines a σ-finite measure on R+×RN ×RN , since by (3.4)

QW ([0, t), A, B) = E[Wt(A)Wt(B)] = E[Ẇ ([0, t]×A)Ẇ ([0, t]× B)]

= |([0, t]×A) ∩ ([0, t]× B)|
= t|A ∩ B|,

for all t > 0, A,B ∈ B(RN), so that

QW (dtdxdy) = dtδ0(x− y)dxdy, (3.7)

where δ0 is the Dirac delta function.

Remark 3.1. It should be noted that when building stochastic integrals with respect
to a general martingale measure, one needs to impose extra conditions in order to
ensure that the quadratic variation process can be associated with a σ-finite measure.
It is at this point that the afore mentioned worthiness property is needed.

To proceed, we now fix a finite horizon T > 0 and define the norm

‖f‖2W := E

[∫ T

0

∫

RN

∫

RN

|f(t, x)f(t, y)|QW (dtdxdy)

]
= E

[∫ T

0

∫

RN

|f(t, x)|2dtdx
]
,

(3.8)
for any predictable function f . Then let PW be the set of all predictable functions
f for which ‖f‖W < ∞.

The following proposition and theorem complete the construction of the stochas-
tic integral with respect to W . For proofs we refer to [33, Proposition 2.3 and Theo-
rem 2.5] respectively (which are written for the general case of a worthy martingale
measure).

Proposition 3.2. The space PW equipped with the norm ‖·‖W is a complete Banach
space. Moreover, the space of simple functions S is dense in PW .

Theorem 3.3. For all f ∈ PW , f ·W can be well-defined as the L2(Ω,F ,P)-limit
of martingale measures fn ·W , for an approximating sequence {fn}n > 1 ⊂ S in the
norm ‖ · ‖W . Moreover f · W is a martingale measure such that for all t ∈ (0, T ]
and A,B ∈ B(RN ),

< (f ·W )·(A), (f ·W )·(B) >t=

∫ t

0

∫

A

∫

B

f(s, x)f(s, y)QW (dtdxdy),

and
E[(f ·W )2t (A)] 6 ‖f‖2W . (3.9)

The Lp-version of (3.9) is known as Burkhölder’s inequality and will be useful:
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Theorem 3.4 (Burkhölder’s inequality). For all p > 2 there exists a constant cp
such that for all f ∈ PW , t ∈ (0, T ] and A ∈ B(RN ),

E[|(f ·W )t(A)|p] 6 cpE

[(∫ T

0

∫

RN

|f(t, x)|2dtdx
) p

2

]
.

We now adopt the more standard notation and set

(f ·W )t(A) =:

∫ t

0

∫

A

fdW =

∫ t

0

∫

A

f(s, x)W (dsdx), (3.10)

for all f ∈ PW , t > 0 and A ∈ B(RN ).

3.2 Spatially smoothed space-time white noise

Let W = (Wt(A))t > 0,A∈B(RN ) be a white-noise process adapted to (Ft)t > 0 as defined
in the previous section. For ϕ ∈ L2(RN), we can well-define the (Gaussian) random
field (W ϕ(t, x))t > 0,x∈RN for any T > 0 by

W ϕ(t, x) :=

∫ t

0

∫

RN

ϕ(x− y)W (dsdy). (3.11)

To see this one just needs to check that ϕ(x−·) ∈ PW for every x, where, as above,
PW is the set of all predictable functions f for which ‖f‖W < ∞. The function
ϕ(x−·) is clearly predictable for each x (since it is non-random) and for every T > 0

‖ϕ(x− ·)‖2W = E

[∫ T

0

∫

RN

|ϕ(x− z)|2dtdz
]

= T‖ϕ‖2L2(RN ) < ∞,

so that the integral in (3.11) is indeed well-defined in the sense of the above construc-
tion. Moreover, (W ϕ(t, x))t > 0 is a centered martingale for each x ∈ RN with respect
to (Ft)t > 0 (by the properties of martingale measures) and has spatial covariance

E[W ϕ(t, x)W ϕ(t, y)] = E

[∫ t

0

∫

RN

ϕ(x− u)W (dsdu)×
∫ t

0

∫

RN

ϕ(y − v)W (dsdv)

]

= 〈(ϕ(x− ·) ·W )·(R
N), (ϕ(y − ·) ·W )·(R

N)〉t,

which by equation (3.10), Theorem 3.3 and equation (3.7) is equal to

t

∫

RN

ϕ(x− z)ϕ(y − z)dz = tϕ ⋆ ϕ̃(x− y), ∀t > 0, x, y ∈ R
N ,

where ⋆ denotes the convolution operator as usual, and ϕ̃(x) = ϕ(−x). In this sense
the noise is again spatially correlated.

The regularity in time of this process is the same as that of a Brownian path:
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Lemma 3.5. For any x ∈ RN , the path t 7→ W ϕ(t, x) has an η-Hölder continuous
modification for any η ∈ (0, 1/2).

Proof. For x ∈ RN , s, t > 0 with s 6 t and any p > 2 we have by Burkhölder’s
inequality (Theorem 3.4 above) that

E [ |W ϕ(t, x)−W ϕ(s, x)|p ] 6 cp‖ϕ‖2L2(RN )(t− s)
p

2 .

