A STATISTICAL FRAMEWORK FOR POSITIVE DATA CLUSTERING WITH FEATURE SELECTION : APPLICATION TO OBJECT DETECTION

Abstract : In this paper, we concern ourselves with the problem of simultaneous positive data clustering and feature selection. We propose a statistical framework based on finite mixture models of generalized inverted Dirichlet (GID) distributions. The GID offers a more practical and flexible alternative to the inverted Dirichlet which has a very restrictive covariance structure. For learning the parameters of the resulting mixture, we propose an approach based on minimum message length (MML) criterion. We use synthetic data and real data generated from a challenging application that concerns objects detection to demonstrate the feasibility and advantages of the proposed method.
Type de document :
Communication dans un congrès
Eusipco, Sep 2013, Marrakech, Morocco. 2013
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00908379
Contributeur : Khalid Daoudi <>
Soumis le : vendredi 22 novembre 2013 - 17:26:25
Dernière modification le : jeudi 26 juillet 2018 - 14:08:02
Document(s) archivé(s) le : dimanche 23 février 2014 - 04:31:20

Fichier

Eusipco2013.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00908379, version 1

Collections

Citation

Mohamed Al Mashrgy, Nizar Bouguila, K. Daoudi. A STATISTICAL FRAMEWORK FOR POSITIVE DATA CLUSTERING WITH FEATURE SELECTION : APPLICATION TO OBJECT DETECTION. Eusipco, Sep 2013, Marrakech, Morocco. 2013. 〈hal-00908379〉

Partager

Métriques

Consultations de la notice

748

Téléchargements de fichiers

409