D. Achlioptas, Database-friendly random projections, Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems , PODS '01, pp.274-281, 2001.
DOI : 10.1145/375551.375608

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.6652

B. Adcock and A. C. Hansen, Generalized Sampling and Infinite-Dimensional Compressed Sensing, Foundations of Computational Mathematics, vol.50, issue.6, 2011.
DOI : 10.1007/s10208-015-9276-6

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.308.8665

B. Adcock and A. C. Hansen, A Generalized Sampling Theorem for Stable Reconstructions in Arbitrary Bases, Journal of Fourier Analysis and Applications, vol.35, issue.11, pp.685-716, 2012.
DOI : 10.1007/s00041-012-9221-x

B. Adcock, A. C. Hansen, C. Poon, and B. Roman, BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING, Forum of Mathematics, Sigma, vol.94840, pp.1-44, 2014.
DOI : 10.1017/S0962492900002816

R. G. Baraniuk, V. Cevher, and M. B. Wakin, Low-Dimensional Models for Dimensionality Reduction and Signal Recovery: A Geometric Perspective, Proceedings of the IEEE, pp.959-971, 2010.
DOI : 10.1109/JPROC.2009.2038076

R. G. Baraniuk and M. B. Wakin, Random Projections of Smooth Manifolds, Foundations of Computational Mathematics, pp.941-944, 2006.
DOI : 10.1007/s10208-007-9011-z

T. Blumensath, Sampling and Reconstructing Signals From a Union of Linear Subspaces, IEEE Transactions on Information Theory, vol.57, issue.7, pp.4660-4671, 2011.
DOI : 10.1109/TIT.2011.2146550

T. Blumensath and M. E. Davies, Sampling Theorems for Signals From the Union of Finite-Dimensional Linear Subspaces, IEEE Transactions on Information Theory, vol.55, issue.4, pp.1872-1882, 2009.
DOI : 10.1109/TIT.2009.2013003

A. Bourrier, R. Gribonval, and P. Pérez, Compressive Gaussian Mixture estimation, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013.
DOI : 10.1109/ICASSP.2013.6638821

URL : https://hal.archives-ouvertes.fr/hal-00799896

E. J. Candès, The restricted isometry property and its implications for compressed sensing, Comptes Rendus Mathematique, vol.346, issue.9-10, pp.589-592, 2008.
DOI : 10.1016/j.crma.2008.03.014

E. J. Candès, Y. C. Eldar, D. Needell, and P. Randall, Compressed sensing with coherent and redundant dictionaries, Applied and Computational Harmonic Analysis, vol.31, issue.1, pp.59-73, 2011.
DOI : 10.1016/j.acha.2010.10.002

E. J. Candès, X. Li, Y. Ma, and J. Wright, Robust principal component analysis?, Journal of the ACM, vol.58, issue.3, p.11, 2011.
DOI : 10.1145/1970392.1970395

E. J. Candès and Y. Plan, Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements, IEEE Transactions on Information Theory, vol.57, issue.4, pp.2342-2359, 2011.
DOI : 10.1109/TIT.2011.2111771

E. J. Candès, J. K. Romberg, and T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on Information Theory, vol.52, issue.2, pp.489-509, 2006.
DOI : 10.1109/TIT.2005.862083

E. J. Candès, T. Strohmer, and V. Voroninski, Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming. CoRR, abs/1109, 2011.

E. J. Candès and T. Tao, Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?, IEEE Transactions on Information Theory, vol.52, issue.12, pp.5406-5425, 2006.
DOI : 10.1109/TIT.2006.885507

V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, The Convex Geometry of Linear Inverse Problems, Foundations of Computational Mathematics, vol.1, issue.10, pp.805-849, 2012.
DOI : 10.1007/s10208-012-9135-7

A. Cohen, W. Dahmen, and R. Devore, Compressed sensing and best $k$-term approximation, Journal of the American Mathematical Society, vol.22, issue.1, pp.211-231, 2009.
DOI : 10.1090/S0894-0347-08-00610-3

M. A. Davenport, D. Needell, and M. B. Wakin, Signal Space CoSaMP for Sparse Recovery With Redundant Dictionaries, IEEE Transactions on Information Theory, vol.59, issue.10, pp.596820-6829, 2013.
DOI : 10.1109/TIT.2013.2273491

R. A. Devore and V. N. Temlyakov, Some remarks on greedy algorithms, Advances in Computational Mathematics, vol.102, issue.1, pp.173-187, 1996.
DOI : 10.1007/BF02124742

D. L. Donoho, Compressed sensing, IEEE Transactions on Information Theory, vol.52, issue.4, pp.1289-1306, 2006.
DOI : 10.1109/TIT.2006.871582

URL : https://hal.archives-ouvertes.fr/inria-00369486

A. Eftekhari and M. B. Wakin, New analysis of manifold embeddings and signal recovery from compressive measurements. CoRR, abs/1306, p.4748, 2013.