The result follows from the standard Kolmogorov continuity theorem (see for exam-
ple Theorem 4.3 of [12, Chapter 1]).

More importantly, if we impose some (very weak) regularity on ϕ then W ϕ

inherits some spatial regularity:

Lemma 3.6. Suppose that there exists a constant Cϕ such that

‖ϕ− τ z(ϕ)‖L2(RN ) 6 Cϕ|z|α, ∀z ∈ R
N , (3.12)

for some α ∈ (0, 1], where τ z indicates the shift by z operator (so that τ z(ϕ)(y) :=
ϕ(y + z) for all y, z ∈ RN). Then for all t > 0, the map x 7→ W ϕ(t, x) has an
η-Hölder continuous modification, for any η ∈ (0, α).

Proof. For x, x̃ ∈ RN , t > 0, and any p > 2 we have (again by Burkhölder’s
inequality) that

E [ |W ϕ(t, x)−W ϕ(t, x̃)|p ] 6 t
p

2 cp

(∫

RN

|ϕ(x− y)− ϕ(x̃− y)|2dy
)p

2

= t
p

2 cp

(∫

RN

|ϕ(y)− ϕ(y + x̃− x)|2dy
)p

2

6 t
p

2 cpC
p
ϕ|x− x̃|pα.

The result follows by Kolmogorov’s continuity theorem.

Remark 3.7. The condition (3.12) with α = 1 is true if and only if the function ϕ
is in the Sobolev space W 1,2(RN) ([9, Proposition 9.3]).

When α < 1 the set of functions ϕ ∈ L2(RN) which satisfy (3.12) defines a
Banach space denoted by Nα,2(RN) which is known as the Nikolskii space. This
space is closely related to the more familiar fractional Sobolev space W α,2(RN ) though
they are not identical. We refer to [31] for a detailed study of such spaces and their
relationships. An example of when (3.12) holds with α = 1/2 is found by taking ϕ
to be an indicator function. It is in this way we see that (3.12) is a rather weak
condition.
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3.3 The stochastic neural field equation driven by spatially

smoothed space-time white noise

We now have everything in place to define and study the solution to the stochastic
neural field equation driven by a spatially smoothed space-time white noise. Indeed,
consider the equation

∂tY (t, x) = −Y (t, x) +

∫

RN

w(x, y)G(Y (t, y))dy + σ(Y (t, x))
∂

∂t
W ϕ(t, x), (3.13)

with initial condition Y (0, x) = Y0(x) for x ∈ RN and t > 0, where

• (W ϕ(t, x))t > 0,x∈RN is the spatially smoothed space-time white noise (adapted
to (Ft)t > 0) defined by (3.11) for some ϕ ∈ L2(RN);

• G : R → R is the nonlinear gain function, assumed to bounded and globally
Lipschitz i.e such that there exists a constant CG with supa∈R |G(a)| 6 CG and

|G(a)−G(b)| 6 CG|a− b|, ∀a, b ∈ R,

as above;

• σ : R → R is globally Lipschitz i.e. there exists a constant Cσ such that

|σ(a)− σ(b)| 6 Cσ|a− b|, and |σ(a)| 6 Cσ(1 + |a|), ∀a, b ∈ R.

Although the above equation is not well-defined ( ∂
∂t
W ϕ(t, x) does not exist), we

will interpret a solution to (3.13) in the following way.

Definition 3.8. By a solution to (3.13) we will mean a real-valued predictable (i.e.
P-measurable) adapted random field (Y (t, x))t > 0,x∈RN such that

Y (t, x) = e−tY0(x) +

∫ t

0

e−(t−s)

∫

RN

w(x, y)G(Y (s, y))dyds

+

∫ t

0

∫

RN

e−(t−s)σ(Y (s, x))ϕ(x− y)W (dsdy), (3.14)

almost surely for all t > 0 and x ∈ RN , where the stochastic integral term is under-
stood in the sense described in Section 3.1.

Once again we are interested in the conditions on the neural field kernel w that
allow us to prove the existence of solutions in this new sense. Recall that in Section
2 we either required conditions (C1) and (C2) or (C1’) and (C2’) to be satisfied.
The difficulty was to keep everything well-behaved in the Hilbert space L2(RN)
(or L2(RN , ρ)). However, when looking for solutions in the sense of random fields
(Y (t, x))t > 0,x∈RN such that (3.14) is satisfied, such restrictions are no longer needed,
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principally because we no longer have to concern ourselves with the behavior in space
at infinity. Indeed, in this section we simply work with the condition (C2’) i.e. that

∀x ∈ R
N (y 7→ w(x, y)) ∈ L1(RN ), and sup

x∈RN

‖w(x, ·)‖L1(RN ) 6 Cw,

for some constant Cw.

Theorem 3.9. Suppose that the map x 7→ Y0(x) is Borel measurable almost surely,
Y0(x) is F0-measurable for all x ∈ RN , and that

sup
x∈RN

E
[
|Y0(x)|2

]
< ∞.

