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Abstract

Linear dependent types were introduced recently [1] as a formal system that
allows to precisely capture both the extensional behavior and the time com-
plexity of λ-terms, when the latter are evaluated by Krivine’s abstract ma-
chine. In this work, we show that the same paradigm can be applied to call-
by-value computation. A system of linear dependent types for Plotkin’s PCF
is introduced, called dℓPCFV, whose types reflect the complexity of evaluating
terms in the CEK machine. dℓPCFV is proved to be sound, but also relatively
complete: every true statement about the extensional and intentional be-
haviour of terms can be derived, provided all true index term inequalities
can be used as assumptions.
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1. Introduction

Program verification is one of the most challenging activities in computer
science, due to the fundamental limitations recursion theory and complexity
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theory pose on it. A variety of methodologies for formally verifying proper-
ties of programs have been introduced in the last fifty years. Among them,
type systems have certain peculiarities. On the one hand, the way type sys-
tems are defined makes the task of proving a given program to have a type
simple and modular: a type derivation for a compound program usually
consists of some type derivations for the components, appropriately glued
together in a syntax-directed way (i.e., attributing a type to a program can
usually be done compositionally). On the other, the kind of specifications
that can be expressed through types have traditionally been weak, although
stronger properties have recently become of interest, including security prop-
erties [2, 3], termination [4], monadic temporal properties [5] or resource
bounds [6, 7]. But contrarily to what happens with other formal methods
(e.g. model checking or program logics), giving a type to a program t is
a sound but incomplete way to prove t to satisfy a specification: there are
correct programs which cannot be proved such by way of typing.

In other words, the tension between expressiveness and tractability is
particularly evident in the field of type systems, where certain good properties
the majority of type systems enjoy (e.g. syntax-directedness) are usually
considered desirable (if not necessary), but also have their drawbacks: some
specifications are intrinsically hard to verify locally and compositionally. One
specific research field in which the just-described scenario manifests itself
is complexity analysis, in which specifications are concrete or asymptotic
bounds on the complexity of the underlying program. Many type systems
have been introduced capturing, for instance, the class of polynomial time
computable functions [8, 9, 10]. All of them, under mild assumptions, can
be employed as tools to certify programs as asymptotically time efficient.
However, a tiny slice of the polytime programs are generally typable, since the
underlying complexity class FP is only characterized in a purely extensional
sense — for every function in FP there is at least one typable program
computing it.

Gaboardi and the first author have recently introduced [1] a type system
for Plotkin’s PCF, called dℓPCFN, in which linearity and a restricted form of
dependency in the spirit of Xi’s DML [11] are present:
• Linearity makes it possible to precisely control the number of times sub-
terms are copied during the evaluation of a term t. This number is actu-
ally a parameter which accurately reflects the time complexity of evalu-
ating t [12].

• Dependency allows to type distinct (virtual) copies of a term with dis-

2



tinct types. This gives the type system an extra flexibility similar to that
of intersection types [13, 14].

When mixed together, these two ingredients allow to precisely capture the
extensional behavior of λ-terms and the time complexity of their evaluation
by the Krivine’s Abstract Machine [15] (KAM). Both soundness and relative
completeness hold for dℓPCFN. Noticeably, this not only holds for terms of
base type, but also for first-order functions.

One may argue, however, that the practical relevance of these results is
quite limited, given that call-by-name evaluation and KAM are very ineffi-
cient: why would one be interested in verifying the complexity of evaluating
concrete programs in such a setting?

In this work, we show that linear dependent types can also be applied to
the analysis of call-by-value evaluation of functional programs. This is done
by introducing another system of linear dependent types for Plotkin’s PCF.
The system, called dℓPCFV, captures the complexity of evaluating terms by
Felleisen and Friedman’s CEK machine [16], a simple abstract machine for
call-by-value evaluation. dℓPCFV is proved to have the same good properties
enjoyed by its sibling dℓPCFN, namely soundness and relative completeness:
every true statement about the intensional (and extensional) behavior of
terms can be derived, provided all true index term inequalities can be used
as assumptions.

Actually, dℓPCFV is not merely a variation on dℓPCFN: not only typ-
ing rules are different, but also the language of types itself must be modi-
fied. Roughly, dℓPCFV and dℓPCFN can be thought as being induced by two
translations of intuitionistic logic into linear logic: the latter corresponds to
Girard’s translation A ñ B ” !A ⊸ B, while the former corresponds to
A ñ B ” !pA ⊸ Bq. The strong link between translations of IL into ILL

and notions of reduction for the λ-calculus is well-known (see e.g. [17]) and
has been a guide in the design of dℓPCFV (this is explained in Section. 2.2).
Overall, dℓPCFV is arguably simpler than dℓPCFN: base types need not be
annotated with the ! operator.

2. Linear Dependent Types, Intuitively

Consider the following program:

dbl “ fix f.λx. ifz x then x else spspfpppxqqqq.
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In a type system like PCF [18], the term dbl receives type Nat ñ Nat. As
a consequence, dbl computes a function on natural numbers without “going
wrong”: it takes in input a natural number, and (possibly) produces in out-
put another natural number. The type Nat ñ Nat, however, does not give
any information about which specific function on the natural numbers dbl

computes.
Properties of programs which are completely ignored by ordinary type

systems are termination and its most natural refinement, namely termination
within appropriate time bounds (e.g., polynomial bounds). Typing a term
t with Nat ñ Nat does not guarantee that t, when applied to a natural
number, terminates. Consider, as another example, a slight modification of
dbl, namely

div “ fix f.λx. ifz x then x else spspfpxqqq.

It behaves as dbl when fed with 0, but it diverges when it receives a strictly
positive natural number as argument. But look: div is not so different from
dbl. Indeed, the latter can be obtained from the former by feeding not x

but ppxq to the “recursive call” f . And any type system in which dbl and
div are somehow recognized as being fundamentally different must be able to
detect the presence of p in dbl and deduce termination from it. Indeed, sized
types [4] and dependent types [11] are able to do so. Going further, we could
ask the type system to be able not only to guarantee termination, but also to
somehow evaluate the time or space consumption of programs. For example
we could be interested in knowing that, on any natural number, dbl takes a
polynomial number of steps to be evaluated in a given machine, and actually
some type systems able to control the complexity of higher-order programs
exist. Good examples are type systems for amortized analysis [7, 19] or those
using ideas from linear logic [9, 10]: in all of them, linearity plays a key role.

dℓPCFN [1] combines some of the ideas presented above with the principles
of bounded linear logic (BLL [20]): the cost of evaluating a term is measured
by counting how many times function arguments need to be copied dur-
ing evaluation, and different copies can be given distinct, although uniform,
types. Making this information explicit in types permits to compute the cost
step by step during the type derivation process. Roughly, typing judgments
in dℓPCFN are statements like

$J t : !n Natras ⊸ NatrIs,
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where I and J depend on a and n is a natural number capturing the number
of times t uses its argument. But this is not sufficient: analogously to what
happens in BLL, dℓPCFN makes types more parametric. A type like !n σ ⊸ τ

is replaced by the more accurate !aănσ ⊸ τ , which tells us that the argument
will be used n times, and each instance has type σ where, however, the
variable a is substituted by a value less than n. This allows to type each
copy of the argument differently but uniformly, since all instances of σ have
the same PCF skeleton. This form of uniform linear dependence is actually
crucial in obtaining the result which makes dℓPCFN different from similar
type systems, namely completeness. As an example, dbl can be typed as
follows in dℓPCFN:

$E

a dbl :!băa`1Natras ⊸ Natr2 ˆ as.

This tells us that the argument will be used a` 1 times by dbl, and that the
cost of evaluation will be itself proportional to a.

2.1. Why Another Type System?

The theory of λ-calculus is full of interesting results, one of them being
the so-called Church-Rösser property: both β and βη reduction are conflu-
ent, i.e., if you fire two distinct redexes in a λ-term, you can always “close
the diagram” by performing one or more rewriting steps. This, however, is
only a local confluence result, and as such does not imply that all reduction
strategies are computationally equivalent. Indeed, some of them are normal-
izing (like normal-order evaluation) while some others are not (like innermost
reduction). But how about efficiency?

On the one hand, it is well known that optimal reduction is indeed pos-
sible [21], even if it gives rise to high overheads [22]. On the other, call-by-
name evaluation (cbn) may be highly inefficient. Consider, as an example,
the composition of dbl with itself:

dbl2 “ λx.dblpdbl xq.

The term dbl2 n takes quadratic time to be evaluated by the KAM, since the
evaluation of dbl n is repeated a linear number of times, whenever it reaches
the head position. This actually can be seen from within dℓPCFN, since

$E

J dbl2 :!băINatras ⊸ Natr4 ˆ as,
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where both I and J are quadratic in a (more precisely, I “ 2a2 ` 3a ` 1 and
J “ 4a2 ` 8a ` 2). Call-by-value (cbv) solves this problem, at the price
of not being normalizing. Indeed, eager evaluation of dbl2 when fed with a
natural number n takes linear time in n. Besides giving examples like the
one above, little can be said about the relative efficiency of call-by-value and
call-by-name evaluation: the two are clearly incomparable from an analytical
point of view (consider, as an another example, the term pλx.λy.xqΩ). A nice
informal discussion about the advantages and disadvantages of call-by-value
and call-by-name evaluation can be found in [23], together with a comparison
with Levy’s notion of optimal reduction.

The reason why a step forward dℓPCFN is needed is not necessarily related
to efficiency: simply, in many modern functional programming languages
(like OCaml and Scheme) terms are call-by-value evaluated. And on the
other hand, upper bounds on the time complexity of programs written in
functional languages (which can be seen as the long term goal of this line
of research) should reflect the underlying evaluation strategy, which is an
essential part of their definition, and not merely an implementation detail.

