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Abstract— The CyberCarpetis an actuated platform that allows
unconstrained locomotion of a walking user for Virtual Reality
exploration. The platform consists of a linear treadmill covered
by a ball-array carpet and mounted on a turntable, and is
equipped with two actuating devices for linear and angular
motion. The main control objective is to keep the walker close
to the platform center in the most natural way, counteracting
his/her voluntary motion while satisfying perceptual constraints.
The motion control problem for this platform is not trivial since
the system kinematics is subject to a nonholonomic constraint.
In the �rst part of the paper we describe the kinematic control
design devised within theCyberWalk project, where the linear
and angular platform velocities are used as input commands
and feedback is based only on walker's position measurements
obtained by an external visual tracking system. In particular,
we present a globally stabilizing control scheme that combines
a feedback and a feedforward action, based on a disturbance
observer of the walker's intentional velocity. We also discuss
possible extensions to acceleration-level control and the related
assessment of dynamic issues affecting a walker during his/her
motion. The second part of the paper is devoted to the actual
implementation of the overall system. As a proof of concept of
a �nal full-scale platform, the mechanical design and realization
of a small-scale prototype of theCyberCarpetis presented, as
well as the visual localization method used to obtain the human
walker's position on the platform by an overhead camera. To
validate the proposed motion control design, experimental results
are reported and discussed for a series of motion tasks performed
using a small tracked vehicle representative of a moving user.

Index Terms— Motion control, locomotion platform, nonholo-
nomic systems, input-output feedback linearization, disturbance
observer, visual tracking, virtual reality.

I. I NTRODUCTION

Exploration of virtual reality (VR) worlds by allowing
omni-directional unconstrained locomotion possibilities for a
walking user is an active area of research. The �nal goal is
having the user fully immersed in a VR scene viewed by, e.g.,
a Head Mounted Display (HMD), free to walk in any direction
with natural speed, while remaining within the limited physical
area of a platform and without the need of wearing any

� Dipartimento di Ingegneria informatica, automatica e gestionale Antonio
Ruberti, Universit�a di Roma “La Sapienza”, Roma, Italy;z MPI for Biological
Cybernetics, T̈ubingen, Germany;# Institute for Applied Mechanics, Tech-
nical University of Munich, M̈unchen, Germany;y Swiss Federal Institute of
Technology, Z̈urich, Switzerland.

constraining equipment (e.g., for tracking the walker position
or for characterizing the gait). To support locomotion in this
way, the platform should counteract the intentional motion of
the walker in order to keep him/her in place. In doing so, the
associated perceptual effects on the walker should be taken
into account, in the form of input command constraints, so as
to avoid disruptive effects on the user's immersiveness. These
have been the main objectives of the European research project
CyberWalk[1].

Different locomotion interfaces exist that allow walking in
virtual environments (see, e.g., the surveys in [2], [3], [4]).
In many of them, locomotion is restricted to a 1D motion
on a linear treadmill, like in the Treadport platform [5] with
possible slope inclusion [6]. The user is constrained by a
harness to apply stabilizing forces and other virtual effects [7].
To allow for small/slow direction changes, the treadmill can be
mounted on a turning table [8]. A different approach is taken in
the CirculaFloor [9], where active moving tiles follow the feet
motion. Again, the walker should avoid sharp turns and high
speed. For unconstrained 2D walking, the Omnidirectional
Treadmill has been proposed in [10] using two perpendicular
belts and a large number of rollers, while a torus-shaped
belt arrangement is implemented in the Torus Treadmill [11].
Both systems allow limited speed, mostly due to poor control
design. Furthermore, the mechanical implementation is critical
due to the large mass of the moving parts (with associated
noise). This kind of problems is not present in passive devices
like the Cybersphere [12] where, however, the naturalness of
walking is limited by the inner curvature of the spherical �oor.
An alternative principle is used in [13], where a conveyor belt
and a turntable transmit motion to a walker through a ball-
array board, realizing thus a 2D planar treadmill. In [14], the
ball-array lays on a concave surface without actuation, but
instrumented with sensors to detect feet contact.

Within the CyberWalkproject, two different motion con-
cepts have been considered for unconstrained 2D walking on a
plane: the omnidirectional belt-arrayCyberWalkplatform [15],
[16], [17] (similar to [10], [11]), and the ball-arrayCyberCar-
pet [18], [19], [20] (similar to [13]). In both cases, as project
requirements, we wished to eliminate the use of any physical
constraints on the feet, body, or legs of the user, as well as to
avoid the need of a priori or identi�ed models of the human
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gait/walk. The two platform concepts have been analyzed and
re�ned in terms of user mobility, mechanical feasibility, and
perceptual effects.

In this paper, we focus on theCyberCarpetand its motion
control problem. This locomotion platform uses a conveyor
belt and a turntable to transmit translational and angular
motion to the walker through a ball-array board. Rotating balls
are �tted into an array and are in contact with the belt so that
a user on the board moves in the opposite direction of the
underlying point on the belt, see Fig. 1(a). The walker will
be allowed to move in a natural way and inde�nitely in any
planar direction. In fact, the platform controller will counteract
her/his motion by pulling the walker toward the center of the
platform, while taking into account physiologically acceptable
velocity/acceleration bounds. The body pose on the carpet is
acquired through a markerless visual tracking system using an
overhead camera.

(a) (b)

Fig. 1. TheCyberCarpetplatform: (a) the motion transmission principle;
(b) the �nal small-scale realization

As a proof of concept of theCyberCarpetprinciple, a small-
scale prototype of about0:8 m of diameter has been designed
and built, see Fig. 1(b). The overall system architecture is
shown in Fig. 2. While the limited platform dimension is
indeed not appropriate for the actual VR exploration by a
human user, the whole system has been conceived keeping in
mind the requirements and challenges of a full-size realization.
In fact, the current mechanical structure can already support
the weight of a human user (about100 kg). Further, our
proposed control design allows a straightforward scaling of
control gains to the platform size and locomotion speed of
the walker, and extensions to acceleration level control make
it possible to fully take into account dynamic issues affecting
the walker during her/his motion. Finally, the visual tracking
algorithm has been tested on human walkers and proved to be
robust w.r.t. her/his posture changes (see Fig. 16). To show
the effectiveness of the platform control design, we report
experimental results in which a top-view human picture has
been mounted on a mobile robot and used as a mock-up to
emulate the motion behavior of a real user (see Fig. 17).

From the control point of view, one challenging issue is
due to the kinematic model of the system, which is highly
nonlinear as opposed to the case of other 1D and 2D omnidi-
rectional platforms, and it includes a nonholonomic constraint
on the system instantaneous velocities. While the platform
cannot provide full local mobility to the user, we will design
a control law that achieves smooth and global regulation of
the walker position from any initial con�guration. Previous

Fig. 2. Control system architecture of theCyberCarpet

works on locomotion interfaces have paid little attention to
control issues and algorithms, relying mostly on very simple
PID laws or heuristic schemes. With the notable exception
of [21] for a 1D treadmill, no stability analysis has been
considered previously. Moreover, performance in 2D has been
predicted only by restricting motion to low and piece-wise
constant walker velocity with few directional changes (see,
e.g., the paper by [13] on a similar ball-array locomotion
device). In contrast, a complete motion control design is
presented here for the 2DCyberCarpetplatform, together with
a detailed analysis of the closed-loop performance. A number
of experimental results are included to validate our approach.

The paper is organized as follows. In the �rst part, we
present the control approach devised within theCyberWalk
project1. The kinematic model of theCyberCarpetplatform
is given in Sect. II, and its duality with the control problem
for nonholonomic wheeled mobile robots is pointed out. In
Sect. III, we propose a velocity control scheme based on
input-output decoupling and linearization (Sect. III-A), which
shows an acceptable overall performance but is still affected
by some singularities that prevent global stabilization results.
The velocity control scheme is then suitably modi�ed in order
to avoid such singularities (Sect. III-B), and an additional
feedforward action is used, based on a disturbance observer of
the (unavailable) intentional velocity of the walker (Sect. III-
C). Performance of this controller is much more satisfactory
and is �rst validated by numerical simulations (Sect. III-D).
Finally, a convenient way to extend the design by considering
accelerations as control inputs is discussed in Sect. IV. This
allows to take explicitly into account acceleration bounds
imposed by the actuation system and the perception of the
human walker. A simpli�ed analysis of the dynamic effects
that a user would experience is also included (Sect. IV-A).

