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Abstract: Satellite image sequences permit to visualise oceans’ surface and their underlying dynamics. Processing these

images is then of major interest in order to better understanding of the observed processes. As demonstrated

by state-of-the-art, image assimilation allows to retrieve surface motion from image sequences, based on

assumptions on the dynamics. In this paper we demonstrate that a simple heuristics, such as the Lagrangian

constancy of velocity, can be used, and successfully replaces the complex physical properties described by the

Navier-Stokes equations, for assessing surface circulation from satellite images. A data assimilation method

is proposed that includes an additional term a(t) to this Lagrangian constancy equation. That term summarises

all physical processes other than advection. A cost function is designed, which quantifies discrepancy between

satellite data and model values. The cost function is minimised by the BFGS solver with a dual method of

data assimilation. The result is the motion field and the additional term a(t). This last component models

the forces, other than advection, that contribute to surface circulation. The approach has been tested on Sea

Surface Temperature of Black Sea. Results are given on four image sequences and compared with state-of-

the-art methods.

1 INTRODUCTION

Satellite image sequences permit to visualise

oceans’ surface and their underlying dynamics. Pro-

cessing these images is then of major interest in order

to better understanding of the observed processes and

forecast extreme events. As demonstrated by state-of-

the-art, image assimilation allows to retrieve surface

motion from image sequences, using heuristics on the

dynamics (Papadakis et al., 2007; Titaud et al., 2010).

Advanced 3D oceanographic models are avail-

able in the literature. These models are based on

Navier-Stokes equations (see for instance the NEMO

model1). As satellites nowadays observe the sea sur-

face with a high spatial resolution, it becomes pos-

sible to estimate surface circulation from these data

with a simplified model, such as the shallow water

model (Vallis, 2006). This 2D model has been proven

to be suitable for representing the surface circulation

of closed seas, such as Black Sea (Oguz et al., 1992).

The shallow water equations have also been success-

1http://www.nemo-ocean.eu/

fully used to estimate the upper layer circulation of

Black Sea from Sea Surface Temperature (SST) im-

ages (Korotaev et al., 2008; Huot et al., 2010) with a

data assimilation method.

In this paper, we propose to learn dynamics

from SST image acquisitions with a data assimila-

tion method applied to an empirical model, derived

from the shallow water equations. This is an image-

based approach to model the surface dynamics. In the

shallow water model, surface circulation is described

by the horizontal velocity, that is advected by itself

and subject to geophysical forces such as Coriolis,

Earth gravity and viscosity. The advection process

is kept in the empirical model, but all non-transport

components are summarised in a global term, denoted

a (letter a stands for additional), that is estimated

by our approach. Adding this term to the advection

one is similar, from a mathematical point of view, to

the weak data assimilation framework (Sasaki, 1970;

Dee, 2005; Trémolet, 2006; Valur Hólm, 2008). Such

data assimilation method is then designed to compute

the solution: a cost function is constructed whose con-

http://www.nemo-ocean.eu/


trol variables are the motion field at the first acquisi-

tion date and the value of the additional term a(t) at

each date of the acquisition interval. The minimum of

the cost function is obtained thanks to optimal control

techniques (Lions, 1971).

Section 2 provides the notations that are used in

the remaining of this paper and the mathematical de-

scription of the proposed approach in order to model

the dynamics of the ocean’s upper layer. The data

assimilation method is briefly outlined in Section 3.

It corresponds to a weak formulation with a non ad-

vective term in the evolution equation. The imple-

mentation is shortly given in Section 4, in order to

permit that interested Readers apply the method by

themselves. Results on four SST image sequences ac-

quired over Black Sea by NOAA-AVHRR sensors are

displayed and quantified in Section 5.

2 PROBLEM STATEMENT

Image data are acquired on a bounded rectangle

of ❘2, named Ω, and on a temporal interval [0,T].
Let define A = Ω × [0,T] the corresponding space-

time domain, on which the dynamics is modelled. A

point x ∈ Ω is defined as x =
(

x y
)T

and the mo-

tion vector at point x and date t ∈ [0,T] is written

w(x, t) =
(

u(x, t) v(x, t)
)T

. At each date t, the mo-

tion field on the domain Ω is written as w(t). N Sea

Surface temperature acquisitions are available at dates

ti, i = 1 · · ·N. They are denoted T (ti) with pixels val-

ues T (x, ti).