Suppose moreover that the neural field kernel w satisfies condition (C2’). Then there
exists an almost surely unique predictable random field (Y (t, x))t > 0,x∈RN which is a
solution to (3.13) in the sense of Definition 3.8 such that

sup
t∈[0,T ],x∈RN

E
[
|Y (t, x)|2

]
< ∞, (3.15)

for any T > 0.

Proof. The proof proceeds in a classical way, but where we are careful to interpret
all stochastic integrals as described in Section 3.1.

Uniqueness: Suppose that (Y (t, x))t > 0,x∈RN and (Z(t, x))t > 0,x∈RN are both solu-
tions to (3.13) in the sense of Definition 3.8. Let D(t, x) = Y (t, x) − Z(t, x) for
x ∈ R

N and t > 0. Then we have

D(t, x) =

∫ t

0

e−(t−s)

∫

RN

w(x, y)[G(Y (s, y))−G(Z(s, y))]dyds

+

∫ t

0

∫

RN

e−(t−s)[σ(Y (s, x))− σ(Z(s, x))]ϕ(x− y)W (dsdy).

Therefore

E
[
|D(t, x)|2

]
6 2E

[(∫ t

0

e−(t−s)

∫

RN

|w(x, y)||G(Y (s, y))−G(Z(s, y))|dyds
)2
]

+ 2E

[(∫ t

0

∫

RN

e−(t−s)[σ(Y (s, x))− σ(Z(s, x))]ϕ(x− y)W (dsdy)

)2
]

6 2t

∫ t

0

e−2(t−s)
E

[(∫

RN

|w(x, y)||G(Y (s, y))−G(Z(s, y))|dy
)2
]
ds

+ 2

∫ t

0

∫

RN

e−2(t−s)
E
[
|σ(Y (s, x))− σ(Z(s, x))|2

]
|ϕ(x− y)|2dsdy,
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where we have used Cauchy-Schwarz and the L2-version of Burkhölder’s inequality
(3.9). Thus, using the Lipschitz property of σ and G,

E
[
|D(t, x)|2

]
6 2tC2

G

∫ t

0

e−2(t−s)
E

[(∫

RN

|w(x, y)||D(s, y)|dy
)2
]
ds

+ 2C2
σ‖ϕ‖2L2(RN )

∫ t

0

e−2(t−s)
E
[
|D(s, x)|2

]
ds.

By the Cauchy-Schwarz inequality once again

E
[
|D(t, x)|2

]
6 2tC2

G‖w(x, ·)‖L1(RN )

∫ t

0

e−2(t−s)

∫

RN

|w(x, y)|E
[
|D(s, y)|2

]
dyds

+ 2C2
σ‖ϕ‖2L2(RN )

∫ t

0

e−2(t−s)
E
[
|D(s, x)|2

]
ds.

Let H(s) := supx∈RN E[|D(s, x)|2], which is finite since we are assuming Y and
Z satisfy (3.15). Writing K = 2max{C2

σ, C
2
G}, we have

E
[
|D(t, x)|2

]
6 K

[
tC2

w + ‖ϕ‖2L2(RN )

] ∫ t

0

e−2(t−s)H(s)ds

⇒ H(t) 6 K
[
tC2

w + ‖ϕ‖2L2(RN )

] ∫ t

0

H(s)ds.

An application of Gronwall’s lemma then yields sups 6 t H(s) = 0 for all t > 0.
Hence Y (t, x) = Z(t, x) almost surely for all t > 0, x ∈ RN .

Existence: Let Y0(t, x) = Y0(x). Then define iteratively for n ∈ N0, t > 0, x ∈ R
N ,

Yn+1(t, x) := e−tY0(x) +

∫ t

0

e−(t−s)

∫

RN

w(x, y)G(Yn(s, y))dyds

+

∫ t

0

∫

RN

e−(t−s)σ(Yn(s, x))ϕ(x− y)W (dsdy). (3.16)

We first check that the stochastic integral is well-defined, under the assumption that

sup
t∈[0,T ],x∈RN

E(|Yn(t, x)|2) < ∞, (3.17)

for any T > 0, which we know is true for n = 0 by assumption, and we show by
induction is also true for each integer n > 1 below. To this end for any T > 0

E

[∫ T

0

∫

RN

e−2(t−s)σ2(Yn(s, x))ϕ
2(x− y)dsdy

]

6 2C2
σ‖ϕ‖2L2(RN )

∫ T

0

(1 + E
[
|Yn(s, x)|2

]
)ds

6 2C2
σ‖ϕ‖2L2(RN )T

[
1 + sup

t∈[0,T ],x∈RN

E
[
|Yn(t, x)|2

]
]
< ∞.
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This shows that the integrand in the stochastic integral is in the space PW (for all
T > 0), which in turn implies that the stochastic integral in the sense of Walsh is
indeed well-defined (by Theorem 3.3).

To be rigorous, we must moreover check that the deterministic integral in (3.16)
is well-defined. When n = 0, this follows from the fact that x 7→ Y0(x) is Borel
measurable almost surely. For n > 1, we use the fact that the stochastic convolution

(t, x) 7→
∫ t

0

∫

RN

e−(t−s)σ(Yn−1(s, x))ϕ(x− y)W (dsdy)

is predictable if (t, x) 7→ Yn−1(t, x) is predictable (this follows from the construction
in Section 3.1 and is explicitly stated in [10, Section 2.1]). Hence, for fixed t the
map x 7→ Yn(t, x) is Borel measurable almost surely, which in turn allows us to
well-define the deterministic integral in (3.16).