The second part of the paper is devoted to the physi-
cal implementation and test of a small-scale but complete
prototype of theCyberCarpet. Section V illustrates the me-
chanical design and the hardware realization. Section VI
describes the visual tracking algorithm for the localization
of the absolute walker position (and orientation) on the
platform, based on particle �lters. Experimental results are

1Preliminary versions of this part have been presented in the conference
papers [18], [19] and [20].
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reported in Sect. VII, showing the performance of the im-
plemented velocity-level control laws within the integrated
system. Videos of all experiments are included in the ac-
companying material to this paper, as well as available at
http://www.dis.uniroma1.it/labrob/research/CW.html together
with further illustrating movies. Conclusions and future work
are discussed in the �nal section, including also a comparison
with the companion omnidirectional belt-arrayCyberWalk
platform.

II. K INEMATIC MODEL

Thanks to the ball-array surface of theCyberCarpet, any
actuated motion of the underlying belt will result in a reverse
motion imposed to the walker on the platform, i.e., a forward
motion command will move the user backwards and, due to
the multiple contact between walker's feet and the ball-array
carpet, a clockwise rotation will turn the user counterclockwise
—see Fig. 1(a).

With this in mind, it is possible to derive a kinematic
model of the CyberCarpet. With reference to Fig. 3, let
(X 0; Y0) be the absolute inertial frame (attached to the �xed
overlooking camera) and(X t ; Yt ) is the frame attached to the
(rotating) treadmill, with theX t –axis in the direction of the
belt, rotated by an angle� w.r.t. X 0. Both frames have the
origin at the center of theCyberCarpet. The walker absolute
position and orientation are, respectively,(x; y) and � w , with
the distance from the centerR =

p
x2 + y2 and the angle

� = ATAN2(y; x) � � locating the walker in polar coordinates
w.r.t. the rotating frame(X t ; Yt ).

When the walker isstanding still, we have

_x = � v cos� + y!
_y = � v sin � � x!
_� = !
_� w = � !:

(1)

In eq. (1), v and ! are the commanded linear and angular
velocity of theCyberCarpet. These are applied on the bottom
of the ball-array, which explains theminussigns appearing in
the �rst, second and fourth equation of the model.

For R 6= 0 , the two Cartesian coordinates(x; y) may also
be replaced by the polar coordinates(R; � ) (see also [22]),
obtaining

_R = � v cos�

_� = v
sin �

R
� 2!

(2)

A simple analysis of the kinematic equations (1) shows that
a holonomic constraint exists,

� + � w = � (0) + � w (0) = constant; (3)

i.e., the change of orientation of the platform under control
will be equal to the opposite of the change of orientation of
the walker (when standing still). Therefore, only one of these
two variables can be independently controlled. However, this is
not a limitation for the considered motion control task. When
a platform user walks through a virtual world (e.g., wearing a
Head Mounted Display), the relevant orientation for a correct
VR visualization is only the one intentionally assumed by

Fig. 3. Frames and variables de�nition for theCyberCarpet

the walker head, which is fully unrelated from the platform
orientation � and partially independent from the orientation
� w of the user body.

On the other hand, in the three-dimensional con�guration
space of interest, parametrized by(x; y; � ), the system is
subject to the differential constraint

�
sin � � cos� � (x cos� + y sin � )

�
2

4
_x
_y
_�

3

5 = 0 : (4)

This constraint implies that the platform cannot move the
position (x; y) of the walker along the direction of the axis
Yt . As a consequence, the platform will not be able to cancel
instantaneously a walker linear velocity in that direction.
Nonetheless, equation (4) is nonholonomic (i.e., it cannot
be integrated to a positional constraint) and thus the nonlin-
ear system is fully controllable to any desired con�guration
(x; y; � ) [23]. Therefore, re-centering of a standing user to the
platform origin (0; 0; 0) can be in principle achieved by suit-
able platformmaneuversobtained by the control commands
v and ! . It is interesting to note that, in view of (4), the
motion control problem for theCyberCarpetis similar to that
of nonholonomic wheeled mobile robots. The analogy of the
two problems can be intuitively recognized also by �ipping
things upside down: the standing user plays the role of the
�xed ground, while the nonholonomic platform will act as the
controlled wheeled mobile robot.

However, the above duality is lost when the walker starts
to move. In fact, when the walker is in motion, the model (1)
becomes

_x = � v cos� + y! + Vw;x

_y = � v sin � � x! + Vw;y
_� = !
_� w = � ! + 
 w ;

(5)

where Vw = ( Vw;x ; Vw;y ) and 
 w are, respectively, the
absolute linear and angular walkerintentional velocities (see
Fig. 3). These are clearly unknown in advance and not directly
measurable. In the following, the walker intentional velocities
will be considered asdisturbancesin the control design. In
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particular, we will not be interested in
 w since this exogenous
signal will not affect the walker position on the platform.
Instead, the walker displacement due to the linear velocity
vectorVw needs to be rejected by the control system.

III. C ONTROL DESIGN

A number of feedback control laws developed for nonholo-
nomic wheeled mobile robots can be adapted to address the
regulation problem for theCyberCarpet, so as to bring the
position (and, if needed, the orientation too) of a standing
user to zero. These techniques include Lyapunov design in
polar coordinates [22], time-varying nonlinear control [24],
control based on the chained-form transformation or on system
�atness [25], or recursive control with backstepping [26].
Although successful, these techniques lead to somewhat os-
cillatory and/or slow transients that are not compliant with
user perceptual constraints. Moreover, the extension of such
control laws to handle the persistent disturbance due to the
motion of the walker has not been considered yet.

The nature of our motivating application (locomotion of a
user in a VR environment using a HMD) speci�es the control
task as regulation of only the position(x; y) of the walker.
In this respect, the walker's position can be asymptotically
stabilized to the platform origin using a simpler control design
based on input-output feedback linearization.

A. Input-output decoupling and linearizing control

Consider �rst the case of no disturbances, i.e.,Vw = 0 and

 w = 0 (walker standing still in the virtual environment) and
de�ne the controlled output as(x y). From eq. (1), it is

�
_x
_y

�
=

�
� cos� y
� sin � � x

� �
v
!

�
= A(x; y; � )

�
v
!

�
: (6)

Whendet A = x cos� + y sin � 6= 0 , we can set
�

v
!

�
= A � 1(x; y; � )

�
v1

v2

�
; (7)

wherev1 andv2 are auxiliary velocity inputs to be de�ned. The
resulting input-output behavior is given by simple integrators

_x = v1; _y = v2;

i.e., it has been decoupled and linearized by the feedback
law (7). The control design can be completed by the propor-
tional laws

v1 = � k1x; v2 = � k2y; (8)

with positive gainski , i = 1 ; 2, thus exponentially stabilizing
the walker's position to the origin.

An interesting property of the designed controller is the
following. With the walker standing at an initial position
(x0; y0), the controlled time evolution of his/her position will
be x(t) = e� k1 t x0 and y(t) = e� k2 t y0. Choosingk1 = k2

leads to
y(t)
x(t)

=
_y(t)
_x(t)

=
y0

x0
;

so that the user will be pulled toward the origin along the
connecting straight line.