For the reasons above, we strongly believe that designing a type system in
the style of dℓPCFN, but able to deal with eager evaluation, is a step forward
applying linear dependent types to ML-like programming languages.

2.2. Call-by-Value, Call-by-Name and Linear Logic

Various notions of evaluation for the λ-calculus can be seen as translations
of intuitionistic logic (or simply-typed λ-calculi) into Girard’s linear logic.
This correspondence has been investigated in the specific cases of call-by-
name, call-by-value, and call-by-need reduction (e.g. see the work of Maraist
et al. [17]). In this section, we briefly introduce the main ideas behind the
correspondence, explaining why linear logic has guided the design of dℓPCFV.

The general principle in such translations, is to guarantee that when-
ever a term can possibly be duplicated, it must be mapped to a box in the
underlying linear logic proof. In the cbn translation (also called Girard’s
translation), any argument to functions can possibly be substituted for a
variable and copied, so arguments are banged during the translation:

pA ñ Bq˚ “ p!A˚q ⊸ B˚.

Adding the quantitative bound on banged types (as explained in the previous
section) gives rise to the type p!aăIσq ⊸ τ for functions (written ra ă Is ¨σ ⊸
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τ in [1]). In the same way, contexts are banged in the cbn translation: a
typing judgment in dℓPCFN has the following form:

x1 : !a1ăI1σ1, . . . , xn : !anăInσn $J t : τ.

In the cbv translation, β-reduction should be performed only if the argu-
ment is a value. Thus, arguments are not automatically banged during the
translation but values are, so that β-reduction remains blocked until the ar-
gument reduces to a value. In the λ-calculus functions are values, hence the
translation of the intuitionistic arrow becomes

pA ñ Bq˝ “ !pA˝
⊸ B˝q.

Accordingly, function types have the form !aăIpσ ⊸ τq in dℓPCFV, and a
judgment has the form x1 : σ1, . . . , xn : σn $J t : τ. The syntax of types
varies fairly much between dℓPCFN and dℓPCFV, and consequently the two
type systems are different, although both of them are greatly inspired by
linear logic.

In both dℓPCFN and dℓPCFV, however, the “target” of the translation is
not the whole of ILL, but rather a restricted version of it, namely BLL, in
which the complexity of normalization is kept under control by shifting from
unbounded, infinitary, exponentials to finitary ones. For example, the BLL

contraction rule allows to merge the first I copies of A, and the following J
ones into the first I ` J copies of A:

Γ, !aăIA, !aăJAtI ` a{au $ B

Γ, !aăI`JA $ B

We write σ Z τ “!aăI`JA if σ “!aăIA and τ “!aăJAtI ` a{au. Whenever a
contraction rule is involved in the cbv translation of a type derivation, a
sum Z appears at the same place in the corresponding dℓPCFV derivation.
Similarly, the dereliction rule allows to see any banged type as the first copy
of itself:

Γ, At0{au $ B

Γ, !aă1A $ B

hence any dereliction rule appearing in the translation of a typing judgment
tells us that the corresponding type is copied once. Both contraction and
dereliction appear while typing an application in dℓPCFV: the PCF typing
rule

Γ $ t : A ñ B Γ $ u : A

Γ $ tu : B
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corresponds to the ILL proof

z: A˝
⊸B˝$z: A˝

⊸B˝

!z: !pA˝
⊸B˝q$z: A˝

⊸B˝ Γ˝$t˝: !pA˝
⊸B˝q

Γ˝$t˝: A˝
⊸B˝ Γ˝$u˝: A˝

Γ˝, Γ˝$t˝u˝: B˝

Γ˝$t˝u˝: B˝

which becomes the following, when appropriately decorated according to the
principles of BLL (writing A0 and B0 for At0{au and Bt0{au, respectively):

z: A˝
0
⊸B˝

0
$z: A˝

0
⊸B˝

0

!z: !aă1pA˝
⊸B˝q$z: A˝

0
⊸B˝

0
Γ˝$t˝: !aă1pA˝

⊸B˝q

Γ˝$t˝: A˝
0
⊸B˝

0
Γ˝$u˝: A˝

0

Γ˝, Γ˝$t˝u˝: B˝
0

Γ˝ZΓ˝$t˝u˝: B˝
0

The cbv translation of the application rule hence leads to the typing rule
for applications in dℓPCFV:

Γ $K t :!aă1pσ ⊸ τq ∆ $H u : σt0{au

Γ Z ∆ $K`H tu : τt0{au

The same kind of analysis allows to derive the typing rule for abstractions
(whose call-by-value translation requires the use of a promotion rule) in
dℓPCFV:

Γ, x : σ $K t : τ
ř

aăI Γ $I`
ř

aăI
K λx.t :!aăIpσ ⊸ τq

One may wonder what the term I represents in this typing rule, and more
generally in a judgment such as Γ $K t : !aăIA. This is actually the main
new idea of dℓPCFV: such a judgment intuitively means that the value to
which t reduces will be used I times by the environment. If t is applied to an
argument u, then t must reduce to an abstraction λx.s, that is used by the
argument without being duplicated. In that case, I “ 1, as indicated by the
application typing rule. On the opposite, if t is applied to a function λx.u,
then the type of this function must be of the form (up to a substitution of b)
!bă1pp!aăIAq ⊸ τq. This means that λx.u uses I times its arguments, or,
that x can appear at most I times in the reducts of u.

This suggests that the type derivation of a term is not unique in general:
whether a term t has type !aăIA or !aăJA depends on the use we want to
make of t. This intuition will direct us in establishing the typing rules for
the other PCF constructs (namely conditional branching and fixpoints).
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3. dℓPCFV, Formally

In this section, the language of programs and a type system dℓPCFV for
it will be introduced formally. While terms are just those of a fairly standard
λ-calculus (namely Plotkin’s PCF), types may include so-called index terms,
which are first-order terms denoting natural numbers by which one can ex-
press properties about the extensional and intentional behavior of programs.

3.1. PCF

Plotkin introduced PCF [18] as a simply typed lambda calculus with full
recursion. Terms of the language also include primitive natural numbers,
predecessor and successor operators as well as a branching construct. PCF as
in [18] also includes booleans, which we elide here for the sake of simplicity.
We here adopt a call-by-value version of PCF. Values and terms are generated
by the following grammar:

Values v, w ::“ n | λx.t | fix x.t;

Terms s, t, u ::“ x | v | tu | sptq | pptq

| ifz t then u else s.

The cbv operational semantics of PCF is generated by the rules in Figure 1,
subject to the closure rules in Figure 2. The language is provided with a
simple type system. Types (denoted by T , U) are those generated by the
basic type Nat and the binary type constructor ñ, and typing rules are
standard (Figure 3). A term t is said to be a program if it can be given the
PCF type Nat in the empty context.

Notice that a typable PCF term is not guaranteed to terminate. For in-

stance the term tω
def
“ fix y.λx.yx is typable with Nat ñ Nat. However,

for any natural number n, the term tω n call-by-value reduces to itself in two
steps. In dℓPCF (Section 3.4), we decorate PCF types with some cost annota-
tions (that are indexes, see Section 3.3), so that the evaluation complexity of
a term can be deduced from its type. In particular, only terminating terms
are typable.

The complexity bound that we will give for a given PCF term t will be
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pλx.tq v Ñv trx :“ vs
spnq Ñv n ` 1

ppn ` 1q Ñv n

pp0q Ñv 0

ifz 0 then t else u Ñv t

ifz n ` 1 then t else u Ñv u

p fix x.tq v Ñv ptrx :“ fix x.tsq v

Figure 1: Call-by-value Reduction Rules for PCF terms.

t Ñv s
tu Ñv su

t Ñv s
ut Ñv us

t Ñv s

sptq Ñv spsq

t Ñv s

pptq Ñv ppsq

t Ñv s
ifz t then u else p Ñv ifz s then u else p

Figure 2: Closure Reduction Rules of PCF terms.

Π, x : T $ x : T

Π, x : U $ t : T

Π $ λx.t : U ñ T

Π $ t : U ñ T Π $ u : U

Π $ tu : T

Π $ n : Nat

Π $ t : Nat

Π $ sptq : Nat

Π $ t : Nat

Π $ pptq : Nat

Π $ t : Nat Π $ u : T Π $ s : T

Π $ ifz t then u else s : T

Π, x : T $ t : T

Π $ fix x.t : T

Figure 3: PCF Typing Rules.
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related to its syntactic size |t|:

|n| “ |x| “ 2;

|λx.t| “ | fix x.t| “ |t| ` 2;

|tu| “ |t| ` |u| ` 2;

|sptq| “ |pptq| “ |t| ` 2;

| ifz t then u else s| “ |t| ` |u| ` |s| ` 2.

In other words, every symbol counts for 2 in the syntactic size of a term. In
the following, we might also consider the multiplicative size of PCF terms. It
is defined as their syntactic size, except on values which have null multiplica-
tive size (see Figure 11 for a formal definition). The reason why values are
not taken into account by the multiplicative size, is that evaluation by the
CEK abstract machine (that will be used to define the complexity of a term,
see Section 3.2) proceeds by first scanning terms until a value is reached,
and the cost of these initial steps is taken into account by the multiplicative
size. Then this value is either erased (e.g. when a lambda abstraction is
given an argument), or duplicated (e.g. when it is itself the argument to a
lambda abstraction). The cost of this second phase is measured by the type
system dℓPCFV.

3.2. An Abstract Machine for PCF

The call-by-value evaluation of PCF terms can be faithfully captured by
an abstract machine in the style of CEK [16], which is the subject of this
section.

