Answering Why-Not Questions

Nicole Bidoit 1, 2 Melanie Herschel 1, 2 Katerina Tzompanaki 1, 2
2 OAK - Database optimizations and architectures for complex large data
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : With the increasing amount of available data and transformations manipulating the data, it has become essential to analyze and debug data transformations. A sub-problem of data transformation analysis is to understand why some data are not part of the result of a relational query. One possibility to explain the lack of data in a query result is to identify where in the query data pertinent to the expected, but missing output is lost during query processing. A first approach to this so called why-not provenance has been recently proposed, but we show that this first approach has some shortcomings. To overcome these shortcomings, we propose an algorithm to explain non-existing data in a query result. This algorithm allows to compute the why-not provenance for rela- tional queries involving selection, projection, join and union. After providing necessary definitions, this paper contributes a detailed description of the algorithm. A comparative evaluation shows that it is both more efficient and effective than the state-of-the-art ap- proach.
Type de document :
Communication dans un congrès
Bases de Données Avancées (BDA), 2013, Nantes, France. 2013
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00909214
Contributeur : Melanie Herschel <>
Soumis le : jeudi 20 mars 2014 - 16:38:14
Dernière modification le : lundi 28 mai 2018 - 14:38:02
Document(s) archivé(s) le : vendredi 20 juin 2014 - 10:36:19

Fichier

CRV_bda_2013.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00909214, version 1

Collections

Citation

Nicole Bidoit, Melanie Herschel, Katerina Tzompanaki. Answering Why-Not Questions. Bases de Données Avancées (BDA), 2013, Nantes, France. 2013. 〈hal-00909214〉

Partager

Métriques

Consultations de la notice

454

Téléchargements de fichiers

176