For the purpose of analysis, an equivalent expression for the
control lawv and! can be found by selecting (from now on)
equal gainsk1 = k2 = k > 0 and replacing eq. (8) into (7).
This yields

v =
k(x2 + y2)

x cos� + y sin �
=

kR2

R cos�
=

kR
cos�

(9)

and

! =
k(y cos� � x sin � )

x cos� + y sin �
=

kR sin �
R cos�

= k tan �: (10)

The control law (9–10) has the singularityR cos� =
x cos� + y sin � = 0 (where the determinant of the decoupling
matrix is zero), i.e., when the walker is on theYt axis (in
particular, at the origin). Note that the singularity at the origin
is hidden, in polar coordinates, by the fact that the angle
� is not de�ned there. In the following, we will introduce
modi�cations that overcome these control singularities, while
preserving the convenient characteristics of the decoupling law
(9–10). We still consider for the time being the case of no
disturbances,Vw = 0 and 
 w = 0 (walker standing still in
the virtual environment), dealing later with the case of walker
in motion (Sec. III-C).

B. Handling the singularities atcos� = 0 , R = 0

When R 6= 0 , the control singularity at� = � �
2 can be

eliminated by taking

v = kR sgn(cos� ) (11)

and
! = k sin � sgn(cos� ); (12)

with sgn(arg) = 1 for arg � 0 and sgn(arg) = � 1 otherwise.
The control law (11–12) is formally obtained by multiplying
eqs. (9–10) byjcos� j. The resulting input-output dynamics is
now

_x = � k jcos� j x; _y = � k jcos� j y; (13)

which is no longer linear nor decoupled, since the angle�
depends on bothx andy. However, from (13) it follows

y(t)
x(t)

=
_y(t)
_x(t)

=
y0

x0
(14)

as before. Therefore, a standing user will still be driven along
the straight line connecting its initial position to the origin
(� + � = � 0 + � 0 =: � 0 is constant).

In order to show that the control law (11–12) is also
asymptotically stabilizing the walker position(x; y) to the
origin, consider the positive de�nite Lyapunov function

V (x; y; � ) = 1
2 (x2 + y2 + sin 2(� 0 � � ))

= 1
2 (R2 + sin 2 � ) � 0;

(15)

with V = 0 if and only if (x; y; � ) belongs to the setS =
f (0; 0; � ) : sin(� 0 � � ) = 0 g. Using (2), the time derivative of
V along the trajectories of the closed-loop system (1), (11–12)
is given by

_V = R _R + sin � cos� _� = � k jcos� j (R2 + sin 2 � )

= � 2k j cos� j V � 0;
(16)
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so that _V = 0 for (x; y; � ) 2 S, as well as forcos� = 0 .
However, the latter does not correspond to closed-loop system
equilibria since then! = � k and thus� cannot be constant.
Therefore,S is the (largest) invariant set where_V = 0 , and
(x; y) will converge to the origin by virtue of LaSalle theorem.

At R = 0 , the control law (11–12) is clearly discontinuous
at the originx = y = 0 , due to the discontinuity of the angle
� which is not de�ned there. This causes a chattering of the
control input! when the walker is in a small region around the
platform center2. In order to avoid this problem, we proposed
in [19] the introduction of a dead zone around the origin.
However, when the walker is in motion, the chattering of the
input commands may appear again at the border of the dead
zone.

A more effective solution is obtained by replacing the
feedback control law (11–12) with

v = kR2 sgn(cos� )

= k(x2 + y2) sgn(x cos� + y sin � );
(17)

and

! = kR sin � sgn(cos� )

= k(y cos� � x sin � ) sgn(x cos� + y sin � );
(18)

which are formally obtained multiplying eqs. (11–12) by
the radial distanceR. The control law (17–18) is now well
de�ned and continuous at any system con�guration. In fact,
the angular velocity command! converges to zero as(x; y)
approaches the origin, so that no chattering occurs in this case.
Under the feedback law (17–18) and in the absence of walker
motion, the behavior of the controlled outputs becomes

_x = � kR jcos� j x; _y = � kR jcos� j y; (19)

which can be proved to be asymptotically stable at the origin
by the same Lyapunov arguments used for law (11–12).
Furthermore, eq. (14) still holds in this case, i.e., the user
is pulled toward the origin along the connecting straight line.
However, the convergence rate of thex andy variables drops
quadratically to zero as the walker approaches the origin.

Remark 1: A Lyapunov-based proof of stability for the
control law (17–18) holds also in the case of a varying gain
k, provided thatk > 0. This property can be used to decrease
excessively large commandsv and/or ! in order to comply
with human perceptual constraints. In particular, assume that
the control inputs should remain always bounded as

jvj � vmax ; j! j � ! max ; (20)

and choose a convenient�k > 0 to be used in eqs. (17–18) in
the unsaturated case. Then, the followingscaling law for k

k =
�k

max
n

1; j v j
vmax

; j ! j
! max

o > 0 (21)

will comply with the bounds in (20). �

2Although a term sgn(cos � ) appears also in the expression ofv, the
chattering phenomenon for this control input is overcome by the presence
of the factorR vanishing at the origin.

C. Dealing with walker's velocity

When the walker is in motion,Vw and 
 w are in gen-
eral both different from zero and the system kinematics is
described by eq. (5). A persistent walker locomotion will
typically prevent the convergence of her/his position to the
platform center when using the control law (17–18). In partic-
ular, when the user walks inde�nitely with constant velocity
�V along a straight line in the virtual environment, a steady-
state position will be reached under the control law (9–10)
at a distance�R = �V =k from the origin. Using standard
results from linear control theory, we proposed in [18] to add
an integral control action so as to completely eliminate the
steady-state error in the case of a constant walker velocity.
However, use of an integral control action suffers from the
typical position overshooting and leads to a poor dynamic
performance for more general motion pro�les of the walker.

Therefore, we follow a different approach to deal with the
walker's intentional motion, based on an estimate~Vw of the
walker linear velocity vectorVw . This allows to add suitable
feedforward terms in the control law as

v = vfb + vf f = vfb +
�

cos� sin �
� ~Vw

! = ! fb + ! f f

= ! fb + sat
�

1
R

�
� sin � cos�

� ~Vw

�
;

(22)

where the relabeledvfb and! fb are the feedback contributions
given by eqs. (17–18) and sat(�) is the standard saturation
function, with lower/upper saturation limits� ! f f;max . It is
readily veri�ed that, for~Vw = Vw , the feedforward termvf f in
eq. (22) compensates for the component of the walker velocity
along the treadmill direction of theCyberCarpet, while ! f f

(in the absence of saturation) cancels the component ofVw in
the orthogonal direction3.

Remark 2: When the control scaling strategy (21) is con-
sidered (see Remark 1), it should be applied only to the
feedback part in (22), i.e., withv = vfb and! = ! fb . In fact,
the feedforward termsvf f and ! f f in (22) result in a partial
or perfect cancelation of the walker intentional velocity. In
the absence of a position error, this control action is not `felt'
by the user since he/she would be walkingin place in the
absolute frame. As a result, these feedforward terms should
not be subject to perceptual constraints during walking, which
instead limit the feedback part of the control law (22). �

In order to get an estimate~Vw = ( ~Vw;x ; ~Vw;y ), consider the
two scalar dynamical systems

_� x = � v cos� + y! + kw (x � � x )

~Vw;x = kw (x � � x )
(23)

and
_� y = � v sin � � x! + kw (y � � y )

~Vw;y = kw (y � � y );
(24)

3The saturation in! f f is necessary to exclude a possible divergence when
R approaches zero. However, forVw smooth enough, the platform tends to
align with Vw so that! f f remains small enough over time.
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wherekw > 0 andv and! are given by (22). Equations (23)
and (24) have the structure ofdisturbance observers, respec-
tively with state� x and � y . From these and (5), it follows

_~V w;x = kw

�
Vw;x � ~Vw;x

�

_~V w;y = kw

�
Vw;y � ~Vw;y

�
;

i.e., the estimates~Vw;x , ~Vw;y are low-pass �ltered versions
of the Cartesian components ofVw . In particular, for kw

large enough, they accurately reproduce the two components
Vw;x andVw;y of the intentional walker velocity, expressed in
absolute coordinates.