The internal state of the CEKPCF machine consists of a closure and a
stack, interacting following a set of rules (figures 4 and 5). The machine
mimics weak call-by-value evaluation of programs: it starts with a closed
term (or, formally, a closure) and an empty stack, and scans the term until it
reaches its head subterm. Doing this, it records all the other subterms (that
constitute its evaluation context) in the stacks. Once the head subterm has
been reached, one of the reduction rules of Figure 1 is simulated.

Formally, a value closure is a pair v “ x v ; ξ y where v is a value and ξ is
an environment, itself a list of assignments of value closures to variables:

ξ ::“ H | px ÞÑ vq ¨ ξ.

A closure is a pair c “ x t ; ξ y where t is a term (and not necessarily a value).
Given a closure c, one naturally define the unfolding Unfpcq, namely the
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v ‹ argpc , πq ą c ‹ funpv , πq
v ‹ funpxλx.t ; ξ y , πq ą x t ; px ÞÑ vq ¨ ξ y ‹ π

v ‹ funpx fix x.t ; ξ y , πq ą

x t ; px ÞÑ x fix x.t ; ξ yq ¨ ξ y ‹ argpv , πq
x 0 ; ξ1 y ‹ forkpt , u , ξ , πq ą x t ; ξ y ‹ π

x n`1 ; ξ1 y ‹ forkpt , u , ξ , πq ą xu ; ξ y ‹ π

x n ; ξ y ‹ spπq ą x n`1 ; H y ‹ π

x n ; ξ y ‹ ppπq ą x n´1 ; H y ‹ π

Figure 4: CEKPCF Evaluation Rules for Value Closures.

xx ; ξ y ‹ π ą ξpxq ‹ π

x tu ; ξ y ‹ π ą x t ; ξ y ‹ argpxu ; ξ y , πq
x sptq ; ξ y ‹ π ą x t ; ξ y ‹ spπq
x pptq ; ξ y ‹ π ą x t ; ξ y ‹ ppπq
x ifz t then u else s ; ξ y ‹ π ą x t ; ξ y ‹ forkpu , s , ξ , πq

Figure 5: CEKPCF Contextual Evaluation Rules.
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(closed) term obtained by iteratively substituting variables for terms, i.e.,

Unfpx t ; px1 ÞÑ v1q ¨ . . . ¨ pxn ÞÑ vnq yq “ trx1 :“ Unfpv1qs ¨ ¨ ¨ rxn :“ Unfpvnqs.

Stacks are terms from the following grammar:

π ::“ ˛ | argpc , πq | funpv , πq | forkpt , u , ξ , πq | spπq | ppπq.

A process P is then a pair c ‹ π of a closure and a stack. The stack π

describes the evaluation context (or the continuation) of the closure c. If
it is in the form argpco , πoq, it means that co is the first argument of c,
and πo is its continuation. Conversely, if π is funpvo , πoq, it means that after
evaluating c, its value will be given as argument to the function represented
by v. These constructions are used to simulate call-by-value β-reduction.
Indeed, to evaluate the application of a function t to an argument u, the
CEKPCF first computes the value λx.to of t, then the value v of u, and last
maps the variable x to v in to:

x tu ; ξ y ‹ π ą x t ; ξ y ‹ argpxu ; ξ y , πq
ą˚ xλx.to ; ξ y ‹ argpxu ; ξ y , πq
ą xu ; ξ y ‹ funpxλx.to ; ξ y , πq
ą˚ v ‹ funpxλx.to ; ξ y , πq
ą x to ; px ÞÑ vq ¨ ξ y ‹ π

The last three constructions defining a stack are used to describe the
evaluation context of a program whose value is a number. forkpt , u , ξ , πoq
means that t will then be evaluated if this value is zero, and if it is strictly
positive then u will be evaluated (in both cases, ξ will be the environment
and πo the next continuation). spπoq and ppπoq mean that the successor and
the predecessor of this value will be evaluated, respectively.

Figure 5 gives the formal rules that the CEKPCF follows to scan a term
until the head subterm (which is a value) is reached, while Figure 4 gives the
ones that simulate a reduction rule of PCF (Figure 1).

Evaluating a term t in the CEKPCF consists in iteratively applying any of
these rules, starting from the process x t ; H y ‹ ˛. Please observe that the
behavior of the machine is deterministic, since any process can be the left
hand side of at most one evaluation rule. If the evaluation of a correct (i.e.
typable) closed PCF term terminates, then it leads to a process on the form
x v ; ξ y ‹ ˛. In this case, we may use the following notations:
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Definition 3.1 We say that a term t evaluates to a value v and we write
t ó v when px t ; H y ‹ ˛q ą˚ pxw ; ξ y ‹ ˛q and Unfpxw ; ξ yq “ v. We also
write t ón v to specify that n steps are required for this evaluation to end.

The following ensures that the CEKPCF is an adequate methodology to eval-
uate PCF terms:

Proposition 3.1 (Adequacy) If t is a PCF term of type Nat, then t Ñ˚
v n

iff t ó n.

Proof. The proof is standard and proceeds as follows:
• On the one hand, one generalizes Unfp¨q to processes in the obvious way.
Moreover, the PCF type system is itself lifted to environments, closures,
stacks, and ultimately processes.

• On the other hand, it is shown that whenever P ą R, then UnfpPq Ñ˚
v

UnfpRq.
• Finally, it is shown that a typable process P is irreducible precisely when
Unfp¨q is a value.

l

3.3. Index Terms and Equational Programs

Syntactically, index terms are built either from function symbols from a
given untyped signature Θ or by applying any of two special term constructs:

I, J,K ::“ a | fpI1, . . . , Inq |
ÿ

aăI

J |
I,J
ï

a

K.

Here, f is a symbol of arity n from Θ and a is a variable drawn from a set V
of index variables. We assume the symbols 0, 1 (of arity 0) and `, ´ (of arity
2) are always part of Θ (they will be used in the typing rules). An index
term in the form

ř

aăI J is a bounded sum, while one in the form
ÏI,J

a K is
a forest cardinality. For every natural number n, the index term n is just
1 ` 1 ` . . . ` 1
looooooomooooooon

n times

.

Index terms are meant to denote natural numbers, possibly depending on
the (unknown) values of variables. Variables can be instantiated with other
index terms, e.g. ItJ{au. So, index terms can also act as first order functions.
What is the meaning of the function symbols from the signature Θ? It is the
one induced by an equational program E . Formally, an equational program E
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over a signature Θ is a set of equations in the form I “ J where both I and J
are index terms. We are interested in equational programs guaranteeing that,
whenever symbols in Θ are interpreted as partial functions over N and 0, 1, `
and ´ are interpreted in the usual way, the semantics of any function symbol f
can be uniquely determined from E . This can be guaranteed by, for example,
taking E as an Herbrand-Gödel scheme [24] or as an orthogonal constructor
term rewriting system [25]. The definition of index terms is parametric on
Θ and E : this way one can tune our type system from a highly undecidable
but truly powerful machinery down to a tractable but less expressive formal
system.

What about the meaning of bounded sums and forest cardinalities? The
first is very intuitive: the value of

ř

aăI J is simply the sum of all possible
values of J with a taking the values from 0 up to I, excluded. Forest cardi-
nalities, on the other hand, require some effort to be described. Informally,
ÏI,J

a K is an index term denoting the number of nodes in a forest composed
of J trees described using K. All the nodes in the forest are (uniquely) iden-
tified by natural numbers. These are obtained by consecutively visiting each
tree in preorder, starting from I. The term K has the role of describing
the number of children of each forest node, e.g., the number of children of
the node 0 is Kt0{au. More formally, the meaning of a forest cardinality is
defined by the following two equations:

I,0
ï

a

K “ 0;

I,J`1
ï

a

K “

˜

I,J
ï

a

K

¸

` 1 `

¨

˝

I`1`
Ï

I,J
a K,KtI`

Ï

I,J
a K{au

ï

a

K

˛

‚.

The first equation says that a forest of 0 trees contains no nodes. The second
one tells us that a forest of J ` 1 trees contains:
• The nodes in the first J trees;
• plus the nodes in the last tree, which are just one plus the nodes in the
immediate subtrees of the root, considered themselves as a forest.

To better understand forest cardinalities, consider the following forest com-
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prising two trees:

0

1

2 5 6

3 4 7

8

9 11

10 12

It is well described by an index term K with a free index variable a such that
Kt1{au “ 3; Ktn{au “ 2 for n P t2, 8u; Ktn{au “ 1 when n P t0, 6, 9, 11u;
and Ktn{au “ 0 when n P t3, 4, 5, 7, 10, 12u. That is, K describes the number
of children of each node. Then

Ï

0,2

a K “ 13 since it takes into account the
entire forest;

Ï

0,1

a K “ 8 since it takes into account only the leftmost tree;
Ï8,1

a K “ 5 since it takes into account only the second tree of the forest;
finally,

Ï2,3

a K “ 6 since it takes into account only the three trees (as a
forest) within the dashed rectangle.

One may wonder what is the role of forest cardinalities in the type sys-
tem. Actually, they play a crucial role in the treatment of recursion, where
the unfolding of recursion produces a tree-like structure whose size is just
the number of times the (recursively defined) function will be used globally.
Note that the value of a forest cardinality could also be undefined. For in-
stance, this happens when infinite trees, corresponding to diverging recursive
computations, are considered.