A state vector X is defined on A. It includes the

two components u and v of the motion vector w(x, t)
and a pseudo-temperature value Ts(x, t), which has

properties similar to those of the Sea Surface Temper-

ature value: X(x, t) =
(

w(x, t)T Ts(x, t)
)T

. At the

end of the data assimilation process, the discrepancy

between the pseudo-temperature and the satellite ac-

quisition values has to be small.

The heuristics on dynamics, used in the paper, are

derived from the shallow water equations, that express

the principles of mass and momentum conservation.

Circulation of the upper ocean is represented by the

2D velocity w =
(

u v
)T

and the thickness h of the

mixed layer. The sea surface temperature Ts is trans-

ported by the motion field. This provides the set of

equations:

∂u

∂t
= −u

∂u

∂x
− v

∂u

∂y
+ f v−g′

∂η

∂x
+Kw∆u (1)

∂v

∂t
= −u

∂v

∂x
− v

∂v

∂y
− f u−g′

∂η

∂y
+Kw∆v (2)

∂η

∂t
= −

∂(uη)

∂x
−

∂(vη)

∂y
−hm

(

∂u

∂x
+

∂v

∂y

)

(3)

∂Ts

∂t
= −u

∂Ts

∂x
− v

∂Ts

∂y
+KT ∆Ts (4)

with η the thickness anomaly η = h−hm, hm the av-

erage value of h, KT the temperature diffusion pa-

rameter, f the Coriolis parameter, Kw the viscosity

and g′ = g(ρ0 −ρ1)/ρ0 the reduced gravity. ρ0 corre-

sponds to the reference density and ρ1 to the average

density of the mixed layer.

As explained in the introduction, we propose to

group all geophysical forces that do not correspond to

advection in a unique term, named “additional term”

and denoted by a. The variable η is then considered

as an hidden variable of the system and is included in

a. In such way, Eqs. (1),(2),(3) reduce to:

∂u

∂t
= −u

∂u

∂x
− v

∂u

∂y
+au (5)

∂v

∂t
= −u

∂v

∂x
− v

∂v

∂y
+av (6)

where a =
(

au av

)

expresses the discrepancy to the

Lagrangian constancy of velocity:

dw

dt
=

∂w

∂t
+(w.∇)w = a (7)

From Equations (1,2), we get:

au = f v−g′
∂η

∂x
+Kw∆u (8)

av = − f u−g′
∂η

∂y
+Kw∆v (9)

where η verifies Eq.(3).

Our approach allows to estimate w(0) and the ad-

ditional term a(t) at each date t ∈ [0,T], thanks to a

data assimilation process summarised in Section 3.

Deriving the values a(t) allows to describe empiri-

cally the physical processes producing the image se-

quence.

Eqs. (7) and (4) are further contracted in an evolu-

tion model▼ of the state vector X:

∂X

∂t
+▼(X) =

(

a

0

)

(10)

An observation equation links the state vector to

the observed Sea Surface Temperature images acqui-

sitions T :

❍X = T + εR (11)



The observation operator ❍ projects the state vec-

tor into the space of image observations and conse-

quently: ❍X = Ts. The term εR(x, t) models the ac-

quisition noise and the uncertainty on the state vector

value. This last comes from the approximation of the

model and from the discretization errors.

Some approximate knowledge of the value X(0)
could be available and named background Xb. How-

ever, the result of the state vector at date 0 is not ex-

actly equal to that background value and a term εB is

therefore introduced:

X(x,0) = Xb(x)+ εB(x) (12)

The variables εR and εB are supposed independent,

unbiased, Gaussian and characterised by their respec-

tive covariance matrices R and B.

Eqs. (10), (11), (12) summarise the whole knowl-

edge that is available to model the surface dynam-

ics. This knowledge is processed by our approach

thanks to a data assimilation algorithm that is shortly

described in Section 3.