Now define Dn(t, x) := Yn+1(t, x)− Yn(t, x) for n ∈ N0, t > 0 and x ∈ R
N . Then

exactly as in the uniqueness calculation we have

E
[
|Dn(t, x)|2

]
6 2tC2

GCw

∫ t

0

e−2(t−s)

∫

RN

|w(x, y)|E
[
|Dn−1(s, y)|2

]
dyds

+ 2C2
σ‖ϕ‖2L2(RN )

∫ t

0

E
[
|Dn−1(s, x)|2

]
e−2(t−s)ds.

This implies that by setting Hn(s) = supx∈RN E
[
|Dn(s, x)|2

]
,

Hn(t) 6 Kn
[
tC2

w + ‖ϕ‖2L2(RN )

]n ∫ t

0

∫ t1

0

. . .

∫ tn−1

0

H0(tn)dtn . . . dt1, (3.18)

for all n ∈ N0 and t > 0. Now, similarly, we can find a constant Ct such that

E
[
|D0(s, x)|2

]
6 Ct

(
1 + sup

x∈RN

E
[
|Y0(x)|2

])
,

for any x ∈ R
N and s ∈ [0, t], so that for s ∈ [0, t],

H0(s) = sup
x∈RN

E
[
|D0(s, x)|2

]
6 Ct

(
1 + sup

x∈RN

E
[
|Y0(x)|2

])
,

Using this in (3.18) we see that,

Hn(t) 6 CtK
n
[
tC2

w + ‖ϕ‖2L2(RN )

]n(
1 + sup

x∈RN

E
[
|Y0(x)|2

]) tn

n!
,

for all t > 0. This is sufficient to see that (3.17) holds uniformly in n. By complete-
ness, for each t > 0 and x ∈ RN there exists Y (t, x) ∈ L2(Ω,F ,P) such that Y (t, x)
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is the limit in L2(Ω,F ,P) of the sequence of square-integrable random variables
(Yn(t, x))n > 1. Moreover, the convergence is uniform on [0, T ]× RN , i.e.

sup
t∈[0,T ],x∈RN

E |Yn(t, x)− Y (t, x)|2 → 0.

From this we can see that (3.15) is satisfied for the random field (Y (t, x))t > 0,x∈RN . It
remains to show that (Y (t, x))t > 0,x∈RN satisfies (3.14) almost surely. By the above
uniform convergence, we have that

E

[ ∣∣∣∣
∫ t

0

∫

RN

e−(t−s) [σ(Yn(s, x))− σ(Y (s, x))]ϕ(x− y)W (dsdy)

∣∣∣∣
2
]
→ 0,

and

E

[ ∣∣∣∣
∫ t

0

e−(t−s)

∫

RN

w(x, y) [G(Yn(s, y))−G(Y (s, y))]dsdy

∣∣∣∣
2
]
→ 0,

uniformly for all t > 0 and x ∈ RN . Thus taking the limit as n → ∞ in (3.16) (in the
L2(Ω,F ,P) sense) proves that (Y (t, x))t > 0,x∈RN does indeed satisfy (3.14) almost
surely. The fact that it is predictable and adapted follows from the construction.

In a very similar way, one can also prove that the solution remains Lp-bounded
whenever the initial condition is Lp-bounded for any p > 2. Moreover, this also
allows us to conclude that the solution has time continuous paths for all x ∈ RN .

Theorem 3.10. Suppose that we are in the situation of Theorem 3.9, but in ad-
dition we have that supx∈RN E [ |Y0(x)|p ] < ∞ for some p > 2. Then the solution
(Y (t, x))t > 0,x∈RN to (3.13) in the sense of Definition 3.8 is Lp-bounded on [0, T ]×RN

for any T i.e.
sup

t∈[0,T ],x∈RN

E [ |Y (t, x)|p ] < ∞,

and the map t 7→ Y (t, x) has a continuous version for all x ∈ RN . If the initial
condition has finite p-moments for all p > 2, then t 7→ Y (t, x) has an η-Hölder
continuous version, for any η ∈ (0, 1/2) and any x ∈ RN .

Proof. The proof of the first part of this result uses similar techniques as in the
proof of Theorem 3.9 in order to bound E [ |Y (t, x)|p ] uniformly in t ∈ [0, T ] and
x ∈ R

N . In particular, we use the form of Y (t, x) given by (3.14), Burkhölder’s
inequality (see Theorem 3.4), Hölder’s inequality and Gronwall’s lemma, as well as
the conditions imposed on w, σ, G and ϕ.