The expression JIKEρ denotes the meaning of I, defined by induction along
the lines of the previous discussion, where ρ : V Ñ N is an assignment and E

is an equational program giving meaning to the function symbols in I. Since E
does not necessarily interpret such symbols as total functions, and moreover,
the value of a forest cardinality can be undefined, JIKEρ can be undefined itself.
A constraint is an inequality in the form I ď J. Such a constraint is true (or
satisfied) in an assignment ρ if JIKEρ and JJKEρ are both defined and the first is
smaller or equal to the latter. Now, for a subset φ of V , and for a set Φ of
constraints involving variables in φ, the expression

φ; Φ (E I ď J

denotes the fact that the truth of I ď J semantically follows from the truth of
the constraints in Φ. To denote that I is well defined for E and any valuation ρ

satisfying Φ, we may write φ; Φ (E I ó instead of φ; Φ (E I ď I.
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φ; Φ (E K ď I
φ; Φ (E J ď H

φ; Φ $E NatrI, Js Ď NatrK,Hs

φ; Φ $E ̺ Ď σ

φ; Φ $E τ Ď ϕ

φ; Φ $E σ ⊸ τ Ď ̺ ⊸ ϕ

pa, φq; pa ă J,Φq $E A Ď B

φ; Φ(E J ď I

φ; Φ $E ra ă Is ¨ A Ď ra ă Js ¨ B

Figure 6: Subtyping Derivation Rules of dℓPCFV.

3.4. The dℓPCFV Type System

The Language of Types. The type system dℓPCFV can be seen as a refinement
of PCF obtained by a linear decoration of its type derivations. Linear and
modal types are defined as follows:

Linear Types A,B ::“ σ ⊸ τ ;

Modal Types σ, τ ::“ ra ă Is ¨ A | NatrI, Js.

where I, J range over index terms and a ranges over index variables. Modal
types need some comments. Natural numbers are freely duplicable, so NatrI, Js
is modal by definition. As a first approximation, ra ă Is ¨ A can be thought
of as a universal quantification of A, and so a is bound in the linear type A.
Moreover, the condition a ă I says that σ consists of all the instances of the
linear type A where the variable a is successively instantiated with the values
from 0 to I´1, i.e., At0{au, . . . , AtI´1{au. For those readers who are famil-
iar with linear logic, and in particular with BLL, the modal type ra ă Is ¨ A
is a generalization of the BLL formula !aăpA to arbitrary index terms. As
such it can be thought of as representing the type At0{au b ¨ ¨ ¨ bAtI´ 1{au.
NatrIs is syntactic sugar for NatrI, Is. As usual, the variable a is said to be
bound in the modal type ra ă Is ¨ A, and when a does not appear free in σ

nor in τ we may write σ
I
⊸ τ instead of ra ă Is ¨ σ ⊸ τ .

In the typing rules we are going to define, modal types are manipulated in
an algebraic way. For this reason, two operations on modal types need to be
introduced. The first one is a binary operation Z on modal types. Suppose
that σ “ ra ă Is ¨ Ata{cu and that τ “ rb ă Js ¨ AtI ` b{cu. In other words,
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φ; Φ; Γ, x : σ $E
0
x : σ

pAxq
φ; Φ; Γ $E

0
n : Natrn, ns

pnq

pa, φq; pa ă I,Φq; Γ, x : σ $E

K t : τ

φ; Φ;
ř

aăI Γ $E

I`
ř

aăI
K
λx.t : ra ă Is ¨ σ ⊸ τ

p⊸q

φ; Φ; Γ $E

K t : ra ă 1s ¨ σ ⊸ τ φ; Φ;∆ $E

H u : σt0{au

φ; Φ; Γ Z ∆ $E

K`H tu : τt0{au
pAppq

φ; Φ; Γ $E

M t : NatrI, Js

φ; Φ; Γ $E

M sptq : NatrI ` 1, J ` 1s
psq

φ; Φ; Γ $E

M t : NatrI, Js

φ; Φ; Γ $E

M pptq : NatrI ´ 1, J ´ 1s
ppq

φ; Φ; Γ $E

M t : NatrJ,Ks
φ; pJ ď 0,Φq; ∆ $E

N u : τ
φ; pK ě 1,Φq; ∆ $E

N s : τ

φ; Φ; Γ Z ∆ $E

M`N ifz t then u else s : τ
pIfq

pb, φq; pb ă H,Φq; Γ, x : ra ă Is ¨ A$E

J t : ra ă 1s ¨ B

pa, b, φq; pa ă I, b ă H,Φq $E Bt0{aut
Ïb`1,a

b I ` b ` 1{bu Ď A

φ; Φ;
ř

băH Γ $E

H`
ř

băH
J
fix x.t : ra ă Ks ¨ Bt0{aut

Ï0,a

b I{bu
pFixq

(where H “
Ï0,K

b I)

φ; Φ; Γ $E

I t : σ φ; Φ $E ∆ Ď Γ φ; Φ $E σ Ď τ φ; Φ (E I ď J

φ; Φ;∆ $E

J t : τ
pSubsq

Figure 7: Typing Rules of dℓPCFV.

18



σ consists of the first I instances of A, i.e. At0{cu, . . . , AtI ´ 1{cu while τ

consists of the next J instances of A, i.e. AtI`0{cu, . . . , AtI`J´1{cu. Their
sum σ Z τ is naturally defined as a modal type consisting of the first I ` J
instances of A, i.e. rc ă I ` Js ¨ A. Furthermore, NatrI, Js Z NatrI, Js is just
NatrI, Js. An operation of bounded sum on modal types can be defined by
generalizing the idea above: suppose that

σ “ rb ă Js ¨ Atb `
ÿ

dăa

Jtd{au{cu.

Then its bounded sum
ř

aăI σ is just rc ă
ř

aăI Js¨A. Finally,
ř

aăI NatrJ,Ks “
NatrJ,Ks, provided a is not free in J nor in K.

Subtyping. Central to dℓPCFV is the notion of subtyping. An inequality
relation Ď between (linear or modal) types can be defined using the formal
system in Figure 6. This relation corresponds to lifting index inequalities
at the type level. Please observe that Ď is a preorder, i.e., a reflexive and
transitive relation.

Typing. A typing judgment is of the form

φ; Φ; Γ $E

K t : τ,

where K is the weight of t, that is (informally) the maximal number of
substitutions involved in the cbv evaluation of t. Φ is a set of constraints
(see Section 3.3) that we call the index context, and Γ is a context assigning
a modal type to (at least) each free variable of t. Both sums and bounded
sums are naturally extended from modal types to contexts (with, for instance,
tx : σ; y : τu Z tx : ζ, z : ηu “ tx : σ Z ζ; y : τ ; z : ηu). There might be free
index variables in Φ,Γ, τ and K, all of them from φ. Typing judgments can
be derived from the rules of Figure 7. We are implicitly assuming that all
index terms appearing in (derivable) typing judgments are defined in the
appropriate index contexts.

Derivation rules for abstractions and applications have been informally
presented in Section 2.2. The other ones are then intuitive, except the deriva-
tion rule for typing fix x.t, that is worth an explanation: to simplify, assume
we want to type only one copy of its type (that is, K “ 1). To compute the
weight of fix x.t, we need to know the number of times t will be copied
during the evaluation, that is the number of nodes in the tree of its recursive
calls. This tree is described by I (as explained in Section 3.3), since each
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occurrence of x in t stands for a recursive call. It has, say, H “
Ï0,1

b I nodes.
At each node b of this tree, the ath occurrence of x will be replaced by the ath

child of b, i.e. by b ` 1 `
Ïb`1,a

b I. The types have to match, and that is
what the second premise expresses. Finally, the type of fix x.t is the type
of the “main” copy of t, at the root of the tree (i.e., at b “ 0). The weight
counts all the recursive calls (i.e., H) plus the weight of each copy of t (i.e.,
the weight of t for each b ă H).

Last, the subsumption rule pSubsq allows to relax the precision standard
of a typing judgment. One can also restrict the inequalities on indexes to
equalities in this rule, this way constructing precise typing judgments. Ob-
serve that the set of all rules but this one is syntax directed. Moreover, the
subsumption rule preserves the PCF skeleton of the types, and so the type
system is itself syntax directed up to index inequalities.

Weights and the CEKPCF Machine. As it will be formalized in Section 5.3, an
upper bound for the evaluation of a given term in the CEKPCF machine can be
obtained by multiplying its weight and its syntactic size. This result can be
explained as follows: the weight of a program represents the maximal number
of substitutions in its cbv evaluation, and thereby the maximal number of
steps of the form

v ‹ funpxλx.t ; ξ y , πq ą x t ; px ÞÑ vq ¨ ξ y ‹ π; (1)

v ‹ funpx fix x.t ; ξ y , πq ą x t ; px ÞÑ x fix x.t ; ξ yq ¨ ξ y ‹ argpv , πq (2)

in its evaluation with the CEKPCF. Between two such steps, the use of the
other rules is not taken into account by the weight; however the other rules
make the size of the process smaller.

4. Examples

In this section we will see how to type some common terms in dℓPCFV.
As a byproduct, we will derive a weight for them.

4.1. Addition

In PCF, addition can be computed as follows:

add “ fix x.λyz. ifz y then z else spx ppyq zq,
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and has type Nat ñ Nat ñ Nat. A brief analysis of its evaluation, if we apply
it to two values v and w in Nat, indicates that a correct annotation for this
type in dℓPCFV would be

ra ă 1s ¨ pNatrds ⊸ rc ă 1s ¨ pNatres ⊸ Natrd ` esqq ,

where d and e are variable symbols representing the values of v and w re-
spectively. Since we directly apply add, without copying this function, the
index variables a and c are bounded by 1. The type above is indeed deriv-
able for add in dℓPCFV, assuming that the equational program E is powerful
enough to express the following index terms (they all depend on the index
variables b and d):

I “ if b ă d then 1 else 0;

J “ d ´ b ´ 1;

H “ d ´ b;

K “ d ´ b ` 1.