3 DATA ASSIMILATION

In the data assimilation scientific community, an

approach named weak 4D-Var has been defined:

in order to obtain the solution X that solves Sys-

tem (10), (11), (12), a cost function is designed, that

is minimised with control on εB and on the values of

the additional term a:

J[εB,a] =
〈

εB,B
−1εB

〉

+
∫

t
γ‖∇a(t)‖2

+
∫

t
〈❍X(t) − T (t),R−1(❍X(t)−T (t))

〉

(13)

where 〈·, ·〉 denotes the canonical inner product in an

abstract Hilbert space on which the state vector is

defined, with norm ‖.‖2 and ‖∇a‖2 = 〈∇au,∇au〉+
〈∇av,∇av〉.

The first term comes from Eq. (12) and expresses

that the value X(0) at date 0 should stay close to the

background value Xb. The second term constrains

the additional term a(t) to be spatially smooth. The

last term, coming from Eq. (11), expresses that the

pseudo-temperature value Ts has to be close to that

of satellite acquisitions at the end of the assimilation

process.

The gradient of J is derived with calculus of vari-

ation (Lions, 1971). Its two components are:

∂J

∂εB

[εB,a] = 2
(

B−1εB +λ(0)
)

(14)

∂J

∂a(t)
[εB,a] = 2(−γ∆a(t)+λ(t)) (15)

with λ(t) being the adjoint variable, that is computed

backward with the two following equations:

λ(T) = 0 (16a)

−
∂λ

∂t
+

(

∂▼

∂X

)∗

λ = ❍T R−1(❍X−T ) (16b)

The adjoint operator
(

∂▼
∂X

)∗
is defined by:

〈Zη,λ〉= 〈η,Z∗λ〉 . (17)

Proof: For sake of simplicity, we suppose in this

proof that Eq. (10) is written as ∂X
∂t

+▼(X) = a.

The state vector and the functional J depend on εB

and a(t). Let δJ and δX be the perturbations on J and

X obtained if εB and a(t) are respectively perturbed

by δεB and δa(t).
From the definition of δJ, we obtain:

δJ = 2
〈

δεB,B
−1εB

〉

+2

∫
t
(γ〈∇δa(t),∇a(t)〉)

+2

∫
t

〈

δX(t),❍T R−1[❍X(t)−T (t)]
〉

(18)

The evolution equation of X, Eq. (10), gives:

∂δX(t)

∂t
+

∂▼

∂X
δX(t) = δa(t) (19)

and that of background, Eq. (12):

δX(0) = δεB (20)

Eq. (19) gives, after multiplication by λ(t) and

integration on the space-time domain, the following

equality:

∫
t

〈

∂δX(t)

∂t
,λ(t)

〉

+
∫

t

〈

∂▼

∂X
δX(t),λ(t)

〉

=
∫

t
〈δa(t),λ(t)〉

(21)

Integration by parts is applied on the first term and

the adjoint operator is used in the second one in order

to obtain:

〈δX(T ),λ(T )〉−〈δX(0),λ(0)〉+

−
∫

t

〈

δX(t),
∂λ(t)

∂t

〉

+
∫

t

〈

δX(t),
∂▼

∂X

∗

λ(t)

〉

=
∫

t
〈δa(t),λ(t)〉

(22)

From Eq.(16a), it comes that 〈δX(T ),λ(T )〉 has a null

value. From Eq. (20) it comes that 〈δX(0),λ(0)〉 is

equal to 〈δεB,λ(0)〉. Eq. (16b) is then used to obtain:

−

〈

δX(t),
∂λ(t)

∂t

〉

+

〈

δX(t),
∂▼

∂X

∗

λ(t)

〉

=

〈

δX(t),❍T R−1(❍X(t)−T (t))
〉

(23)



and rewrite Eq. (22) as:∫
t

〈

δX(t),❍T R−1(❍X(t)−T (t))
〉

=

〈δεB,λ(0)〉+
∫

t
〈δa(t),λ(t)〉

(24)

From this and Eq. (18), we derive:

δJ =2
〈

δεB,B
−1εB

〉

−2

∫
t
γ〈δa(t),∆a(t)〉+

2〈δεB,λ(0)〉+2

∫
t
〈δa(t)λ(t)〉

(25)

and obtain the gradient of J, as written in Eqs. (14,15).

The cost function J is minimised with an iterative

steepest descent method. At each iteration, the for-

ward time integration of X is performed, according to

Eq. (10). This forward integration provides the value

of J. Then a backward integration of λ, according to

Eqs. (16a) and (16b), computes the value of ∇J. An

efficient solver (Byrd et al., 1995) is used to perform

the optimisation given values of J and ∇J. (Le Dimet

and Talagrand, 1986) is the first paper of the literature

that describes the use of such method for estimating

the initial state vector value.