For the time continuity, we again use similar techniques to achieve the bound

E [ |Y (t, x)− Y (s, x)|p ] 6 C
(p)
T

(
1 + sup

r∈[0,T ],y∈RN

E [ |Y (r, y)|p ]
)
(t− s)

p

2 ,

for all s, t ∈ [0, T ] with s 6 t and x ∈ R
N , for some constant C

(p)
T . The results then

follow from Kolmogorov’s continuity theorem once again.
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Spatial regularity of solution

As mentioned in the introduction to this section, the spatial regularity of the so-
lution (Y (t, x))t > 0,x∈RN to (3.13) is of interest. In particular we would like to find
conditions under which it is at least continuous in space. As we saw in Lemma 3.6,
under the weak condition on ϕ given by (3.12), we have that the spatially smoothed
space-time white noise is continuous in space. We here show that under this assump-
tion together with a Hölder continuity type condition on the neural field kernel w,
the solution (Y (t, x))t > 0,x∈RN inherits the spatial regularity of the the driving noise.

The condition we introduce on w is the following:

∃Kw > 0 s.t. ‖w(x, ·)− w(x̃, ·)‖L1(RN ) 6 Lw|x− x̃|α, ∀x, x̃ ∈ R
N , (C3’)

for some α ∈ (0, 1].

Remark 3.11. This condition is certainly satisfied for all typical choices of neural
field kernel w. In particular, any smooth rapidly decaying function will satisfy (C3

′).

Theorem 3.12 (Regularity). Suppose that we are in the situation of Theorem 3.9
and

sup
x∈RN

E [ |Y0(x)|p ] < ∞

for all p > 2. Suppose moreover that there exists α ∈ (0, 1] such that

• w satisfies (C3’);

• ϕ satisfies (3.12) i.e.

‖ϕ− τ z(ϕ)‖L2(RN ) 6 Cϕ|z|α, ∀z ∈ R
N ,

where τ z indicates the shift by z ∈ RN operator;

• x 7→ Y0(x) is α-Hölder continuous.

Then (Y (t, x))t > 0,x∈RN has a modification such that (t, x) 7→ Y (t, x) is (η1, η2)-
Hölder continuous, for any η1 ∈ (0, 1/2) and η2 ∈ (0, α).

Proof. Let (Y (t, x))t > 0,x∈RN be the mild solution to (3.13), which exists and is
unique by Theorem 3.9. The stated regularity in time is given in Theorem 3.10. It
thus remains to prove the regularity in space.

Let t > 0, x ∈ RN . Then by (3.14)

Y (t, x) = e−tY0(x) + I1(t, x) + I2(t, x), (3.19)

for all t > 0 and x ∈ RN , where I1(t, x) =
∫ t

0
e−(t−s)

∫
RN w(x, y)G(Y (s, y))dyds and

I2(t, x) =
∫ t

0

∫
RN e−(t−s)σ(Y (s, x))ϕ(x− y)W (dsdy).
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Now let p > 2. The aim is to estimate E [ |Y (t, x)− Y (t, x̃)|p ] for x, x̃ ∈ RN and
then to use Kolmogorov’s theorem to get the stated spatial regularity. To this end,
we have that

E [ |I1(t, x)− I1(t, x̃)|p ]

6 E

[(∫ t

0

∫

RN

|w(x, y)− w(x̃, y)||G(Y (s, y))|dyds
)p ]

6 Cp
Gt

p‖w(x, ·)− w(x̃, ·)‖p
L1(RN )

6 Cp
Gt

pKp
w|x− x̃|pα, (3.20)

where we have used (C3’). Moreover, by Hölder’s and Burkhölder’s inequalities
once again, we see that

E [ |I2(t, x)− I2(t, x̃)|p ]

6 2p−1
E

[ ∣∣∣∣
∫ t

0

∫

RN

e−(t−s) [σ(Y (s, x))− σ(Y (s, x̃))]ϕ(x− y)W (dyds)

∣∣∣∣
p ]

+ 2p−1
E

[ ∣∣∣∣
∫ t

0

∫

RN

e−(t−s)σ(Y (s, x̃))[ϕ(x− y)− ϕ(x̃− y)]W (dyds)

∣∣∣∣
p ]

6 2p−1cpE

[(∫ t

0

∫

RN

|σ(Y (s, x))− σ(Y (s, x̃))|2 |ϕ(x− y)|2 dyds
)p

2

]

+ 2p−1cpE

[(∫ t

0

∫

RN

|σ(Y (s, x̃))|2 |ϕ(x− y)− ϕ(x̃− y)|2dyds
)p

2

]
,

for all x, x̃ ∈ RN and p > 2. Thus

E [ |I2(t, x)− I2(t, x̃)|p ]

6 2p−1cpC
p
σt

p

2
−1‖ϕ‖p

L2(RN )

∫ t

0

E [ |Y (s, x)− Y (s, x̃)|p ] ds

+ 22(p−1)cpC
p
σt

p

2‖ϕ− τ x̃−x(ϕ)‖pL2(RN )

(
1 + sup

s∈[0,T ],y∈RN

E [ |Y (s, y)|p ]
)
, (3.21)

where we note that the right-hand side is finite thanks to Theorem 3.10. Returning
to (3.19) and using estimates (3.20) and (3.21) we see that there exists a constant C(p)

T

(depending on T, p, CG, Kw, Cσ, Cϕ, ‖ϕ‖L2(RN ) as well as sups∈[0,T ],y∈RN E [ |Y (s, y)|p ]),
such that

E [ |Y (t, x)− Y (t, x̃)|p ]

6 C
(p)
T

[
E [ |Y0(x)− Y0(x̃)|p ] + |x− x̃|pα +

∫ t

0

E [ |Y (s, x)− Y (s, x̃)|p ] ds
]

6 C
(p)
T

[
|x− x̃|pα +

∫ t

0

E [ |Y (s, x)− Y (s, x̃)|p ] ds
]
,
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where the last line follows from our assumptions on Y0 and by adjusting the constant
C

(p)
T . This bound holds for all t > 0, x, x̃ ∈ RN and p > 2. The proof is then

completed using Gronwall’s inequality, and Kolmogorov’s continuity theorem once
again.