The derivation is given in Figure 8. We omit all the subsumption steps,
but the index equalities they use are easy to check given that the number of
nodes in the tree of recursive calls is

Ï

0,1

b I “ d`1. The final weight is equal
to 3 ˆ pd ` 1q.

4.2. Fibonacci

The Fibonacci function can easily be defined using addition:

fibo “ fix f.λx. ifz x then 1 else

ifz ppxq then 1 else add pf ppxqq pf ppppxqqq.

In order to derive a type for this function, we assume that the equational
program allows to derive the following index (in)equalities (we later show a
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A “ Natr Js ⊸ rc ă 1s ¨ pNatres ⊸ NatrJ ` esq
C “ NatrHs ⊸ rc ă 1s ¨ pNatres ⊸ NatrH ` esq
Γ “ tx : ra ă Is ¨ A, y : NatrHs, z : Natresu
φ “ ta, b, c, d, eu
Φ “ tb ă d ` 1, a ă 1, c ă 1u

φ; pH ě 1,Φq;x : ra ă Is ¨ A $E
0
x : ra ă Is ¨ A

φ; pH ě 1,Φq; y : NatrHs $E
0
y : NatrHs

(p)
φ; pH ě 1,Φq; y : NatrHs $E

0
ppyq : NatrJs

(App)
φ; pH ě 1,Φq;x : ra ă Is ¨ A, y : NatrHs $E

0
x ppyq : rc ă 1s ¨ pNatres ⊸ NatrJ ` esq φ; pH ě 1,Φq; z : Natres $E

0
z : Natres

(App)
φ; pH ě 1,Φq; Γ $E

0
x ppyq z : NatrJ ` es

(s)
φ; pH ě 1,Φq; Γ $E

0
spx ppyq zq : NatrH ` es

φ; Φ; y : NatrHs $E
0
y : NatrHs φ; pH ď 0,Φq; Γ $E

0
z : NatrH ` es

...
(If )

φ; Φ; Γ $E
0

ifz y then z else spx ppyq zq : NatrH ` es
(⊸)

pb, a, d, eq; pb ă d ` 1, a ă 1q; px : ra ă Is ¨ A; y : NatrHsq $E
1
λz. ifz y then z else spx ppyq zq :

rc ă 1s ¨ pNatres ⊸ NatrH ` esq
(⊸)

b, d, e; b ă d ` 1;x : ra ă Is ¨ A $E
1`1

λyz. ifz y then z else spx ppyq zq : ra ă 1s ¨ C b, d, e; b ă d ` 1 (E Ctb ` 1{bu ” A
(Fix )

d, e;H;H $E

d`1`
ř

băd`1
p1`1q add : ra ă 1s ¨ Natrds ⊸ rc ă 1s ¨ pNatres ⊸ Natrd ` esq

Figure 8: A type derivation for add.
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concrete example of such a model):

fpbq ě 2 ñ fpb ` 1q “ fpbq ´ 1;

fpbq ě 2 ñ fpb ` 1 `
b`1,1
ï

b

ipbqq “ fpbq ´ 2;

fpbq ě 2 ñ hpbq “ hpb ` 1q ` hpb ` 1 `
b`1,1
ï

b

ipbqq ;

fpbq ď 1 ñ hpbq “ 1;

fpbq ě 2 ñ ipbq “ 2;

fpbq ď 1 ñ ipbq “ 0;

fpbq ě 2 ñ jpbq “ 3 ¨ phpb ` 1q ` 1q;

fpbq ď 1 ñ jpbq “ 0;

k “
0,1
ï

b

ipbq;

mp0, bq “ fpbq ´ 1;

mp1, bq “ fpbq ´ 2;

np0, bq “ hpb ` 1q;

np1, bq “ hpbq ´ hpb ` 1q.

We also use the previous type derivation for add with an instantiation of the
variables d and e:

b;H;H $E

3pnp0,bq`1q add : Natrnp0, bqs
1

⊸ pNatrnp1, bqs
1

⊸ Natrnp0, bq`np1, bqsq.

The type derivation of fibo is given in Figure 9. For the sake of read-
ability the semantic hypothesis of the subsumption derivation steps are not
written, but they easily follow from the listed index equations. Subsumption
steps are denoted with a dashed horizontal line between the premise and the
conclusion. To apply the fixpoint derivation rule (double horizontal line, at
the root of the derivation tree), the following semantic judgments have to
hold:

a, b; b ă k, a ă ipbq (ENatrmpa, bqs Ď Natrfp1 ` b `
b`1,a
ï

b

ipbqqs;

a, b; b ă k, a ă ipbq (ENatrhp1 ` b `
b`1,a
ï

b

ipbqqs Ď Natrnpa, bqs.
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The validity of both judgments follows from the index equations we have
assumed (the types are in fact pairwise equivalent). We will now delineate a
model that validates those equations.

Fibonacci trees. The Fibonacci tree of size n, written Tn, is defined induc-
tively by

T0 “ Leaf0;

T1 “ Leaf1;

Tn`2 “ Noden`2pTn`1, Tnq.

The usual notions on trees (leaves, descendants, right or left child, etc.) are
defined in the standard way, and each node is naturally labeled by a natural
number. As an example, the only node in T1 is labeled with 1. Observe that
for every n, the root of Tn is labeled by n.

Consider now the Fibonacci tree of size no P N. Its nodes are totally
ordered by the usual tree preorder. We define fpbq as the label of the bth node
of Tno

(in particular, fp0q “ no, because the preorder starts at the root), and
hpbq as the number of leaves among the descendants of the bth node. We then
define k as the total number of nodes in Tno

, and ipbq as 0 if fpbq P t0, 1u,
and 2 otherwise. Please observe that ipbq is the symbol describing the tree
Tno

as explained in Section 3.3 (in particular,
Ïb`1,1

b ipbq is the number of

descendants of the node b if it is not a leaf, and b ` 1 `
Ïb`1,1

b ipbq is the
number of its right children). We also define mpa, bq and npa, bq for a P t0, 1u
by:

mp0, bq “ fpbq ´ 1;

np0, bq “ hpb ` 1q;

mp1, bq “ fpbq ´ 2;

np1, bq “ hpbq ´ hpb ` 1q.

Finally, jpbq is zero if fpbq ď 1, and 3 ¨ phpb ` 1q ` 1q otherwise. This model
ensures the validity of all the index equations required to derive the type

Natrfp0qs
1

⊸ Natrhp0qs and the weight k `
ř

băkp1 ` jpbqq for fibo. Notice
that if fibo is applied to a natural number no “ fp0q, then the result is the
number of leaves in Tno

, which is actually the value of the Fibonacci function
in no. In fact, the typing of the Fibonacci function has reduced the analysis
of its code and its complexity to a set of first order equations that we can
check semantically.
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Φo “ tb ă k; fpbq ´ 1 ě 1u fibo “ µf.λx. ifz x then 1 else
`

ifz ppxq then 1 else add pf ppxqq pf ppppxqqq
˘

Γ1 “ t f : ra ă 1s ¨ Natrmpa, bqs ⊸ Natrnpa, bqs , x : Natrfpbqs u
Γ2 “ t f : ra ă 1s ¨ Natrmpa ` 1, bqs ⊸ Natrnpa ` 1, bqs , x : Natrfpbqs u

Γ1 Z Γ2 “ t f : ra ă 2s ¨ Natrmpa, bqs ⊸ Natrnpa, bqs , x : Natrfpbqs u
Γo “ t f : ra ă ipbqs ¨ Natrmpa, bqs ⊸ Natrnpa, bqs , x : Natrfpbqs u

b; Φo; f : ra ă 1s ¨ Natrmpa, bqs ⊸ Natrnpa, bqs $E
0
f : ra ă 1s ¨ Natrmpa, bqs ⊸ Natrnpa, bqs

b; Φo;x : Natrfpbqs $E
0
x : Natrfpbqs

b; Φo;x : Natrfpbqs $E
0
ppxq : Natrfpbq ´ 1s

b; Φo;x : Natrfpbqs $E
0
ppxq : Natrmp0, bqs

b; Φo; f : ra ă 1s ¨ Natrmpa, bqs ⊸ Natrnpa, bqs, x : Natrfpbqs $E
0
f ppxq : Natrnp0, bqs

b; Φo;x : Natrfpbqs $E
0
x : Natrfpbqs

b; Φo;x : Natrfpbqs $E
0
ppxq : Natrfpbq ´ 1s

b; Φo;x : Natrfpbqs $E
0
ppppxqq : Natrfpbq ´ 2s

b; Φo;x : Natrfpbqs $E
0
ppppxqq : Natrmp1, bqs

b; Φo; f : ra ă 1s ¨ Natrmpa ` 1, bqs ⊸ Natrnpa ` 1, bqs $E
0
f : ra ă 1s ¨ Natrmpa ` 1, bqs ⊸ Natrnpa ` 1, bqs

...