Note that, even after the feedforward compensation (22),
the system is still affected by a residual disturbance

Vw � ~Vw =
s

s + kw
Vw :

Therefore, while walker's constant velocities are fully compen-
sated at steady state for any positivekw , for walker's ramp-
wise velocities (constant accelerations) the associated steady-
state error can only be made arbitrarily small by increasing
kw —an astaticvelocity disturbance behavior is recovered by
the proposed feedback/feedforward controller.

D. Simulation results

We present here two selected results obtained with the
singularity-free velocity control law discussed in Sects. III-B,
III-C. In both case studies, the walker starts at rest from the
initial absolute position(0; 1) m —one that would immediately
lead to singularity for the control law (9–10) of Sect. III-A.
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Fig. 4. Virtual straight line: Walker absolute locomotion under the platform
controller (22) with the feedback law (17–18) —the initial walker pose is
depicted by an oriented triangle

Figures 4–6 refer to the walker moving inde�nitely along a
straight line directed along theY0-axis in thevirtual space,
and with a constant speed of1 m/s (at time t = 0 , it
is X t (0) = X 0). The platform is controlled by the com-
bined feedback/feedforward scheme (22), wherein the feed-
back law (17–18) and the disturbance observers (23–24) are
used. The associated control parameters are:�k = 1 (i.e., k
without the scaling),kw = 10, and ! f f;max = 2 rad/s for
the saturation term in (22). Moreover, in order to show the
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Fig. 5. Linear and angular velocity commands for the trajectory of Fig. 4
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Fig. 6. Feedback part of the linear and angular velocity commands in Fig. 5

effects of a limitation of the velocity commands imposed
by perceptual constraints, we have set a maximum value of
0:5 m/s and0:1 rad/s, respectively, forvfb and ! fb in the
feedback part (17–18) of the control law (22). In Fig. 4,
the actual motion of the walker in theabsolute spaceis
shown, with the absolute orientation� w of the walker being
displayed by a segment. At the start, we have� (0) = 0 and
� w (0) = �= 2. The overall behavior of the linear and angular
velocity commands is shown in Fig. 5, while Fig. 6 shows only
the feedback part of these velocity inputs. When the bounds
set for the feedback part are exceeded, in particular at the
beginning of the control interval untilt � 10 s, the gaink is
lowered according to eq. (21).

As an example of a more complex motion, we report the
results for thevirtual square path with3 m sides shown
in Fig. 7. The walker starts at rest and moves along each
edge with a trapezoidal velocity pro�le, having symmetric
acceleration/deceleration phases with2:4 m/s2 for 0:5 s each
and a cruise velocity of1:2 m/s kept for2 s. At each reached
corner, the walker stops and turns counterclockwise with an
angular speed of�= 2 rad/s. Thus, the total trajectory of the
walker lasts16 s. Without motion control of the platform, the
walker would exit from the platform circular boundary set at
a radius of2:5 m.

The control parameters are chosen as before. In order to
evaluate the performance attainable by the proposed control
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Fig. 7. Virtual square path: Walker moves counterclockwise starting from Init
point (a dotted circle represents the platform boundary chosen in simulation)
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Fig. 9. Linear and angular velocity commands for Fig. 8

scheme, no perceptual constraints on the feedback commands
are considered in this second case. The results are shown in
Figs. 8–9. Thanks to the combined feedback and feedforward
actions, the walker is rapidly brought close to the platform
center and then kept there. The linear control input is again
smooth and, after an initial transient, does never exceed the
walker's voluntary speed. On the other hand, saturation on the
angular feedforward term (with! f f;max = 2 rad/s as before)
comes into action when the walker is close to the origin and
takes a sharp turn (starting with the corner after Edge 2 of
the path). Note that the platform lags behind during each turn

performed on place by the walker, since a walker's angular
motion without linear displacement triggers no feedforward
action.

IV. EXTENSION TO ACCELERATION-LEVEL CONTROL

In order to take into account limitations on linear and
angular accelerations imposed by the actuators and/or by
perceptual constraints, an acceleration-level control design is
more suitable. To this end, the presented smooth velocity-level
control law can be transformed to the acceleration level using
the theory ofcascaded systems, see, e.g., [27], orbackstep-
ping techniques, see, e.g., [28]. Moreover, the availability of
platform accelerations allows the analytical computation of the
apparent accelerations felt by a walking user. This possibility
is especially relevant for the evaluation of dynamic effects on
the walker in a full-scale version of theCyberCarpetplatform.

To pursue an acceleration-level control design, a second-
order version of the kinematic model (5) must be considered.
This is obtained by simply extending the �rst-order kinematic
models (1) and (5) with the equations

_v = a; _! = �; (25)

wherea and � are, respectively, the linear and angular accel-
eration commands of the platform. When a control law for the
regulation objectives stated in Sect. III has to be designed on
the extended (second-order) system (5)–(25), the availability
of smooth stabilizing lawsv = vd(x; y; � ) and! = ! d(x; y; � )
for the �rst-order system (5) can be exploited. In the following,
we present the design for cascaded systems.

The stability of a cascaded system in the form

_� 1 = f 1(t; � 1) + g1(t; � 1; � 2) � 2

_� 2 = f 2(t; � 2);
(26)

can be concluded, under mild conditions, from the stability
of the two subsystems_� 1 = f 1(t; � 1) and _� 2 = f 2(t; � 2)
(see [27] for details). In order to use this result, we transform
system (5)–(25) in the form (26) by de�ning

� 1 =

2

4
x
y

�

3

5 ; � =
�

v
!

�
; � d =

�
vd

! d

�
;

� 2 = � � � d; u(t) =
�

a(t)
� (t)

�
:

The system equations become

_� 1 = A(� 1)� d(t; � 1) + A(� 1)� 2 (27)

_� 2 = u(t) �
d� d(t)

dt
; (28)

where A(� 1) is de�ned in (6). Equations (27–28) take the
form (26) with f 1(t; � 1) = A(� 1)� d(t; � 1), g1(� 1) = A(� 1),
and f 2(t) = u(t) � (d� d(t)=dt).

From Sect. III, we know already that the “downstream”
system (27) is asymptotically stable for� 2 = 0 , i.e., for
� = � d. In order to stabilize the overall cascaded system, it is
then suf�cient to stabilize the “upstream” system (28) to the
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origin, i.e., to bring� 2 to zero. This can be easily obtained by
choosing, for any positive de�nite matrixK ,

u = _� d � K� 2 = _� d � K (� � � d): (29)

The control law (29) requires the differentiability of the
�rst-order velocity control law� d. Indeed, eqs. (17–18) are
not differentiable at con�gurations where the argument of the
sgn function is zero. This problem, however, can be overcome
by setting _� d = 0 in eq. (29) at such con�gurations. Note
also that an analytical expression of_� d can be computed from
eqs. (17–18) and the model eqs. (5), (25), where the walker
velocity Vw is treated locally as a constant.

The above control design has been compared to a backstep-
ping approach in [20], and their relative performance as well
as those of acceleration vs. velocity-level control have been
evaluated by simulations on theCyberCarpet. The reader is
referred to [20] for the numerical results. The general outcome
is that a very similar behavior is obtained, with slightly longer
regulation transients but smoother resulting velocities when
acceleration control is applied.

A. Dynamic effects of platform motion on the walker

Due to the platform motion, the `virtual world' frame
attached to the walker is in general non-inertial. In particular,
even when the intentional velocity of the walker is constant,
she/he will feel `apparent' accelerations (and thus forces) due
to the rotation and/or not uniform translation of the carpet.
One major advantage of moving the control action to the
acceleration level is that these accelerations can be reliably
computed in closed form.