4 Comparison of the two approaches

The purpose of this section is to compare the two different approaches taken in
Sections 2 and 3 above to give sense to the stochastic neural field equation.

Our starting point is the random field solution, given by Theorem 3.9. Suppose
that the conditions of Theorem 3.9 are satisfied (i.e. ϕ ∈ L2(RN), σ : R → R

Lipschitz, G : R → R Lipschitz and bounded, w satisfies (C2’) and the given
assumptions on the initial condition). Then, by that result, there exists a unique
random field (Y (t, x))t > 0,x∈RN such that

Y (t, x) = e−tY0(x) +

∫ t

0

e−(t−s)

∫

RN

w(x, y)G(Y (s, y))dyds

+

∫ t

0

∫

RN

e−(t−s)σ(Y (s, x))ϕ(x− y)W (dsdy) (4.1)

such that
sup

t∈[0,T ],x∈RN

E
[
|Y (t, x)|2

]
< ∞, (4.2)

for all T > 0, and we say that (Y (t, x))t > 0,x∈RN is the random field solution to the
stochastic neural field equation.

The relationship between this random field solution to the stochastic neural field
equation, and a solution constructed as a Hilbert space valued process according to
Section 2 is given in the following theorem.

Theorem 4.1. Suppose the conditions of Theorem 3.9 and Theorem 3.10 are sat-
isfied. Moreover suppose that (C1’) is satisfied for some ρw ∈ L1(RN), and fix
U = L2(RN) and H = L2(RN , ρw). Then the random field (Y (t, x))t > 0 satisfying
(4.1) and (4.2) is such that (Y (t))t > 0 := (Y (t, ·))t > 0 is the unique mild H-valued
solution to the stochastic evolution equation

dY (t) = [−Y (t) + F(Y (s))]dt+B(Y (t))dW (t), t ∈ [0, T ], (4.3)

where (W (t))t > 0 is a U-valued Q-Wiener process, B : H → L0(U,H) is given by

B(h)(u)(x) :=

∫

RN

σ(h(x))ϕ(x− y)u(y)dy, h ∈ H, u ∈ U.

and F : H → H is given by

F(h)(x) =

∫

RN

w(x, y)G(h(y))dy, x ∈ R
N , h ∈ H.
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Remark 4.2. We note that the evolution equation (4.3) is subtly different to (2.7)
considered in Section 2.4, in that the noise term added here is not generally of the
form σ̃(Y (t)) ◦BdW (t) for some σ̃ : H → L0(H), with B : U → H given by

B(u)(x) =

∫

RN

ϕ̃(x− y)u(y)dy, x ∈ R
N , u ∈ U,

for some ϕ̃ ∈ L1(RN). Indeed, even if the ϕ we consider in (4.1) is also in L1(RN ),
in order for the noise term B(Y (t))dW (t) in (4.3) to have this structure, since
B(h)(u)(x) = σ(h(x))B(u)(x) for all h ∈ H, u ∈ U and x ∈ RN , we would require
σ̃ to be defined by

σ̃(h1)(h2)(x) = σ(h1(x))h2(x), ∀x ∈ R
N , h1, h1 ∈ H.

This is not a well-defined map H → L0(H) unless σ is bounded.
However, in the case when σ is bounded (for example σ ≡ 1), under the as-

sumptions that ϕ ∈ L1(RN) ∩ L2(RN) and w satisfies (C1’), the above result shows
that the random field solution is a special case of the H-valued solution to (2.7)
constructed in Section 2.4, where the noise term is given by σ̃(Y (t)) ◦BdW (t).

Proof of Theorem 4.1. We first check that (4.3) does indeed have a mild solution
according to Theorem 2.4. This does not follow directly from Theorem 2.6 (see
Remark (4.2)). However, under the current assumptions, it is easy to check that
conditions (H1) - (H4) of Theorem 2.4 are satisfied. Indeed, we can follow most of
the proof of Theorem 2.6, inserting where necessary the facts that B : H → L0(U,H)
is well-defined, since for any h ∈ H , u ∈ U ,

‖B(h)(u)‖2H =

∫

RN

σ2(h(x))

(∫

RN

ϕ(x− y)u(y)dy

)2

ρw(x)dx

6 C2
σ‖ϕ‖2L2(RN )‖u‖2U(‖ρw‖L1(RN ) + ‖h‖2H),

and moreover that (see Example 2.2)

‖B(h1)−B(h2)‖2
L2(Q

1
2 (U),H)

6 Tr(Q)‖B(h1)−B(h2)‖2L0(U,H)

6 Tr(Q)C2
σ‖ϕ‖2L2(RN )‖h1 − h2‖2H ,

for all h1, h2 ∈ H . Finally, by the assumptions on the initial condition, and since
ρw ∈ L1(RN), we see that Y0 ∈ H is F0-measurable and E [ ‖Y0‖pH ] < ∞ for all
p > 2. Hence we can apply Theorem 2.4.