b; Φo; f : ra ă 1s ¨ Natrmpa ` 1, bqs ⊸ Natrnpa ` 1, bqs, x : Natrfpbqs $E
0
f ppppxqq : Natrnp1, bqs

b; Φo;H $E

3pnp0,bq`1q add : Natrnp0, bqs
1

⊸ pNatrnp1, bqs
1

⊸ Natrnp0, bq ` np1, bqsq b; Φo; Γ1 $E
0
f ppxq : Natrnp0, bqs

b; Φo; Γ1 $E

3pnp0,bq`1q add pf ppxqq : Natrnp1, bqs
1

⊸ Natrnp0, bq ` np1, bqs

b; b ă k, fpbq ě 1 ;x : Natrfpbqs $E
0
ppxq : Natrfpbq ´ 1s

b; b ă k, fpbq ´ 1 “ 0 ; Γo $E

jpbq 1 : Natrhpbqs

... b; Φo; Γ2 $E
0
f ppppxqq : Natrnp1, bqs

b; Φo; Γ1 Z Γ2 $E

3pnp0,bq`1q add pf ppxqq pf ppppxqqq : Natrnp0, bq ` np1, bqs

b; b ă k, fpbq ´ 1 ě 1 ; Γo $E

jpbq add pf ppxqq pf ppppxqqq : Natrhpbqs

b; b ă k, fpbq ě 1 ; Γo $E

jpbq ifz ppxq then 1 else add pf ppxqq pf ppppxqqq : Natrhpbqs

b; b ă k;x : Natrfpbqs $E
0
x : Natrfpbqs

... b; b ă k, fpbq “ 0 ; Γo $E

jpbq 1 : Natrhpbqs

b; b ă k; Γo $E

jpbq ifz x then 1 else
`

ifz ppxq then 1 else add pf ppxqq pf ppppxqqq
˘

: Natrhpbqs

b ; b ă k ; f :ra ă ipbqs ¨ Natrmpa, bqs ⊸ Natrnpa, bqs
$E

1`jpbq λx. ifz x then 1 else
`

ifz ppxq then 1 else add pf ppxqq pf ppppxqqq
˘

: ra ă 1s ¨ Natrfpbqs ⊸ Natrhpbqs

H $E

k`
ř

băk
p1`jpbqq fibo : ra ă 1s ¨ Natrfp

Ï

0,a

b ipbqqs ⊸ Natrhp
Ï

0,a

b ipbqqs

H $E

k`
ř

băk
p1`jpbqq fibo : Natrfp0qs

1

⊸ Natrhp0qs

Figure 9: A type derivation for fibo.
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5. The Metatheory of dℓPCFV

In this section, some metatheoretical results about dℓPCFV are presented.
More specifically, type derivations are shown to be modifiable in many differ-
ent ways, all of them leaving the underlying term unaltered. These manip-
ulations, described in Section 5.1, form a basic toolkit which is essential to
achieve the main results of this paper, namely intentional soundness and com-
pleteness (which are presented in Section 5.3 and Section 5.4, respectively).
Types are preserved by call-by-value reduction, as proved in Section 5.2.

5.1. Manipulating Type Derivations

First of all, the constraints Φ in index, subtyping and typing judgments
can be made stronger without altering the rest:

Lemma 5.1 (Strengthening) If φ; Ψ (E Φ, then the following implica-
tions hold:
1. If φ; Φ (E I ď J, then φ; Ψ (E I ď J;
2. If φ; Φ $E σ Ď τ , then φ; Ψ $E σ Ď τ ;
3. If φ; Φ; Γ $E

I t : σ, then φ; Ψ; Γ $E

I t : σ.

Proof. Point 1. is a trivial consequence of transitivity of implication in the
metalogic. Point 2. can be proved by induction on the structure of the proof
of φ; Φ $E σ Ď τ , using 1. Point 3. can be proved by induction on a proof of
φ; Φ; Γ $E

I t : σ, using 1 and 2. l

Whatever appears on the right of $E should hold for all values of the vari-
ables in φ satisfying Φ, so strengthening corresponds to making the judgment
weaker, which is always possible. Fresh term variables can be added to the
context Γ, leaving the rest of the judgment unchanged:

Lemma 5.2 (Context Weakening) φ; Φ; Γ $E

I t : τ implies φ; Φ; Γ,∆ $E

I

t : τ .

Proof. Again, this is an induction on the structure of a derivation for
φ; Φ; Γ $E

I t : τ . l

Please note that ∆ is completely arbitrary. Another useful transformation on
type derivations consists in substituting index variables for (defined) index
terms.
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Lemma 5.3 (Index Substitution) If φ; Φ (E I ó, then the following im-
plications hold:
1. If pa, φq; Φ,Ψ (E J ď K, then φ; Φ,ΨtI{au (E JtI{au ď KtI{au;
2. If pa, φq; Φ,Ψ $E σ Ď τ , then φ; Φ,ΨtI{au $E σtI{au Ď τtI{au;
3. If pa, φq; Φ,Ψ;Γ $E

J t : σ, then φ; Φ,ΨtI{au; ΓtI{au $E

JtI{au t : σtI{au.

Proof. 1. Assume that φ; Φ (E I ó and pa, φq; Φ,Ψ (E J ď K, and let ρ be
an assignment satisfying Φ,ΨtI{au. In particular, ρ satisfies Φ, thus JIKEρ
is defined, say equal to n. For any index H, JHtI{auKEρ “ JHKEρ,a ÞÑn. Hence
pρ, a ÞÑ nq satisfies Φ,Ψ, and then it also satisfies J ď K. So JJtI{auKEρ “
JJKEρ,a ÞÑn ď JKKEρ,a ÞÑn “ JKtI{auKEρ , and ρ satisfies JtI{au ď KtI{au. Thus
φ; Φ,ΨtI{au (E JtI{au ď KtI{au.

2. By induction on the subtyping derivation, using 1.
3. By induction on the typing derivation, using 1. and 2. l

Observe that the only hypothesis is that φ; Φ (E I ó (see Section 3.3 for
a definition): we do not require I to be a value of a that satisfies Ψ. If it
is not the constraints in Φ,ΨtI{au become inconsistent, and the obtained
judgments are vacuous.

5.2. Subject Reduction

Subject Reduction is a property any reasonable type system satisfies:
types should be preserved along reduction. Actually, dℓPCFV is no exception:

Proposition 5.4 (Subject Reduction) If t Ñv u and φ; Φ;H $E

M t : τ ,
then φ; Φ;H $E

M u : τ .

Subject Reduction can be proved in a standard way, by going through a
Substitution Lemma, which only needs to be proved when the term being
substituted is a value. Preliminary to the Substitution Lemma are two aux-
iliary results stating that derivations giving types to values can, if certain
conditions hold, be split into two (Lemma 5.5), or put in parametric form
(Lemma 5.6):

Lemma 5.5 (Splitting) If φ; Φ; Γ $E

M v : τ1 Z τ2, then there exist two
indexes N1,N2, and two contexts Γ1,Γ2, such that φ; Φ; Γi $E

Ni
v : τi, and

φ; Φ (E N1 ` N2 ď M and φ; Φ $E Γ Ď Γ1 Z Γ2.
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Proof. If v is a primitive integer n, the result is trivial as the only possible
decomposition of a type for integers is NatrI, Js “ NatrI, Js Z NatrI, Js. If
v “ λx.t, then its typing judgment derives from:

pa, φq; pa ă I,Φq; ∆, x : σ $E

K t : τ ; (3)

φ; Φ $E Γ Ď

ÿ

aăI

∆; (4)

with τ1 Z τ2 “ ra ă Is ¨ σ ⊸ τ and M “ I `
ř

aăI K. Hence I “ I1 ` I2, and
τ1 “ ra ă I1s ¨ σ ⊸ τ , and τ2 “ ra ă I2s ¨ σtI1 ` a{au ⊸ τtI1 ` a{au. Since
pa, φq; pa ă I1,Φq (E pa ă I,Φq, we can strength the hypothesis in (3) by
Lemma 5.1 and derive

pa, φq; pa ă I1,Φq; ∆, x : σ $E

K t : τ

φ; Φ;
ř

aăI1
∆ $E

I1`
ř

aăI1
K λx.t : ra ă I1s ¨ σ ⊸ τ

On the other hand, we can substitute a with a` I1 in (3) by Lemma 5.3, and
derive

pa, φq; pa ă I2,Φq; ∆ta ` I1{au, x : σta ` I1{au $E

Kta`I1{au t : τta ` I1{au

φ; Φ;
ř

aăI2
∆ta ` I1{au $E

N2
λx.t : ra ă I2s ¨ σta ` I1{au ⊸ τta ` I1{au

where N2 “ I2`
ř

aăI2
Kta`I1{au. Hence we can conclude with Γ1 “

ř

aăI1
∆,

Γ2 “
ř

aăI2
∆ta ` I1{au, and N1 “ I1 `

ř

aăI1
K. Now, if v “ fix x.t, then

its typing judgment derives from

pb, φq; pb ă H,Φq; ∆, x : ra ă Is ¨ A $E

J t : ra ă 1s ¨ B (5)

φ; Φ (E H ě
Ï0,K

b I (6)

pa, b, φq; pa ă I, b ă H,Φq $E Bt0{aut
Ïb`1,a

b I ` b ` 1{bu Ď A (7)

pa, φq; pa ă K,Φq $E Bt0{aut
Ï0,a

b I{bu Ď C (8)

φ; Φ $E Γ Ď
ř

băH ∆ (9)

with τ1 Z τ2 “ ra ă Ks ¨ C, and M “ H `
ř

băH J. Hence K “ K1 ` K2,
with τ1 “ ra ă K1s ¨ C, and τ2 “ ra ă K2s ¨ Cta ` K1{au. Let H1 “
Ï

0,K1

b I and H2 “
ÏH1,K2

b I. Then H1 ` H2 “
Ï

0,K

b I, and H2 is also equal

to
Ï

0,K2

b ItH1 ` b{bu. Just like the previous case, we can strengthen the
hypothesis in (5), (7) and (8) and derive
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pb, φq; pb ă H1,Φq; ∆, x : ra ă Is ¨ A$E

J t : ra ă 1s ¨ B

pa, b, φq; pa ă I, b ă H1,Φq $E Bt0{aut
Ïb`1,a

b I ` b ` 1{bu Ď A

pa, φq; pa ă K1,Φq $E Bt0{aut
Ï0,a

b I{bu Ď C

φ; Φ;
ř

băH1
∆ $E

H1`
ř

băH1
J fix x.t : ra ă K1s ¨ C

Moreover, if we substitute b with b ` H1 in (7) and we strengthen the con-
straints (since (6) implies φ; Φ, b ă H2 (E Φ, b ` H1 ă H), we get

pa, b, φq; pa ă I, b ă H2,Φq $E Bt0{aut
Ïb`1,a

b I`b`1{butH1`b{bu Ď AtH1`b{bu.