In particular, when walking at constant velocityw Vw in the
non-inertial virtual world, the apparent acceleration felt by
the user equals the opposite of her/his absolute acceleration.
This is obtained by analytic differentiation of the �rst two
equations in (1), using (25) and the acceleration control
law (29). The apparent accelerationa felt by the user can
be decomposed into three different components depending,
respectively, on the linear and angular accelerations of the
frame (X t , Yt , Z t ) (inertial acceleration), on the square of the
angular velocity of this frame (centrifugal acceleration), and
on the coupling between its angular velocity and the walker
relative velocity (Coriolis acceleration). These components
should be expressed in the frame (X w , Yw , Zw ) attached to
the walker, see Fig. 3, in order to evaluate their effects on the
user. The results of these computations are reported below,
whereRot( � ) is the3� 3 orthonormal matrix associated to a
rotation by an angle� around theZ = Zw axis:

� Inertial component

w ain = Rot( � � w )

0

@Rot( � )

2

4
a
0
0

3

5 + �

2

4
� y
x
0

3

5

1

A ;

� Centrifugal component

w acen = ! 2 Rot( � � w )
�

x y 0
� T

;

� Coriolis component

w aCor = 2
�

0 0 !
� T

� w Vw ;

where the symbol� denotes the vector product.
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Fig. 10. Inertial, centrifugal and Coriolis components of the apparent
acceleration felt by a user in theX w (top) and Yw (bottom) directions
while walking along a square virtual path with acceleration control commands
applied to the platform

Fig. 11. A sample graphical output of the developed dynamic simulator.
The arrows represent (from the right, counterclockwise) the inertial (yellow),
centrifugal (red) and Coriolis (green) components of the apparent acceleration
felt by the walker on the controlled platform

Figure 10 displays the inertial, Coriolis and centrifugal
components of the apparent acceleration felt by the user in
the X w and Yw directions, when the walker is executing the
(virtual) square path considered in Fig. 7 and the platform is
controlled by acceleration commands. The control parameters
are the same used in Sect. III, whereasK = diag(20; 20) in
eq. (29). Should the total apparent acceleration be too large
for the perceptual comfort of the walker, control gains and
saturations would need to be adjusted accordingly.

For an extensive evaluation of dynamic effects, we have de-
vised a 3D simulator of a walker moving on theCyberCarpet,
where the various system and control parameters can be varied
at will. A snapshot of the resulting graphical output is shown
in Fig. 11, where colored arrows applied to the user body rep-
resent the various accelerations felt during a walk on the con-
trolled platform. A video of the square path walk is attached
to this paper, while videos of other motion tasks are available
at http://www.dis.uniroma1.it/labrob/research /CW.html.
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V. DESIGN OF THE SMALL-SCALE PROTOTYPE

This section illustrates the relevant issues in the mechan-
ical design and realization of a small-scale prototype of the
CyberCarpet. The general guidelines in the design require the
platform to be stiff enough and capable of carrying the weight
of a human (100 kg), to react very quickly to the control
commands, and to be reliable and easy to interface [29].
Figure 12 shows an overview of the whole system, including
the used test vehicleh1i . For further details. the reader is
referred to [30].

Fig. 12. Overview of the components of theCyberCarpetplatform (referred
to with h i in the text)

A. Ball-array carpet

The array of balls (seeh2i in Fig. 12) is one of the
most crucial elements of the platform. The resulting motion
imposed to the walker strongly depends on a well functioning
interaction between belt, balls (with their supporting grid
plate), and shoe sole. There are also major haptic issues that
in�uence the perception of the walking surface by the subject.
After testing different ball sizes with a number of subjects
who provided their impressions, a diameterdball = 8 mm has
been chosen. The ball array is allocated in a supporting grid
that keeps the balls in place. The gap between the balls has
been set to0:5dball to provide robustness and uniform feeling
to the �oor.

For determining appropriate materials of belt, balls, and sup-
porting grid, one major aspect concerns the resulting friction
forces at the different contact points and surfaces, see Fig. 13.
The ideal combination of materials exhibits maximum friction
at the belt-ball and ball-shoe contacts, and minimum friction
at the ball-grid and grid-belt interfaces. The ball material was
chosen as INOX steel, since it is easily available and proven
to be a reliable solution. The chosen belt is a Transilion E8/2
U0/V5, from the Fa. Siegling company, which is covered by
a soft PVC layer of0:5 mm displaying a friction coef�cient
to inox larger than0:7.

The grid itself can be realized with different materials, com-
paring their stability and slip-stick parameters. An acetal POM

Fig. 13. Diagram of friction forces on a single ball. The ball is in contact
with the shoe sole insisting with a massm f . When actuated, the belt applies
a forceFa to the ball, which gets in point contact with the cylindrical hole
of the supporting grid where forcesFn andFr occur. The resulting forceFs
is �nally transmitted to the walker on the platform.

plate manufactured by CNC die-cutting has been selected,
leading to friction coef�cients of0:3 and 0:6 with the balls
and belt, respectively. The �nal array contains4332balls and
�ts into an hexagonal grid. The diameters of the inscribed and
circumscribed circles are693 mm and800 mm.

B. Belt

The actuated belth3i in Fig. 12 provides the linear velocity
commandv to the kinematic system (1–5). The belt, together
with its electrical driveh4i and corresponding servo con-
troller h11i , is rigidly mounted on the supporting beamsh10i .
In order for the belt to run straight, a proper value for its
length-to-width ratio is1:4. Since the belt width is prescribed
by the ball array size, this led to a belt length of1100 mm.
Another issue is the position of the (single) drive actuating
the belt, which should always keep the upper strand in a tight
span. For this, we placed the drive at the belt center, using an
additional pulley placed underneath the belt body: the lower
span is thus divided into two small parts and the upper part of
the belt is always under direct tension of the actuating force.

C. Turntable

The turntableh9i has to bear the weight of the belt/ball-
array system and of the walker on the platform, and provides
the angular velocity command! to the kinematic system (1–
5). The turntable is primarily �xed by the ball bearingh7i in
combination with the mounting plateh8i , and the actuating
torque is applied to the turntable by the driveh14i via the
toothed belth12i . Vertical reaction forces are also provided
by the support wheelsh13i that stabilize the turntable. Since
the system should be able to rotate endlessly, current and data
lines are fed through the rotational feedthroughh6i , which is
secured with the ringh5i . The whole system is carried by the
framework h16i of aluminum beams. The moving (rotating)
parts of the whole system supported by this framework weigh
about200 kg.

D. Control and system drives

The hardware architecture of the control system is shown
in Fig. 14. There are two Lenze (9300 series) low-level
servocontrollers for the two identical drives of the belt and
the turnable. We used two Lenze three-phase motors, type
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MCA 10, providing a power of0:8 kW with a supply fre-
quency of140 Hz. The maximum torque is2:0 Nm at the
speed of3950min� 1. They actuate the belt through a gear with
ratio1:19:556, and the turntable through a gear and the toothed
belt h12i , having a ratio of1:8:012 and1:8:217, respectively.
As a result, the belt can reach for continuous operation a
linear speed of2 m/s, with a maximum acceleration of5 m/s2,
while the maximum angular velocity and acceleration of the
turntable are2 rad/s, and4:4 rad/s2, respectively.

Fig. 14. Control and system drives architecture

Both drives are equipped with integrated incremental en-
coders, and can be controlled up to a maximum sampling
frequency of100 Hz. The servocontroller for the belt drive
is mounted on the rotating part of the machine, and uses a
RS485 bus for communication. The turntable drive is equipped
with a reference switch used to initialize the encoder count
for platform orientation. The PC with the high-level control
laws sends the velocity inputsv and ! via Ethernet to a
Human Machine Interface (HMI), where the commands are
analyzed and suitably translated to be sent to the low-level
servocontrollers. Moreover, the HMI checks the parameters of
both drives and controllers to detect unnatural behaviors. This
structure provides safety functions to the platform.