4 NUMERICAL

IMPLEMENTATION

Time integration of Eq. (10) relies on an explicit

Euler scheme. Space discretization of motion advec-

tion:

∂u

∂t
+u

∂u

∂x
+ v

∂u

∂y
= 0 (26)

∂v

∂t
+u

∂v

∂x
+ v

∂v

∂y
= 0 (27)

involves a source splitting method (Wolke and Knoth,

2000), that is explained below.

Given an integration interval [t1, t2], Eqs. (28)

and (29) are first independently integrated:

∂ua

∂t
+ua ∂ua

∂x
= 0 t ∈ [t1, t2] (28)

∂ub

∂t
+ v

∂ub

∂y
= 0 t ∈ [t1, t2] (29)

with ua(x,y, t1) = ub(x,y, t1) = u(x,y, t1). Then

u(x,y, t2) is obtained as u(x,y, t2) = ub(x,y, t2) +
ua(x,y, t2)−u(x,y, t1).

The linear advection of Eq. (29) is approxi-

mated by a first-order upwind scheme, as described

in (Hundsdorfer and Spee, 1995). The nonlinear ad-

vection of Eq. (28) is first rewritten in a conservative

form:
∂u

∂t
+

∂

∂x

(

1

2
u2

)

= 0 (30)

and approximated by a first-order Godunov

scheme (LeVeque, 1992).

The backward time integration of the adjoint vari-

able λ involves the adjoint operator
(

∂▼
∂X

)∗
(see

Eq. (16b)). In order to be accurate, the method re-

quires the adjoint of the discrete model and not the

discretization of the continuous adjoint. The discrete

adjoint operator
(

∂▼
∂X

)∗
is then obtained with the au-

tomatic differentiation software Tapenade (Hascoët

and Pascual, 2004; Hascoët and Pascual, 2013).

The background used in Eq. (12) is defined as null

for motion and as the first image of the studied se-

quence for the pseudo-temperature.

5 RESULTS

For sake of simplicity, we name in the follow-

ing EM, or Empirical Model, the dynamic model de-

scribed in Sections 2 and 3: it includes the advection

model and the additional term summarising the Cori-

olis, gravity and viscosity forces.

The proposed method has been experimented on

several Sea Surface Temperature (SST) sequences,

acquired over Black Sea by NOAA-AVHRR sensors,

and results are given for four of them in this paper.

First, we discuss the ability of the proposed

method to correctly estimate motion. For that pur-

pose, EM results are compared with those obtained

by one of the best optical flow method (Sun et al.,

2010) of the literature. The satellite sequence is dis-

played on Figure 1. Acquisition dates are at 30 min,

6 hours, 15 hours, and 30 hours after the beginning of

the studied temporal interval. Two gyres are clearly

visible on these data. Motion results w(0), obtained

by (Sun et al., 2010) and EM, are displayed on Fig-

ure 2. EM successes to capture the two gyre structures

while Sun et al. fails. As w(0) is obtained from the

analysis of the whole image sequence, its correct esti-

mation means that the physical processes involved in

a(t) are correctly assessed by the empirical model. It

means that the geophysical non advective forces may

be described as a whole in a unique term a(t).
Second, we examine the capability of EM to track

features or points of interest on the whole image se-

quence. An accurate tracking result means that mo-

tion estimated by EM is correct on the studied tempo-

ral interval and properly transports image structures.

A sequence of four SST images acquired in October

8th 2005 is displayed on Figure 3. Acquisition dates

are at 30 min, 10 hours 15 min, 12 hours, 15 hours 30

min, after the beginning of the studied interval. Nine

characteristic points are defined in white on the first



Figure 1: Top to bottom, left to right: SST images acquired
on October 10th 2007, over Black Sea.

observation. Points are surrounded by a coloured cir-

cle that helps to discriminate them on the following

observations. These points are considered as charac-

teristic, because they sample the various types of tra-

jectories that can be observed on the sequence. On

observations 2 to 4, the position of these nine points

obtained with Sun’s method are in red while those ob-

tained with EM are in blue. On the fourth acquisition,

in the “light pink circle” on the upper right, the point

obtained with Sun’s optical flow is outside of the im-

age domain. Looking at the trajectories, it can be ob-

served that Sun’s algorithm fails to track these char-

acteristic points, due to a wrong estimation of motion.