But
`

Ïb`1,a

b I`b`1
˘

tH1`b{bu “
ÏH1`b`1,a

b I`H1`b`1 and
ÏH1`b`1,a

b I “
Ïb`1,a

b pItH1 ` b{buq. Hence Bt0{aut
Ïb`1,a

b I` b` 1{butH1 ` b{bu “ BtH1 `

b{but0{aut
Ïb`1,a

b pItH1`b{buq`b`1{bu. In the same way we can substitute a
with a ` K1 in (8):

pa, φq; pa ă K2,Φq $E Bt0{aut
Ï0,a`K1

b I{bu Ď Cta ` K1{au.

But
Ï0,a`K1

b I “ H1 `
ÏH1,a

b I “ H1 `
Ï

0,a

b ItH1 ` b{bu, and then

Bt0{aut
Ï0,a`K1

b I{bu is equivalent to BtH1 ` b{but0{aut
Ï0,a

b ItH1 ` b{bu{bu.
Finally, by substituting also b with b ` H1 in (5) we can derive

pb, φq ; pb ă H2,Φq ; ∆tH1 ` b{bu , x : pra ă Is ¨ AqtH1 ` b{bu $E

JtH1`b{bu
t : ra ă 1s ¨ BtH1 ` b{bu

pa, b, φq ; pa ă I, b ă H2,Φq $E BtH1 ` b{but0{aut
Ïb`1,a

b
pItH1 ` b{buq ` b ` 1{bu Ď AtH1 ` b{bu

pa, φq ; pa ă K2,Φq $E BtH1 ` b{but0{aut
Ï0,a

b
ItH1 ` b{bu{bu Ď Cta ` K1{au

φ ; Φ ;
ř

băH2
∆tH1 ` b{bu $E

H2`
ř

băH2
JtH1`b{bu

fix x.t : ra ă K2s ¨ Cta ` K1{au

Thus we can conclude with Γ1 “
ř

aăH1
∆, Γ2 “

ř

aăH2
∆ta ` H1{au,

N1 “ H1 `
ř

aăH1
J and N2 “ H2 `

ř

aăH2
Jta ` H1{au. l

If splitting tells us that that the sum of two types can be split, parametric
splitting allows to handle bounded sums :

Lemma 5.6 (Parametric Splitting) If φ; Φ; Γ $E

M v :
ř

căJ σ is derivable,
then there exist an index N and a context ∆ such that one can derive c, φ; c ă
J,Φ;∆ $E

N v : σ, and φ; Φ (E

ř

căJ N ď M and φ; Φ $E Γ Ď
ř

căJ ∆.

Proof. The proof uses the same technique as for Lemma 5.5. If v is a
lambda abstraction or a fixpoint, then

ř

căJ σ is on the form ra ă
ř

căJ Ls¨C,
where ra ă Ls ¨ Cta `

ř

dăc Ltd{cu{au “ σ. Then the result also follows
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from Strengthening (Lemma 5.1) and Index Substitution (Lemma 5.3): for
the lambda abstraction, substitute a with a `

ř

dăc Ltd{cu in (3). For the

fixpoint consider the index H1 satisfying the equations H1t0{cu “
Ï

0,Lt0{cu
b I

and H1ti` 1{cu “
ÏHti{cu,Lti`1{cu

b I. Then substitute b with b`
ř

dăc H1td{cu
(and add the constraint c ă J in the context) in (5) and (7), and substitute a
with a `

ř

dăc Ltd{cu in (8) to derive the result. l

One can already realize why these results are crucial for subject reduction:
whenever the substituted value flows through a type derivation, there are
various places where its type changes, namely when it reaches instances of
the typing rules pAppq, p⊸q, pIfq and pRecq: in all these cases the type
derivation for the value must be modified, and the splitting lemmas certify
that this is possible, indeed. We can this way reach the key intermediate
result:

Lemma 5.7 (Substitution) If φ; Φ; Γ, x : σ $E

M t : τ and φ; Φ;H $E

N v : σ
are both derivable, then there is an index K such that φ; Φ; Γ $E

K trx :“ vs : τ
and φ; Φ (E K ď M ` N.

Proof. The proof goes by induction on the derivation of the typing judgment
φ; Φ; Γ, x : σ $E

M t : τ , making intense use of Lemma 5.5 and Lemma 5.6. l

Given Lemma 5.7, proving Proposition 5.4 is routine: the only two nontrivial
cases are those where the fired redex is a β-redex or the unfolding of a
recursively-defined function, and both consist in a substitution.

Observe how Subject Reduction already embeds a form of extensional
soundness for dℓPCFV: simply, types are preserved by reduction. As an ex-
ample, if one builds a type derivation for $E

I t : Natr2, 7s, then the normal
form of t (if it exists) is guaranteed to be a constant between 2 and 7. Ob-
serve, on the other hand, that nothing is known about the complexity of the
underlying computational process yet, since the weight I does not necessarily
decrease along reduction, although it cannot increase. In which sense, then,
I is a measure of the complexity of evaluating the underlying term t? This
is the topic of the following section.

5.3. Intentional Soundness

In this section, we prove the following result:
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φ; Φ $E σ Ď τ φ; Φ (E I ó

φ; Φ $E

I ˛ : pσ, τq

φ; Φ $E

J c : σt0{au φ; Φ $E

K ρ : pτt0{au, ϕq φ; Φ (E I “ J ` K

φ; Φ $E

I argpc , ρq : pra ă 1s ¨ pσ ⊸ τq, ϕq

φ; Φ $E

J v : ra ă 1s ¨ pσ ⊸ τq φ; Φ $E

K ρ : pτt0{au, ϕq φ; Φ (E I“J`K

φ; Φ $E

I funpv , ρq : pσt0{au, ϕq

φ; N “ 0,Φ $E

J x t ; ξ y : σ
φ;M ě 1,Φ $E

J xu ; ξ y : σ φ; Φ $E

K ρ : pσ, τq φ; Φ (E I “ J ` K

φ; Φ $E

I forkpt , u , ξ , ρq : pNatrM,Ns, τq

φ; Φ $E

I π : pNatrM ` 1,N ` 1s, τq

φ; Φ $E

I spπq : pNatrM,Ns, τq

φ; Φ $E

I π : pNatrM ´ 1,N ´ 1s, τq

φ; Φ $E

I ppπq : pNatrM,Ns, τq

Figure 10: dℓPCFV: Lifting Typing to Stacks

Theorem 5.8 (Intensional soundness) For any term t, if $E

H t : NatrI, Js,
then t ón m where n ď |t| ¨ pJHKE ` 1q and JIKE ď m ď JJKE .

Roughly speaking, this means that dℓPCFV also gives us some sensible in-
formation about the time complexity of evaluating typable PCF programs.
The path towards Theorem 5.8 is not straightforward: it is necessary to lift
dℓPCFV to a type system for closures, environments and processes, as defined
in Section 3.2. Actually, the type system can be easily generalized to closures
by the rule below:

φ; Φ; x1 : σ1, . . . , xn : σn $E

K t : τ
φ; Φ $E

Ji
vi : σi (for all iq

φ; Φ (E I “ K `
ř

iďn Ji

φ; Φ $E

I x t ; tx1 ÞÑ v1; ¨ ¨ ¨ ; xn ÞÑ vnu y : τ

We might write φ; Φ $E

J
ξ : Γ when Γ “ x1 : σ1, . . . , xn : σn and ξ “ tx1 ÞÑ

v1; ¨ ¨ ¨ ; xn ÞÑ vnu and J “ pJ1, . . . , Jnq and, for every i ď n, φ; Φ $E

Ji
vi : σi.

Hence the typing rule for a closure can also be written:

φ; Φ; Γ $E

K t : τ φ; Φ $E

J
ξ : Γ φ; Φ (E I “ K `

ř

J

φ; Φ $E

I x t ; ξ y : τ
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Lifting everything to stacks, on the other hand, requires more work (see
Figure 10). We say that a stack π is pφ; Φq-acceptable for σ with type τ and
cost I (notation: φ; Φ $E

I π : pσ, τq) when it interacts well with closures of
type σ to produce a process of type τ . Finally, a process can be typed as
follows:

φ; Φ $E

K c : σ φ; Φ $E

J π : pσ, τq φ; Φ (E I “ K ` J

φ; Φ $E

I c ‹ π : τ

This lifted type system is sound w.r.t. subtyping:

Lemma 5.9 (Subtyping is Derivable) 1. The following typing rule for
closures is derivable:

φ; Φ $E

I c : σ φ; Φ (E I ď J φ; Φ $E σ Ď τ

φ; Φ $E

J c : τ

2. The following typing rule for stacks is derivable:

φ; Φ $E

I π : pσ, τq φ; Φ $E ̺ Ď σ φ; Φ $E τ Ď ϕ φ; Φ (E I ď J

φ; Φ $E

J π : p̺, ϕq

3. The following typing rule for processes is derivable:

φ; Φ $E

I P : σ φ; Φ (E I ď J φ; Φ $E σ Ď τ

φ; Φ $E

J P : τ

Proof. The first point directly follows from the typing rule Subs for terms.
The second one is proved by induction on the stack typing derivation, using 1.
The last point follows from the first two. l

In the meantime, the notion of weight has been lifted to processes too,
with the hope that it strictly decreases at every evaluation step. Unfor-
tunately, this does not hold: sometimes, evaluation leaves the weight of a
process unchanged. However, in that case another parameter is guaranteed
to decrease, namely the process size. The size |P| of a process P “ c ‹ π is
defined as |c| ` |π|, where:
• The size |c| of a closure x t ; ξ y is the multiplicative size of t (see Sec-
tion 3.1).