VI. V ISUAL LOCALIZATION

A visual tracker is used to �nd the position(x; y), as well
as the orientation� w of the walker, on theCyberCarpet.
Our visual tracker is an adaptation of a color-based particle
�lter [31] and has been tested experimentally at a full scale,
with a human user walking (and changing posture) randomly
in the �eld of view of an overlooking camera. The tracker uses
a set ofparticlesto model the posterior probability distribution
of the state of the walker, i.e., of her/his position on the �oor
and (planar) orientation.

Particle �ltering is an estimation approach where multiple
hypothesess(1) ,: : :, s(N ) exist at the same time and are
kept during the estimation process. In our application, each
hypothesis (or particle)s( j ) represents one possible state of
the walker, with a corresponding discrete sampling probability
� ( j ) , j = 1 ; : : : ; N . The particle type considered in [31]
consisted of an elliptical blob with a position and a varying

size, describing the boundary of the object being tracked. Since
the size of the walker is considered to be constant in our case,
each particle (the indexj is dropped for compactness) has
been initially speci�ed as

s = f x; y; � w g; (30)

wherex andy represent the position of the center of the ellipse
and� w is the orientation angle of the minor axis of the ellipse,
which corresponds to the walker forward direction. However,
due to perspective changes and the head bobbing about, the
appearance of the user changes continuously during the walk,
and the localization algorithm was not fully able to track the
walker position in a reliable way. Therefore, the model (30)
was extended from a simple ellipse to the combination of
an elliptical shoulder region and a circular head region, as
seen in a top-view of a person and illustrated in Fig. 15. The
description of the particle is

s = f x; y; � w ; cx ; cy g; (31)

wherecx andcy are the position of the head circle relative to
the ellipse center.

!  

igure 4.1 Model including a circular head

Fig. 15. Each particle is modeled by an ellipse and a circle, representing
the top-view of the shoulders and head, parametrized as in eq. (31)

The N particles are initialized using for all of them the
same set of values entered manually (by mouse clicks) on the
user interface. At each iterationt of the visual localization
algorithm, three stepsare performed to compute the updated
set of hypotheses from the one available at the previous
iterationt � 1 and the corresponding estimation of the walker
position and orientation.

A. Particle �ltering

In the �rst step, each particlest � 1 of the previous itera-
tion is propagated according to a simple dynamic model. In
particular, the evolutionst is computed as

st = st � 1 + w t � 1; (32)

wherew t � 1 is a multivariate Gaussian random variable that
models the walker motion in the time interval between two
iterations. This generates the prior distribution of the next state.

B. Color-based observation

To test the probability of the evolved particlest being a
good hypothesis, the current image captured by the overhead
camera is observed. A color histogramp is computed for
the shoulder region and another histogramp0 for the head
region. The shoulder region is de�ned by all the pixels inside
the ellipse, excluding those inside the head circle. The head
region is de�ned by all the pixels inside the head circle.
The resulting histogramp is normalized and compared to
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a stored histogram or target shoulder modelq (acquired at
the tracker initialization) using theBhattacharyya coef�cient
� [p; q], which is explained in more detail in [31]. The same is
done forp0 and target head modelq0, resulting in� [p0; q0]. The
distance between the particle and the target model is de�ned
by theBhattacharyya distance[32]

d =

r

1 �
� [p; q] + � [p0; q0]

2
: (33)

This similarity measure provides a likelihood of each particle
that will be used to update the particle set in the next step. In
fact, each elements( j ) of the particle set can be assigned a
probability� ( j ) in terms of the observations (color histogram),
namely

� ( j ) =
1

p
2� �

exp
�

�
d2

2� 2

�
; (34)

where� is the standard deviation of the Gaussian distribution
(a constant that can be �ne tuned). The� ( j ) , j = 1 ; : : : ; N ,
are further normalized so as to de�ne the discrete posterior
probability distribution of the walker state.

C. Updating the particle set and tracker state

The third step of each iteration generates the new set
of hypotheses used for updating the tracker state (the new
estimation of the walker position and orientation). The new set
of N particles is drawn from the current set by choosing the
generic particles( j ) with probability � ( j ) . Particles are drawn
with replacement, so that those with higher probability are
in general selected several times. Finally, the updated tracker
state is computed as a weighted mean over all the current
particles, using their Bhattacharyya distance (33) to the target
model as weights.

D. Final considerations

Given the increased number of degrees of freedom in
the adapted model (31), our experiments have shown that a
minimum of N = 500 particles are needed to correctly track
the walker. This, however, slowed down the visual tracking rate
to 3 Hz. Considering the high resolution of the input image
and the relative size of the ellipse, it appeared that more pixels
than necessary were evaluated for building the histograms.
Thus, we introduced arandom sampling, picking 500 random
points within the ellipse region. These points were stored as a
vector of(px ; py ) positions relative to the ellipse center(x; y)
and angle of orientation� w . The same has been done for the
head region. The histograms could then be computed faster by
evaluating only the pixels corresponding to these points, and
the �nal visual localization algorithm could run up to 17 Hz.

Typical snapshots of the tracker state for a human walker
in a room are shown in Fig. 16, where the 3-dimensional
particle (30) and the 5-dimensional particle (31) have been
used, respectively in (a) and in (b). It is apparent that the
correct posture is lost (at times) in the �rst case, motivating
the use of the extended model. Complete videos of these
two human tracking experiments are included in the material
accompanying the paper. Note that for the experiments with
the small-scaleCyberCarpetplatform in Sect. VII, the same

visual algorithm working for human walkers was used. Since
the walker was replaced by a mobile robot mock-up, the rate
of the tracker was limited to 10 Hz without performance loss.

(a) (b)

Fig. 16. Snapshots of the visual localization algorithm tracking a walking
person; the elliptical model without head region (30) is used in (a), while
the model with head region (31) is used in (b), resulting in a more accurate
tracking

VII. E XPERIMENTAL RESULTS

The velocity-level control algorithms described in Sect. III
have been implemented and validated on the small-scale
CyberCarpet prototype described in Sect. V. The walker
was emulated by a differentially-driven tracked mobile robot
carrying on top a picture of a human body (see Fig. 17,
including at typical camera view with superimposed localiza-
tion ellipse/circle). Its position on the platform was localized
with the technique of Sect. VI, using a Sony DFW-VL500
Color/VGA camera, with640� 480 pixels at30 fps, placed
at about131 cm over the surface of the carpet.

Fig. 17. The experimental set up with theCyberCarpet, the mobile
robot carrying a picture of a human body, and the overhead camera for
visual tracking; in the top-left box, a view from the overhead camera with
superimposed localization

The testing campaign involved four different motions for the
vehicle. In particular, the following scenarios were chosen:
A. Standing still off the origin;
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Fig. 18. Absolute trajectory in the experiment of Sect. VII-A (standing still)

B. Starting at the origin and moving along a straight line
with a constant speed of about0:22 m/s;

C. Starting at the origin and moving along a circular path of
radius0:35 m with a constant speed of about0:14 m/s;

D. Starting at the origin and moving along a square path
of side 0:4 m with a constant linear velocity of about
0:1 m/s, and turning at the corners with an angular
velocity of about�= 4 rad/s.

As for the control laws, for the three scenariosB to D where
the user is in motion, we comparatively tested the pure static
feedback lawv = vfb , ! = ! fb given in (17–18) alone against
the full feedback/feedforward strategyv = vfb + vf f , ! =
! fb + ! f f of (22), (23–24). The parameters of the control
laws were set tok = 4 in eqs. (17–18),kw = 0 :3 in eqs. (23–
24), and! f f;max = 0 :05 rad/s as saturation level in eq. (22).
Videos of all experiments accompany the paper (also available
at http://www.dis.uniroma1.it/labrob/research/CW.html).

A. Standing still

In the �rst experiment, the vehicle is placed in the absolute
position (0:2; � 0:05) m and keeps a zero intentional velocity
during the whole experiment. In Fig. 18 the planar absolute
trajectory executed under the control law (17–18) is shown,
with a black triangle marker representing the starting position.
The corresponding behavior of the linear and angular velocity
commands is displayed in Fig. 19. Note that the recovering
path in absolute space is close to the straight line predicted
in the control analysis of Sect. III. The discrepancies are due
to the presence of noise in the image processing step, to the
discrete sampling of the measurements (10 Hz on the position
(x; y)), and to the discrete sampling of the control output
(10 Hz on the commanded platform velocities).