The proof of the result involves some technical definition chasing, and in fact is
contained in [14], though rather implicitly. It is for this reason that we carry out
the proof explicitly in our situation, by closely following [14, Proposition 4.10]. The
most important point is to relate the stochastic integrals that appear in the two
different formulations of a solution. To this end, define

I(t, x) :=
∫ t

0

∫

RN

e−(t−s)σ(Y (s, x))ϕ(x− y)W (dsdy), x ∈ R
N , t > 0,
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to be the Walsh integral that appears in the random field solution (4.1). Our aim
is to show that

I(t, ·) =
∫ t

0

e−(t−s)
B(Y (s))dW (s), (4.4)

where the integral on the right-hand side is the H-valued stochastic integral which
appears in the mild formulation of a solution to (4.3), defined according to Definition
2.3.

Step 1: Adapting Proposition 2.6 of [14] very slightly, we have that the Walsh
integral I(t, x) can be written as the integral with respect to the cylindrical Wiener
process W = {Wt(u) : t > 0, u ∈ U} with covariance IdU . 3 Precisely, we have

I(t, x) =
∫ t

0

gt,xs dWs,

for all t > 0, x ∈ RN , where gt,xs (y) := e−(t−s)σ(Y (s, x))ϕ(x − y), y ∈ RN , which is
in L2(Ω× [0, T ];U) for any T > 0 thanks to (4.2). By definition, the integral with
respect to the cylindrical Wiener process W is given by

∫ t

0

gt,xs dWs =
∞∑

k=1

∫ t

0

〈gt,xs , ek〉Udβk(s),

where {ek}∞k=1 is a complete orthonormal basis for U , and (βk(t))t > 0 := (Wt(ek))t > 0

are independent real-valued Brownian motions. This series is convergent in L2(Ω).

Step 2: Fix arbitrary T > 0. As in Section 3.5 of [14], we can consider the process
{W (t), t ∈ [0, T ]} defined by

W (t) =
∞∑

k=1

βk(t)J(ek) (4.5)

where J : U → U is a Hilbert-Schmidt operator. W (t) takes its values in U , where
it is a Q(= JJ∗)-Wiener process with Tr(Q) < ∞ (Proposition 3.6 of [14]). We
define J(u) :=

∑
k

√
λk〈u, ek〉Uek for a sequence of positive real numbers (λk)k > 1

such that
∑

k λk < ∞.
Now define

Φt,x
s (u) =

〈
gt,xs , u

〉
U
,

which takes values in R. Proposition 3.10 of [14] tells us that the process {Φt,x
s , s ∈

[0, T ]} defines a predictable process with values in L2(U,R) and
∫ t

0

Φt,x
s dW (s) =

∫ t

0

gt,xs dWs, (4.6)

3This is a family of random variables such that for each u ∈ U , (Wt(u))t > 0 is a Brownian
motion with variance t‖u‖2U , and for all s, t > 0, u1, u2 ∈ U , E[Wt(u1)Ws(u2)] = (s ∧ t)〈u1, u2〉U .
See for example [14] Section 2.1
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where the integral on the left is defined according to Section (2.2), with values in R.

Step 3: We now note that the original Walsh integral I(·, ·) ∈ L2(Ω × [0, T ];H).
Indeed, because of (3.9),

‖I‖2L2(Ω×[0,T ];H) = E

[∫ T

0

‖I(t, ·)‖2Hdt
]
=

∫ T

0

∫

RN

E
[
|I(t, x)|2

]
ρw(x)dxdt

6 ‖ϕ‖2L2(RN )

∫ T

0

∫ t

0

∫

RN

e−2(t−s)
E
[
σ2(Y (s, x))

]
dsρw(x)dxdt < ∞,

again thanks to (4.2). Hence I(t, ·) takes values in H , and we can therefore write

I(t, ·) =
∞∑

j=1

〈I(t, ·), fj〉Hfj =
∞∑

j=1

〈∫ t

0

Φt,·
s dW (s), fj

〉

H

fj,

by (4.6), where {fj}∞j=1 is a complete orthonormal basis in H . Moreover, by using
(4.5)

I(t, ·) =
∞∑

j=1

(∫

RN

(∫ t

0

Φt,x
s dW (s)

)
fj(x)ρw(x)dx

)
fj

=
∞∑

j=1

(∫

RN

(
∞∑

k=1

∫ t

0

Φt,x
s (
√

λkek)dβk(s)

)
fj(x)ρw(x)dx

)
fj . (4.7)

Finally, consider the H-valued stochastic integral
∫ t

0

e−(t−s)
B(Y (s))dW (s),

where B : H → L0(U,H) is given above. Then similarly

∫ t

0

e−(t−s)
B(Y (s))dW (s) =

∞∑

j=1

〈∫ t

0

e−(t−s)
B(Y (s))dW (s), fj

〉

H

fj

=
∞∑

j=1

〈
∞∑

k=1

∫ t

0

e−(t−s)
√

λkB(Y (s))(ek)dβk(s), fj

〉

H

fj

=

∞∑

j=1

(∫

RN

(
∞∑

k=1

∫ t

0

e−(t−s)
√
λkB(Y (s))(ek)(x)dβk(s)

)
fj(x)ρw(x)dx

)
fj .