Another sequence of five SST images, acquired

in July 2007 is displayed on Figure 4. Acquisition

dates are at 30 min, 8 hours 15 min, 13 hours, 22

hours 30 min, 24 hours 30 min from the beginning

of the studied interval. Seven characteristic points are

defined in white on the first observation. Points posi-

tions obtained with Sun’s optical flow are in red while

those obtained with EM are in blue. At the second

date, two points are at the same position with Sun’s

method and EM: only the red point is visible as the

blue one is hidden behind it. On the fourth obser-

vation, one red point has disappeared as it is located

outside of the image domain. On the last image, the

colour of the ellipse surrounding each set of points

gives an additional information on the quality of the

result: a blue ellipse means that our method gives the

Figure 2: Motion results computed by Sun (up) and EM
(down) at first observation date. The arrow representation
is superposed to the coloured one.

best result, while the white one means that both meth-

ods are equivalent. Again, Sun’s motion results fail to

track characteristic points on these data as physical

processes are not correctly assessed.

Last, EM is also compared with the optical flow

estimation of Suter (Suter, 1994), that is dedicated to



(a) Observation 1

(b) Observation 2

(c) Observation 3

(d) Observation 4

Figure 3: Tracking of characteristic points. Sun’s algorithm
in red, EM in blue.

(a) Observation 1

(b) Observation 2

(c) Observation 4

(d) Observation 5

Figure 4: Tracking of characteristic points. A blue ellipse
on (d) expresses that EM is the best while the white ellipse
expresses that results are equivalent.



fluid flows. The SST sequence was acquired in May

14th 2005 and contains five observations at 30 min, 2

hours and 45 min, 5 hours and 15 min, 7 hours and

15 min, 16 hours and 15 min after the beginning of

the studied interval. They are displayed on Figure 5.

As previously, six feature points are chosen on the

Figure 5: Five consecutive observations of the sequence ac-
quired in May 14th 2005.

first observation and displayed on the upper image

of Figure 6. Their final position on the fifth obser-

vation is given in the lower part of the same figure.

Suter’s and Sun’s methods being based on variational

optical flow approaches, they are only constrained by

grey level values and not by the underlying dynam-

ics. However, Suter’s algorithm provides better result

than Sun’s method, because it is specifically designed

for fluid flows motion. In particular, it can correctly

(a) Characteristic points on the first observation.

(b) On second one.

(c) On third one.

(d) On fourth one.

(e) Characteristic points on the last observation.

Figure 6: Tracking of feature points displayed in blue in (a).
Sun’s result is in red, Suter’s in green and EM’s in blue.

assess rotational motion. From left to right in Subfig-

ure 6(e): EM gives the best result for the first, third,

fourth and fifth points (blue ellipses). For the second

and sixth (white ellipses) points, it is not possible to

determine which one from Suter’s algorithm and EM

provides the best result.



The same conclusion is valid for all studied image

sequences.

6 CONCLUSION

This paper describes how to learn the ocean sur-

face dynamics from an empirical model, EM, that

summarises the shallow water equations by an advec-

tion term and an additional term a. This last repre-

sents physical processes such as the Coriolis force,

the gravity force and the viscosity. A data assimila-

tion algorithm is defined for EM that estimates the

velocity field at the first acquisition date and the ad-

ditional term a(t) at each date of the studied inter-

val. a(t) is of major importance for correctly assess-

ing the hidden physical processes and accurately es-

timating motion on the whole image sequence. The

algorithm does not involve any parameter other than

those of the data assimilation framework (error co-

variance matrices). The method has been illustrated

on several SST sequences of Black Sea and has been

quantified by tracking feature points. Moreover, it has

been compared with state-of-the-art optical flow algo-

rithms. The conclusion is that a model of dynamics,

even if simple, improves motion estimation and al-

lows tracking of structures.

This approach may be seen as a first step to model

the physical processes occurring at the ocean surface

from image data. The short-term perspectives will be

to compare the additional term a(t) with forces in-

volved in the shallow water model, in order to further

validate the ability of the empirical model to assess

geophysical processes.
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