B. Moving at constant velocity

In the second experiment, we tested separately the control
laws (17–18) and (22), (23–24), i.e., without or with the on-
line velocity estimation and compensation. The robot moves
along a straight line with a constant speed of about0:22 m/s.

Fig. 19. Linear and angular velocity commands for the trajectory of Fig. 18

Fig. 20. Absolute trajectory in the experiment of Sect. VII-B.1 (moving at
constant velocity, with pure feedback control)

Fig. 21. Linear and angular velocity commands for the trajectory of Fig. 20
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Fig. 22. Absolute trajectory in the experiment of Sect. VII-B.2 (moving at
constant velocity, with feedforward control action)

1) Pure feedback law (17–18):The absolute trajectory of
the vehicle is reported in Fig. 20. The starting point is at
(0; 0:02) m (black triangle) and motion proceeds in the nega-
tive y-direction (� Y0). As expected, the static feedback (17–
18) is not able to fully compensate the persistent intentional
motion, but a steady state is obtained after about6 s with
a non-zero constant position error. The reached equilibrium
position is at about(0:05; � 0:23) m (this value depends on the
chosen control gains) and the control is not able to recenter the
robot. The linear and angular velocity commands are shown
in Fig. 21. Note that, after an initial transient, the linear
velocity command matches the user intentional velocity, while
the angular command is close to zero.

2) Complete feedback/feedforward law (22), (23–24):In
this case, the additional presence of the feedforward action
based on the observer (23–24) is able to fully recover the
platform center despite the persistent intentional motion, sim-
ilar to what could be obtained by an integral control action.
The vehicle starts at(0:006; 0:022) m (black triangle) and
moves in the negativey-direction as before. After a transient
phase, the estimate of the intentional speed converges to the
actual value (see Fig. 23) and the control law (22) brings
back the robot to the origin (see Fig. 22). The commanded
linear and angular platform velocities are shown in Fig. 24.
In comparison with Fig. 21, the angular velocity appears now
more erratic, especially toward the end of the motion (i.e.,
close to the platform center). This effect is due to the presence
of the term1=R in the feedforward term! f f of eq. (22), which
grows unbounded asR goes to zero. The saturation introduced
in eq. (22) helps in softening this effect, but cannot avoid some
chattering around the origin (see Fig. 25 for the time behavior
of ! f f ).

C. Moving along a circular path

In this experiment, the vehicle is moving along a circular
path of radius0:35 m with a constant speed of about0:14 m/s,
and, as a result, with a constant angular velocity of about
0:4 rad/s. This test case is signi�cantly different from the pre-

Fig. 23. Estimation of the intentional speed for the trajectory of Fig. 22

Fig. 24. Linear and angular velocity commands for the trajectory of Fig. 22

Fig. 25. The angular feedforward term! f f without (blue line) and with
(red line) saturation for the trajectory of Fig. 22
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Fig. 26. Absolute trajectory in the experiment of Sect. VII-C.1 (circular
path, with pure feedback control)
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Fig. 27. Linear and angular velocity commands for the trajectory of Fig. 26

vious one, since the intentional velocity vector is continuously
changing direction during motion. This is a more demanding
task for the disturbance observer, which needs to track a highly
time-varying signal.

1) Pure feedback law (17–18):The absolute trajectory of
the vehicle is shown in Fig. 26. As expected, the control law
is only able to partially compensate for the intentional motion:
the robot is kept within a distance of0:2 m from the platform,
which is anyway smaller than the original dimension of the
circular path (0:35 m). The corresponding platform velocity
commands are shown in Fig. 27. It is interesting to note
that, after the initial transient, the platform linear and angular
velocities match the actual linear (0:14 m/s) and angular
(0:4 rad/s) velocity of the vehicle, con�rming again that a
steady-state condition has been reached. At aboutt = 23:5 s,
the robot stops its motion and is thus brought back to the
center of the platform.

2) Complete feedback/feedforward law (22), (23–24):De-
spite the more challenging task for the observer, the complete

Fig. 28. Absolute trajectory of the car in the experiment of Sect. VII-C.2
(circular path, with feedforward control action)

Fig. 29. Linear and angular velocity commands for the trajectory of Fig. 28

feedback/feedforward control law is able to keep the user
closer to the platform center than in the previous case, as
shown by the absolute trajectories in Figs. 26 and 28 for the
two experiments. The velocity commands sent to the platform
are shown in Fig. 29.

We note that the convergence of the intentional speed
estimate is not perfect (see Fig. 30), so that a residual motion
around the platform center is still present in Fig. 28. The
reason of this behavior is intrinsic to the structure of the
proposed observer. Indeed, the estimated velocity is a low-pass
�ltered version of the actual velocity, with cut-off frequency
given by the observer gainkw . From standard linear analysis,
when the input signal (the actual velocity of the vehicle) has
a sinusoidal behavior, the observer output will result in a
sinusoid with the same frequency, but different amplitude and
phase. In particular, since we have setkw = 0 :3, and the
frequency of the input signal is0:4 rad/s (the angular velocity
of the robot), the resulting estimated velocity will be attenuated
by � 4:5 dB and the phase shift will be0:92 rad, equivalent
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Fig. 30. Estimation of the intentional speed for the trajectory of Fig. 28

to a time delay of about2:3 s. Therefore, even at steady
state, the estimated velocity lags behind the actual one, thus
preventing the controller to complete a perfect recover of the
position to the origin. Accordingly, the estimated intentional
speed oscillates around its nominal value of0:14 m/s, before
dropping to zero starting fromt = 23:5 s when the robot
suddenly stops.

D. Moving along a square path

In this last experiment, the vehicle travels along a square
path of 0:4 m side with constant linear velocity of about
0:1 m/s. The absolute trajectory in the virtual world during
the execution of the square path is shown in Fig. 31 (different
colors are used for each side). The robot starts from theInit
position (black triangle) and moves to the left along Edge 1
of the square. Then it stops, turns90� counterclockwise, and
starts travelling along Edge 2, repeating the same sequence
until tracing the complete square. The total motion time is
thus approximately24 s. The mismatch between the actual
trajectory in Fig. 31 and the ideal commanded square path
is mainly due to slippage of the tracks of the mobile vehicle
during motion and, to a less extent, to the inaccurate execution
of its commanded velocities.

1) Pure feedback law (17–18):The static feedback law
is able to partially compensate for the intentional motion,
keeping the vehicle within a circle centered at the origin
and having a radius of about0:2 m (Fig. 32). The velocity
commands sent to the platform are shown in Fig. 33.

2) Complete feedback/feedforward law (22), (23–24):The
absolute motion for this case is shown in Fig. 34, while the
velocity commands sent to the platform are given in Fig. 35.
The bene�ts of the estimation of the intentional velocity are
not so evident as in the previous cases. In particular, the
controlled motion of the vehicle remains in an area around
the platform center that is as wide as when using a pure
feedback law. This is mainly due to the slow convergence of
the velocity observer w.r.t. the duration of the motion along
each side of the square. By looking closer at the behavior
of the estimated speed in Fig. 36, it is clear that4 s of linear
motion along each side are not suf�cient for convergence with
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Fig. 31. Trajectory of the user in the virtual world while executing a square
path

Fig. 32. Absolute trajectory in the experiment of Sect. VII-D.1 (square path,
with pure feedback control)

Fig. 33. Linear and angular velocity commands for the trajectory of Fig. 32
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Fig. 34. Absolute trajectory in the experiment of Sect. VII-D.2 (square path,
with feedforward control action)

Fig. 35. Linear and angular velocity commands for the trajectory of Fig. 34

the chosen observer gains. The estimate always lags behind the
actual speed: when the vehicle is moving at0:1 m/s, increasing
maximum values of0:08, 0:094, and0:098 are reached along
the �rst, second, and third side. Similarly, when the vehicle
stops and turns in place at the corners, the estimate drops
toward zero though not reaching this �nal value. Indeed, higher
observer gains would largely improve this behavior, but these
were not allowed by measurement noise and feasible sampling
times.