Here, by definition, for x ∈ RN , 0 6 s 6 t,

e−(t−s)
√
λkB(Y (s))(ek)(x) =

∫

RN

e−(t−s)σ(Y (s, x))ϕ(x− y)
√
λkek(y)dy

= e−(t−s)σ(Y (s, x))〈ϕ(x− ·),
√
λkek〉U = Φt,x

s (
√
λkek),
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which proves (4.4) by comparison with (4.7).

Step 4: To conclude it suffices to note that the pathwise integrals in (4.1) and the
mild H-valued solution to (4.3) coincide as elements of H . Indeed, it is clear that,
by definition of F,

∫ t

0

e−(t−s)

∫

RN

w(·, y)G(Y (s, y))dyds =

∫ t

0

e−(t−s)
F(Y (s))ds,

where the later in an element of H .

5 Conclusion

We have here explored two alternative ways to define in a mathematically precise
fashion the notion of a stochastic neural field. Both of these approaches have been
used previously without theoretical justification by scientists in the field of theoret-
ical neuroscience. Indeed, the approach of using the theory of Hilbert space valued
processes presented by Da Prato and Zabczyk (analysed in Section 2) is adopted in
[29], while we argue the random field approach is that which is implicitly used by
Bressloff, Ermentrout and their associates in [7, 8, 21].

The difference between the two constructions is completely determined by the
type of noise that one wishes to consider in the neural field equation, which may
give rise to inherently different solutions. The advantage of the construction of a
solution as a stochastic process taking values in a Hilbert space carried out in Section
2, is that it allows one to consider more general diffusion coefficients (see Remark
4.2). Moreover, our construction using this approach can also handle a noise term
that has no spatial correlation i.e. a pure space-time white noise, by taking the
correlation function ϕ to be a Dirac mass (see Section 2.5). A disadvantage is that
we have to be careful to impose conditions which control the behavior of the solution
in space at infinity and guarantee the integrability of the solution. In particular we
require that the connectivity function w either satisfies the strong conditions (C1)
and (C2), or the weaker but harder to check conditions (C1’) and (C2’).

On the other hand, the advantage of the random field approach developed in
Section 3 is that one no longer needs to control what happens at infinity. We there-
fore require fewer conditions on the connectivity function w to ensure the existence
of a solution ((C2’) is sufficient – see Theorem 3.9). Moreover, with this approach,
it is easier to write down conditions that guarantee the existence of a solution that is
continuous in both space and time (as opposed to the Hilbert space approach, where
spatial regularity is somewhat hidden). However, in order to avoid non-physical dis-
tribution valued solutions, we had to impose a priori some extra spatial regularity
on the noise (see Section 3.2).

The relationship between the two approaches is summarized in Section 4, where
we showed that if we impose the extra condition (C1’) to ensure integrability, it is
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possible to reinterpret the random field solution as a Hilbert space valued process
that satisfies an infinite dimensional stochastic evolution equation, though with a
subtly different noise term to those equations originally considered. Nonetheless, we
are able to see that when σ : R → R is bounded, the random field solution is in fact
a special case of the Hilbert space valued solution constructed in Section 2.4 (under
the additional condition that ϕ ∈ L1(RN ) ∩ L2(RN) – see Remark 4.2).

Our main conclusion here is thus that the approach to take really does depend
on the end goal. If one is interested in very general diffusions, and has some strong
decay properties on w, the infinite dimensional Hilbert space approach is well-suited.
On the other hand, if one is interested in spatially regular solutions, and does not
wish to impose such strong decay properties on w, but is content with the addition
of less general and more regular noise terms, the random field approach should be
taken.

We end with a word about the applicability of our results. Neural field equations
are commonly encountered in neuroscience with regard to modeling brain areas.
In practice one is often interested in modeling two- or three-dimensional pieces of
cortex whose size is large with respect to that of the support of the connectivity
kernel w. It is often necessary to extend the physical space where the brain tissues
are located with representation spaces to account for the computations performed
by the neurons. For example in visual perception features such as disparity (related
to depth perception), velocity (related to visual motion perception), or color can be
represented by points in R2 and R3. In sound perception the local Fourier analysis
performed by the cochlea is represented by a spatial distribution of points in C.
Other examples can be found in the motor cortex where the neurons preparing for
an action of part of the body store representations for driving the effector muscles
that are naturally represented by points in some R

N .
If the size of the connectivity kernel becomes comparable to that of the considered

brain area or if the feature space is naturally bounded (e.g. visual orientations,
rotation angles for effectors) it becomes more natural to work with a bounded subset
of RN with periodic or zero boundary conditions. However, both our approaches
still apply in this setup (and are in fact easier to justify).
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