Y. C. Eldar, P. Kuppinger, and H. Bölcskei, Block-Sparse Signals: Uncertainty Relations and Efficient Recovery, IEEE Transactions on Signal Processing, vol.58, issue.6, pp.3042-3054, 2010.
DOI : 10.1109/TSP.2010.2044837

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.416.2707

S. Foucart, Hard Thresholding Pursuit: An Algorithm for Compressive Sensing, SIAM Journal on Numerical Analysis, vol.49, issue.6, pp.2543-2563, 2011.
DOI : 10.1137/100806278

S. Foucart and H. Rauhut, A mathematical introduction to compressive sensing Applied and Numerical Harmonic Analysis, 2013.

R. Giryes, S. Nam, M. Elad, R. Gribonval, and M. E. Davies, Greedy-Like Algorithms for the Cosparse Analysis Model. partially funded by the ERC, PLEASE project, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00716593

R. Gribonval and M. Nielsen, Highly sparse representations from dictionaries are unique and independent of the sparseness measure, Applied and Computational Harmonic Analysis, vol.22, issue.3, pp.335-355, 2007.
DOI : 10.1016/j.acha.2006.09.003

URL : https://hal.archives-ouvertes.fr/inria-00544779

W. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, Contemporary Mathematics, vol.26, pp.189-206, 1982.
DOI : 10.1090/conm/026/737400

S. Nam, M. E. Davies, M. Elad, and R. Gribonval, The cosparse analysis model and algorithms, Applied and Computational Harmonic Analysis, vol.34, issue.1, pp.30-56, 2013.
DOI : 10.1016/j.acha.2012.03.006

URL : https://hal.archives-ouvertes.fr/inria-00602205

D. Needell and R. Ward, Stable Image Reconstruction Using Total Variation Minimization, SIAM Journal on Imaging Sciences, vol.6, issue.2, pp.1035-1058, 2013.
DOI : 10.1137/120868281

H. Ohlsson, A. Y. Yang, and S. S. Sastry, Compressive phase retrieval from squared output measurements via semidefinite programming. CoRR, abs/1111, 2011.

S. Oymak, A. Jalali, M. Fazel, Y. C. Eldar, and B. Hassibi, Simultaneously Structured Models With Application to Sparse and Low-Rank Matrices, IEEE Transactions on Information Theory, vol.61, issue.5, 1212.
DOI : 10.1109/TIT.2015.2401574

T. Peleg, R. Gribonval, and M. E. Davies, Compressed sensing and best approximation from union of subspaces: Beyond dictionaries, EUSIPCO, 2013.

H. Rauhut, K. Schnass, and P. Vandergheynst, Compressed Sensing and Redundant Dictionaries, IEEE Transactions on Information Theory, vol.54, issue.5, pp.2210-2219, 2008.
DOI : 10.1109/TIT.2008.920190

URL : http://arxiv.org/abs/math/0701131

B. Recht, M. Fazel, and P. A. Parrilo, Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization, SIAM Review, vol.52, issue.3, pp.471-501, 2010.
DOI : 10.1137/070697835

C. James and . Robinson, Dimensions, Embeddings, and Attractors. Cambridge Tracts in Mathematics, 2010.

J. Sanchez, F. Perronnin, . Th, J. Mensink, and . Verbeek, Image Classification with the Fisher Vector: Theory and Practice, International Journal of Computer Vision, vol.73, issue.2, pp.22-245, 2013.
DOI : 10.1007/s11263-013-0636-x

URL : https://hal.archives-ouvertes.fr/hal-00779493

P. Wojtaszczyk, Stability and Instance Optimality for Gaussian Measurements in Compressed Sensing, Foundations of Computational Mathematics, vol.28, issue.3, pp.1-13, 2010.
DOI : 10.1007/s10208-009-9046-4

G. Yu and G. Sapiro, Statistical Compressed Sensing of Gaussian Mixture Models, IEEE Transactions on Signal Processing, vol.59, issue.12, pp.5842-5858, 2011.
DOI : 10.1109/TSP.2011.2168521

M. Yuan, High dimensional inverse covariance matrix estimation via linear programming, Journal of Machine Learning Research, vol.11, pp.2261-2286, 2010.

M. Yuan and Y. Lin, Model selection and estimation in the Gaussian graphical model, Biometrika, vol.94, issue.1, 2007.
DOI : 10.1093/biomet/asm018

Z. Zhou, X. Li, J. Wright, E. J. Candès, and Y. Ma, Stable Principal Component Pursuit, 2010 IEEE International Symposium on Information Theory, pp.1518-1522, 2010.
DOI : 10.1109/ISIT.2010.5513535

URL : http://arxiv.org/abs/1001.2363