Database-friendly random projections, Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems , PODS '01, pp.274-281, 2001. ,
DOI : 10.1145/375551.375608
URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.6652
Generalized Sampling and Infinite-Dimensional Compressed Sensing, Foundations of Computational Mathematics, vol.50, issue.6, 2011. ,
DOI : 10.1007/s10208-015-9276-6
URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.308.8665
A Generalized Sampling Theorem for Stable Reconstructions in Arbitrary Bases, Journal of Fourier Analysis and Applications, vol.35, issue.11, pp.685-716, 2012. ,
DOI : 10.1007/s00041-012-9221-x
BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING, Forum of Mathematics, Sigma, vol.94840, pp.1-44, 2014. ,
DOI : 10.1017/S0962492900002816
Low-Dimensional Models for Dimensionality Reduction and Signal Recovery: A Geometric Perspective, Proceedings of the IEEE, pp.959-971, 2010. ,
DOI : 10.1109/JPROC.2009.2038076
Random Projections of Smooth Manifolds, Foundations of Computational Mathematics, pp.941-944, 2006. ,
DOI : 10.1007/s10208-007-9011-z
Sampling and Reconstructing Signals From a Union of Linear Subspaces, IEEE Transactions on Information Theory, vol.57, issue.7, pp.4660-4671, 2011. ,
DOI : 10.1109/TIT.2011.2146550
Sampling Theorems for Signals From the Union of Finite-Dimensional Linear Subspaces, IEEE Transactions on Information Theory, vol.55, issue.4, pp.1872-1882, 2009. ,
DOI : 10.1109/TIT.2009.2013003
Compressive Gaussian Mixture estimation, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013. ,
DOI : 10.1109/ICASSP.2013.6638821
URL : https://hal.archives-ouvertes.fr/hal-00799896
The restricted isometry property and its implications for compressed sensing, Comptes Rendus Mathematique, vol.346, issue.9-10, pp.589-592, 2008. ,
DOI : 10.1016/j.crma.2008.03.014
Compressed sensing with coherent and redundant dictionaries, Applied and Computational Harmonic Analysis, vol.31, issue.1, pp.59-73, 2011. ,
DOI : 10.1016/j.acha.2010.10.002
Robust principal component analysis?, Journal of the ACM, vol.58, issue.3, p.11, 2011. ,
DOI : 10.1145/1970392.1970395
Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements, IEEE Transactions on Information Theory, vol.57, issue.4, pp.2342-2359, 2011. ,
DOI : 10.1109/TIT.2011.2111771
Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on Information Theory, vol.52, issue.2, pp.489-509, 2006. ,
DOI : 10.1109/TIT.2005.862083
Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming. CoRR, abs/1109, 2011. ,
Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?, IEEE Transactions on Information Theory, vol.52, issue.12, pp.5406-5425, 2006. ,
DOI : 10.1109/TIT.2006.885507
The Convex Geometry of Linear Inverse Problems, Foundations of Computational Mathematics, vol.1, issue.10, pp.805-849, 2012. ,
DOI : 10.1007/s10208-012-9135-7
Compressed sensing and best $k$-term approximation, Journal of the American Mathematical Society, vol.22, issue.1, pp.211-231, 2009. ,
DOI : 10.1090/S0894-0347-08-00610-3
Signal Space CoSaMP for Sparse Recovery With Redundant Dictionaries, IEEE Transactions on Information Theory, vol.59, issue.10, pp.596820-6829, 2013. ,
DOI : 10.1109/TIT.2013.2273491
Some remarks on greedy algorithms, Advances in Computational Mathematics, vol.102, issue.1, pp.173-187, 1996. ,
DOI : 10.1007/BF02124742
Compressed sensing, IEEE Transactions on Information Theory, vol.52, issue.4, pp.1289-1306, 2006. ,
DOI : 10.1109/TIT.2006.871582
