Representations of fundamental groups of 3-manifolds into PGL(3,C): Exact computations in low complexity

Abstract : In this paper we are interested in computing representations of the fundamental group of a 3-manifold into PSL(3;C) (in particular in PSL(2;C); PSL(3;R) and PU(2; 1)). The representations are obtained by gluing decorated tetrahedra of flags. We list complete computations (giving 0-dimensional or 1-dimensional solution sets) for the first complete hyperbolic non-compact manifolds with finite volume which are obtained gluing less than three tetrahedra with a description of the computer methods used to find them.
Type de document :
Article dans une revue
Geometriae Dedicata, Springer Verlag, 2015, 177 (1), pp.52. 〈10.1007/s10711-014-9987-x〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00908843
Contributeur : Fabrice Rouillier <>
Soumis le : lundi 25 novembre 2013 - 13:42:42
Dernière modification le : vendredi 25 mai 2018 - 12:02:06

Lien texte intégral

Identifiants

Collections

INRIA | INSMI | IMJ | UPMC | USPC

Citation

Elisha Falbel, Pierre-Vincent Koseleff, Fabrice Rouillier. Representations of fundamental groups of 3-manifolds into PGL(3,C): Exact computations in low complexity. Geometriae Dedicata, Springer Verlag, 2015, 177 (1), pp.52. 〈10.1007/s10711-014-9987-x〉. 〈hal-00908843〉

Partager

Métriques

Consultations de la notice

237