VIII. C ONCLUSIONS

We have presented the design and implementation of motion
control laws for theCyberCarpet, a novel concept of platform
that re-centers a user in unlimited locomotion by combining
the linear and angular mobility of a treadmill mounted on
a turntable with the presence of a ball-array carpet. Despite
of the restricted local mobility, due to the presence of a
nonholonomic constraint on the instantaneous velocities, the
controller is able to keep a freely walking user close to the

Fig. 36. Estimation of the intentional speed for the trajectory of Fig. 34

platform center in a natural way.
The control law is designed at the velocity level as the

composition of a feedback and a feedforward action. The
nonlinear feedback is a singularity-free version of an input-
output linearization law, while the feedforward term is based
on an estimation of the unknown walker intentional velocity
through a disturbance observer. The feedback gains can be
conveniently scaled so as to decrease the control velocities
to perception levels that are acceptable by the user. The
smoothness of the velocity control law allows a direct exten-
sion to the design of an acceleration-level controller, which
was performed using the theory of cascaded systems. This
enables to take into account also acceleration bounds due to
user's perception constraints, as well as to perform a dynamic
analysis of inertial forces acting on the walker.

To validate the CyberCarpet principle and to test the
actual performance of the motion control laws, a small-
scale platform has been designed and built having in mind
scalability properties. In particular, from the mechanical and
actuation points of view, the prototype is already capable of
sustaining and moving the full weight of a person. Moreover,
the method based on particles �lter for visual localization
by an overhead camera has been already tested on human
walkers in arbitrary motion, proving to be quite robust. Using
this setup, a series of velocity-level control experiments have
been conducted with a mobile robot vehicle as a mock-up of
the walking user. Comparison between pure feedback control
and the complete feedback/feedforward scheme has shown the
bene�ts of compensating for the unknown intentional velocity,
especially for smooth vehicle motion. In particular, the absence
of sharp turns allows a faster convergence of the observer to
the intentional linear velocity, and thus its full cancellation.

The main limitations that we found were related to the high
level of noise in the measurement of the vehicle position,
and to the relatively low sampling frequency of the visual
localization. The walker's orientation, though available from
visual estimation, has not been used in the control law, thus
preventing the prediction of intentional turns and delaying the
re-centering. Nonetheless, the robot vehicle never approached
dangerously the platform border, proving the effectiveness of
velocity-level control up to intentional velocities of0:25 m/s,
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comparable to the diameter of0:8 m of the prototype. At this
scale, resort to acceleration control was found not necessary.

Having proven the feasibility of theCyberCarpetconcept in
all its components, the next step would be the construction of
a full-scale device to have a human user walk at normal speed
while being immersed in a Virtual Reality environment. Our
parallel experience with the other omni-directional belt-array
platform developed within theCyberWalkproject [16], [17]
suggests that the compact mechanical principle underlying the
ball-array platform may still be a convenient choice in terms of
weight, needed power, ease of maintenance, and reduced part
wearing. The total weight of the moving parts of the 5� 5 m
omni-directionalCyberWalkplatform is over 7500 kg, with the
need of a combined electrical and hydraulic actuation. A full
scale ball-array platform with similar performance could be
of smaller size/weight and more ef�cient due to its actuation
mechanism. In fact, theCyberCarpettends always to align its
main belt with the motion direction of a persistent walking
user. Thus, in a steady-state condition, only one dof needs
to be actuated, considerably reducing the energy consump-
tion. Conversely, the belt-arrayCyberWalk platform needs
in general full 2D actuation for compensating a persistent
walk. Additional investigations are required to establish the
perceptual effects of the combined linear and angular motion
imposed by theCyberCarpeton the walker especially during
transients, so as to set accordingly control design constraints.
The introduced transposition of the smooth control design to
the acceleration level represents a needed and useful step.

ACKNOWLEDGMENTS

This work has been supported by the European Commission
as part of the STREP project FP6–511092CyberWalk.

REFERENCES

[1] CyberWalk, “EU STREP Project FP6–511092, http://www.cyberwalk-
project.org,” 2005.

[2] H. Iwata, “Locomotion interface for virtual environments,” inProc. 9th
Int. Symp. on Robotics Research, pp. 275–282, 2000.

[3] J. M. Hollerbach, “Locomotion interfaces,” inHandbook of Virtual
Environments Technology(K. M. Stanney, ed.), pp. 239–254, Lawrence
Erlbaum Associates, 2002.

[4] J. M. Hollerbach, “Locomotion interfaces and rendering,” inHaptic
Rendering: Foundations, Algorithms, and Applications(M. Lin and
M. Otaduy, eds.), A. K. Peters, 2008.

[5] J. M. Hollerbach, Y. Xu, R. R. Christensen, and S. C. Jacobsen, “Design
speci�cations for the second generation Sarcos Treadport locomotion
interface,” inHaptic Symposium, Proc. of ASME Dynamic Systems and
Control Division, pp. 1293–1298, 2000.

[6] R. C. Hayward and J. M. Hollerbach, “Implementing virtual stairs on
treadmills using torso force feedback,” inProc. IEEE Int. Conf. on
Robotics and Automation, (Washington, DC), pp. 586–591, 2002.

[7] D. Checcacci, J. M. Hollerbach, R. Hayward, and M. Bergamasco, “De-
sign and analysis of a harness for torso force applications in locomotion
interfaces,” inProc. EuroHaptics Conf., (Dublin, IR), pp. 53–67, 2003.

[8] H. Noma, T. Sugihara, and T. Miyasato, “Development of Ground
Surface Simulator for Tel-E-Merge System,” inProc. IEEE Virtual
Reality Conf., pp. 217–224, 2000.

[9] H. Iwata, H. Yano, H. Fukushima, and H. Noma, “CirculaFloor,”IEEE
Computer Graphics and Applications, vol. 25, no. 1, pp. 64–67, 2005.

[10] R. Darken, W. Cockayne, and D. Carmein, “The Omnidirectional
Treadmill: A locomotion device for virtual worlds,” inProc. Symp. User
Interface Software and Technology, pp. 213–221, 1997.

[11] H. Iwata, “The Torus Treadmill: Realizing locomotion in VEs,”IEEE
Computer Graphics and Applications, vol. 9, no. 6, pp. 30–35, 1999.

[12] K. J. Fernandes, V. Raja, and J. Eyre, “Cybersphere: The fully immersive
spherical projection system,”Communications of the ACM, vol. 46,
no. 9, pp. 141–146, 2003.

[13] A. Nagamori, K. Wakabayashi, and M. Ito, “The Ball Array Treadmill:
A locomotion interface for virtual worlds,” inWork. on New Directions
in 3D User Interfaces (at VR 2005), (Bonn, D), 2005.

[14] J.-Y. Huang, “An omnidirectional stroll-based virtual reality interface
and its application on overhead crane training,”IEEE Trans. on Multi-
media, vol. 5, no. 1, pp. 39–51, 2003.

[15] A. De Luca, R. Mattone, P. Robuffo Giordano, and H. H. Bülthoff,
“Control design and experimental evaluation of the 2D CyberWalk
platform,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, (St. Louis, MO), pp. 5051–5058, 2009.

[16] J. Souman, P. Robuffo Giordano, I. Frissen, A. De Luca, and M. Ernst,
“Making virtual walking real: Perceptual evaluation of a new treadmill
control algorithm,”ACM Trans. on Applied Perception, vol. 7, no. 2,
pp. 11:1–11:14, 2010.

[17] J. Souman, P. Robuffo Giordano, M. Schwaiger, I. Frissen, T. Thümmel,
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