URL : https://hal.archives-ouvertes.fr/inria-00369486
New analysis of manifold embeddings and signal recovery from compressive measurements. CoRR, abs/1306, p.4748, 2013. ,
Block-Sparse Signals: Uncertainty Relations and Efficient Recovery, IEEE Transactions on Signal Processing, vol.58, issue.6, pp.3042-3054, 2010. ,
DOI : 10.1109/TSP.2010.2044837
URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.416.2707
Hard Thresholding Pursuit: An Algorithm for Compressive Sensing, SIAM Journal on Numerical Analysis, vol.49, issue.6, pp.2543-2563, 2011. ,
DOI : 10.1137/100806278
A mathematical introduction to compressive sensing Applied and Numerical Harmonic Analysis, 2013. ,
Greedy-Like Algorithms for the Cosparse Analysis Model. partially funded by the ERC, PLEASE project, 2011. ,
URL : https://hal.archives-ouvertes.fr/hal-00716593
Highly sparse representations from dictionaries are unique and independent of the sparseness measure, Applied and Computational Harmonic Analysis, vol.22, issue.3, pp.335-355, 2007. ,
DOI : 10.1016/j.acha.2006.09.003
URL : https://hal.archives-ouvertes.fr/inria-00544779
Extensions of Lipschitz mappings into a Hilbert space, Contemporary Mathematics, vol.26, pp.189-206, 1982. ,
DOI : 10.1090/conm/026/737400
The cosparse analysis model and algorithms, Applied and Computational Harmonic Analysis, vol.34, issue.1, pp.30-56, 2013. ,
DOI : 10.1016/j.acha.2012.03.006
URL : https://hal.archives-ouvertes.fr/inria-00602205
Stable Image Reconstruction Using Total Variation Minimization, SIAM Journal on Imaging Sciences, vol.6, issue.2, pp.1035-1058, 2013. ,
DOI : 10.1137/120868281
Compressive phase retrieval from squared output measurements via semidefinite programming. CoRR, abs/1111, 2011. ,
Simultaneously Structured Models With Application to Sparse and Low-Rank Matrices, IEEE Transactions on Information Theory, vol.61, issue.5, 1212. ,
DOI : 10.1109/TIT.2015.2401574
Compressed sensing and best approximation from union of subspaces: Beyond dictionaries, EUSIPCO, 2013. ,
Compressed Sensing and Redundant Dictionaries, IEEE Transactions on Information Theory, vol.54, issue.5, pp.2210-2219, 2008. ,
DOI : 10.1109/TIT.2008.920190
URL : http://arxiv.org/abs/math/0701131
Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization, SIAM Review, vol.52, issue.3, pp.471-501, 2010. ,
DOI : 10.1137/070697835
Dimensions, Embeddings, and Attractors. Cambridge Tracts in Mathematics, 2010. ,
Image Classification with the Fisher Vector: Theory and Practice, International Journal of Computer Vision, vol.73, issue.2, pp.22-245, 2013. ,
DOI : 10.1007/s11263-013-0636-x
URL : https://hal.archives-ouvertes.fr/hal-00779493
Stability and Instance Optimality for Gaussian Measurements in Compressed Sensing, Foundations of Computational Mathematics, vol.28, issue.3, pp.1-13, 2010. ,
DOI : 10.1007/s10208-009-9046-4
Statistical Compressed Sensing of Gaussian Mixture Models, IEEE Transactions on Signal Processing, vol.59, issue.12, pp.5842-5858, 2011. ,
DOI : 10.1109/TSP.2011.2168521
High dimensional inverse covariance matrix estimation via linear programming, Journal of Machine Learning Research, vol.11, pp.2261-2286, 2010. ,
Model selection and estimation in the Gaussian graphical model, Biometrika, vol.94, issue.1, 2007. ,
DOI : 10.1093/biomet/asm018
Stable Principal Component Pursuit, 2010 IEEE International Symposium on Information Theory, pp.1518-1522, 2010. ,
DOI : 10.1109/ISIT.2010.5513535
URL : http://arxiv.org/abs/1001.2363