A. Leibe, E. S. Schiele, and B. , Pedestrian Detection in Crowded Scenes, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005.
DOI : 10.1109/CVPR.2005.272

S. Agarwal and D. Roth, Learning a Sparse Representation for Object Detection, 2002.
DOI : 10.1007/3-540-47979-1_8

A. Torralba and A. A. , Unbiased look at dataset bias, CVPR 2011, 2011.
DOI : 10.1109/CVPR.2011.5995347

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Babenko, P. Dollar, Z. T. Belongie, and S. , Simultaneous learning and alignment: Multi-instance and multi-pose learning, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00326736

B. Froba and A. E. , Face detection with the modified census transform, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings., pp.91-96, 2004.
DOI : 10.1109/AFGR.2004.1301514

C. Wojek, S. W. Schiele, and B. , Multi-cue onboard pedestrian detection, 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009.
DOI : 10.1109/CVPR.2009.5206638

C. Zhang and P. A. , Multiple-Instance Pruning For Learning Efficient Cascade Detectors, NIPS, 2007.

C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, vol.1, issue.3, 1995.
DOI : 10.1007/BF00994018

D. Park, D. R. Fowlkes, and C. , Multiresolution models for objdetection, 2010.

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005.
DOI : 10.1109/CVPR.2005.177

URL : https://hal.archives-ouvertes.fr/inria-00548512

S. B. Mori and J. Malik, Efficient shape matching using shape contexts. TPAMI, pp.1832-1837, 2005.

D. M. Gavrila, A Bayesian, Exemplar-Based Approach to Hierarchical Shape Matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29, issue.8, 2007.
DOI : 10.1109/TPAMI.2007.1062

D. M. Gavrila and V. Philomin, Real-time object det, 1999.

M. Weber, M. W. Perona, and P. , Unsupervised learning of models for recognision, 2000.

C. P. Mohan and T. Poggio, Example-based object det. in images by components . TPAMI, pp.349-361, 2001.

O. Tuzel, F. P. Meer, and P. , Ped. det. via classification on riemannian manifolds . TPAMI, pp.1713-1727, 2008.

P. Dollar, Z. Tu, H. T. Belongie, and S. , Feature Mining for Image Classification, 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007.
DOI : 10.1109/CVPR.2007.383046

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. Dollar, Z. Tu, P. P. Belongie, and S. , Integral Channel Features, Procedings of the British Machine Vision Conference 2009, 2009.
DOI : 10.5244/C.23.91

URL : http://authors.library.caltech.edu/60048/1/dollarBMVC09ChnFtrs.pdf

P. Dollar, R. A. Kienzle, and W. , Crosstalk Cascades for Frame-Rate Pedestrian Detection, 2012.
DOI : 10.1007/978-3-642-33709-3_46

P. Dollar, S. B. Perona, and P. , The Fastest Pedestrian Detector in the West, Procedings of the British Machine Vision Conference 2010, 2010.
DOI : 10.5244/C.24.68

P. Dollar, B. Babenko, S. B. , Z. Tu, and M. , Multiple Component Learning for Object Detection, 2008.
DOI : 10.1007/978-3-540-88688-4_16

P. F. Felzenszwalb, R. B. Girshick, D. M. Ramanan, and D. , Object Detection with Discriminatively Trained Part-Based Models, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.9, p.99, 2009.
DOI : 10.1109/TPAMI.2009.167

P. Felzenszwalb, D. M. Ramanan, and D. , A discriminatively trained, multiscale, deformable part model, 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.
DOI : 10.1109/CVPR.2008.4587597

C. Papageorgiou and T. Poggio, A trainable system for object detection, IJCV, vol.38, pp.111-136, 2000.

Q. Zhu, S. Avidan, M. Y. Cheng, and K. , Fast human detection using a cascade of histograms of oriented gradients, 2006.

R. Fergus, P. P. Zisserman, and A. , Object classMVA recognition by unsupervised scale-invariant learning, 2003.
DOI : 10.1109/cvpr.2003.1211479

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Benenson, M. Mathias, and R. T. , Pedestrian detection at 100 frames per second, 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012.
DOI : 10.1109/CVPR.2012.6248017

URL : https://lirias.kuleuven.be/bitstream/123456789/349807/1/2012_04_06_0530_cvpr_paper.pdf

A. B. Maji and J. Malik, Classification using intersection kernel SVMs is efficient, 2008.
DOI : 10.1109/cvpr.2008.4587630

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Walk, K. S. Schiele, and B. , Disparity Statistics for Pedestrian Detection: Combining Appearance, Motion and Stereo, 2010.
DOI : 10.1007/978-3-642-15567-3_14

P. Sabzmeydani and G. Mori, Detecting Pedestrians by Learning Shapelet Features, 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007.
DOI : 10.1109/CVPR.2007.383134

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Ojala, M. P. Maenpaa, and T. , Multiresolution grayscale and rotation invariant texture classification with local binary patterns. TPAMI, pp.971-987, 2002.

P. A. Viola and M. J. Jones, Robust real-time face detection. IJCV, pp.137-154, 2004.
DOI : 10.1023/b:visi.0000013087.49260.fb

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. Wojek and B. Schiele, A Performance Evaluation of Single and Multi-feature People Detection, 2008.
DOI : 10.1007/978-3-540-69321-5_9

B. Wu and R. Nevatia, Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detection, 2005.

B. Wu and R. Nevatia, Optimizing discriminationefficiency tradeoff in integrating heterogeneous local features for object detection, 2008.

X. Tan and B. T. , Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions, IEEE Transactions on Image Processing, vol.19, issue.6, pp.1635-1650, 2010.
DOI : 10.1007/978-3-540-75690-3_13

URL : https://hal.archives-ouvertes.fr/inria-00548674

Z. Lin, G. H. Davis, and L. S. , Multiple instance feature for robust part-based object detection, 2009.