• The size of |π| is the sum of the sizes of all closures appearing in π plus
the number of occurrences of symbols (different from ˛ and fun) in π.
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Term Multiplicative Size

}x} “ 2; }n} “ }λx.t} “ } fix x.t} “ 0;
}tu} “ }t} ` }u} ` 2; }sptq} “ }pptq} “ }t} ` 2;

} ifz t then u else s} “ }t} ` }u} ` }s} ` 2;

Closure Size

|x t ; ξ y| “ }t};

Stack Size

| ˛ | “ 0; |funpv , πq| “ |v| ` |π|;
|spπq| “ |ppπq| “ |π| ` 1; |argpc , πq| “ |c| ` |π| ` 1;
|forkpt , u , ξ , πq| “ }t} ` }u} ` |π| ` 1;

Process Size

|c ‹ π| “ |c| ` |π|.

Figure 11: Size of Processes.

The formal definition of |c ‹ π| is in Figure 11. The size of a process de-
creases by any evaluation steps, except the ones performing a substitution (1)
and (2). However, these two reduction rules make the weight of a process to
decrease, as formalized by the following proposition. By the way, these are
the cases in which a box is opened up in the underlying linear logic proof.

Proposition 5.10 (Weighted Subject Reduction) Assume P ą R and
φ; Φ $E

I P : τ . Then φ; Φ $E

J R : τ and:
• either φ; Φ (E I “ J and |P| ą |R|,
• or φ; Φ (E I ą J and |P| ` |s| ą |R|, where s is a term appearing in P.

Proof. First, if P ą R with a non substitution rule (any rule of Figure 4
or Figure 5 except (1) and (2)), then it is easy to check that |P| ą |R|.
Moreover, in all these cases P and R have the same type and the same
weight. We detail some cases:
• If P “ v ‹ argpc , πq ą c ‹ funpv , πq “ R, then the typing of P
derives from
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φ; Φ(E I “ J ` K
φ; Φ$E

K v : ra ă1s ¨pσ0⊸τ0q

φ; Φ$E

H c : σ0t0{au
φ; Φ$E

L π : pτ0t0{au, τq
φ; Φ(E J “ H ` L

φ; Φ $E

J argpc , πq : pra ă1s ¨pσ0⊸τ0q, τq

φ; Φ $E

I v ‹ argpc , πq : τ

Hence we can derive for R:

φ; Φ(E I “ H ` L ` K
φ; Φ$E

H c : σ0t0{au

φ; Φ$E

K v : ra ă 1s ¨ pσ0 ⊸ τ0q
φ; Φ$E

L π : pτ0t0{au, τq

φ; Φ $E

L`K funpv , πq : pσ0t0{au, τq

φ; Φ $E

I c ‹ funpv , πq : τ

• If P “ x tu ; ξ y ‹ π ą x t ; ξ y ‹ argpxu ; ξ y , πq “ R, then the typing
of P derives from

φ; Φ; Γ1 $E

K1
t:raă1s¨σ0⊸τ0

φ; Φ; Γ2 $E

K2
u:σ0t0{au

φ;Φ;Γ1ZΓ2$E

K1`K2
tu:τ0t0{au

φ; Φ$E∆ĎΓ1ZΓ2

φ; Φ$EσĎτ0t0{au

φ; Φ(EK1`K2ďH

φ;Φ;∆$E

H
tu:σ

φ;Φ $E

J
ξ:∆

φ;Φ (EH`
ř

J“H1

φ;Φ$E

H1
x tu ; ξ y:σ

φ;Φ $E

L
π:pσ,τq

φ;Φ (E I“L`H1

φ;Φ$E

I
x tu ; ξ y ‹ π:τ

In particular, since subtyping is derivable for closures (Lemma 5.9), φ; Φ $E

J

ξ : Γ1 Z Γ2. By Lemma 5.5 (that can be trivially extended to closures), it
means that there are some vectors of indexes M,N such that

φ; Φ $E

M
ξ : Γ1

φ; Φ $E

N
ξ : Γ2

φ; Φ (E M ` N “ J

(where, as usual, the sum of vectors has to be understood componentwise).
In the same way, since subtyping is derivable for stacks (Lemma 5.9), then
φ; Φ $E

L π : pσ, τq and φ; Φ $E σ Ď τ0t0{au entail

φ; Φ $E

L π : pτ0t0{au, τq

Hence we can derive:
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φ;Φ;Γ1 $E

K1
t:raă1s¨σ0⊸τ0

φ;Φ $E

M
ξ:Γ1

φ;Φ$E

K1`
ř

M
x t ; ξ y:raă1s¨σ0⊸τ0

φ;Φ;Γ2 $E

K2
u:σ0t0{au

φ;Φ $E

N
ξ:Γ2

φ;Φ$E

K2`
ř

N
xu ; ξ y:σ0t0{au φ;Φ$E

L
π:pτ0t0{au,τq

φ;Φ$E

L`K2`
ř

N
argpxu ; ξ y , πq:praă1s¨σ0⊸τ0,τq

φ;Φ$E

K1`
ř

M`L`K2`
ř

N
x t ; ξ y ‹ argpxu ; ξ y , πq:τ

Finally we can conclude that φ; Φ $E

I R : τ with Lemma 5.9 since φ; Φ (E

I ě L ` K1 ` K2 `
ř

M `
ř

N.
Now, if P ą R with a substitution rule (1) or (2), then the weight of P is
strictly higher than the one of R:
• If P “ v ‹ funpxλx.t ; ξ y , πq and R “ x t ; px ÞÑ vq ¨ ξ y ‹ π, then the
typing of P comes from a derivation of the form:

φ; Φ $E

K
v : σt0{au

a, φ; a ă 1,Φ;Γ, x : σ $E

M
t : σ1

φ; Φ; Γ $E

1`Mt0{au
λx.t : ra ă 1s ¨ pσ ⊸ σ1q φ; Φ $E

J
ξ : Γ

φ; Φ $E

1`Mt0{au`
ř

J
xλx.t ; ξ y : ra ă 1s ¨ pσ ⊸ σ1q φ; Φ $E

H
π : pσ1t0{au, τq

φ; Φ $E

1`Mt0{au`
ř

J`H
funpxλx.t ; ξ y , πq : pσt0{au, τq

φ; Φ $E

I
v ‹ funpxλx.t ; ξ y , πq : τ

(with φ; Φ (E K`1`Mt0{au`
ř

J`H “ I). If a, φ; a ă 1,Φ; Γ, x : σ $E

M

t : σ1 is derivable, then φ; Φ; Γ, x : σt0{au $E

Mt0{au t : σ1t0{au is derivable

too (see Lemma 5.3). Hence we can derive:

φ; Φ; Γ, x : σt0{au $E

Mt0{au t : σ1t0{au

φ; Φ $E

J
ξ : Γ

φ; Φ $E

K v : σt0{au

φ; Φ $E

Mt0{au`
ř

J`K x t ; px ÞÑ vq ¨ ξ y : σ1t0{au φ; Φ $E

H π : pσ1t0{au, τq

φ; Φ $E

J x t ; px ÞÑ vq ¨ ξ y ‹ π : τ

(with φ; Φ (E J “ K ` Mt0{au `
ř

J ` H, and thus φ; Φ (E J “ I ´ 1).
Moreover, |P| “ |v| ` }λx.t} ` |π| “ |v| ` |π|, while |R| “ }t} ` |π|. Hence,
|P| ` |t| ě |R| (as |u| ě }u} for any term u).

l

Splitting and parametric splitting play a crucial role here, once appropriately
generalized to value closures.

Remark 5.1 The proof of this theorem formalizes the intuition that the
weight of a program is the number of substitutions performed during its cbv

evaluation. More precisely, if a typed process P has weight I and P ą R,
then R can be typed with weight J such that
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• J “ I ´ 1 if P ą R is a substitution step (1) or (2),
• J “ I otherwise.
The weight of a process is thus an upper bound on the number of substitution
steps in its evaluation.

Corollary 5.11 Let P “ x t ; H y ‹ ˛ and |t| “ m. If φ; Φ $E

I P : τ and
P ąn R, then φ; Φ $E

J R : τ , and φ; Φ (E pI ´ J ` 1q ˆ m ě n.

Proof. First observe that if P ą˚ S then any term s appearing in S is
either a subterm of t or a natural number n, and thus |s| ď m. Hence by
induction on n we can prove using Proposition 5.10 that P ąn R implies
n ď |P| ´ |R| ` pJIKEρ ´ JJKEρq ¨ |t| for any valuation ρ defined on φ and
satisfying Φ. Then we can conclude since |P| “ m and |R| ě 0. l

Given Corollary 5.11, Theorem 5.8 is within reach: if $E

H t : NatrI, Js then
x t ; H y ‹ ˛ terminates in at most pJHKEρ ` 1q ¨ |t| steps in the CEKPCF, since
weights cannot be negative. It reaches an irreducible process, that is a value
closure together with an empty stack:

x t ; H y ‹ ˛ ą
˚ x v ; H y ‹ ˛ .

By Proposition 5.10, it means that x v ; H y ‹ ˛ has type NatrI, Js, and
so has v. So we can conclude that v is a natural number in the inter-
val rJIKE ; JJKEs.

5.4. (Relative) Completeness

In this section, we will prove some results about the expressive power of
dℓPCFV, seen as a tool to prove intentional (but also extensional) properties
of PCF terms. Actually, dℓPCFV is extremely powerful: every first-order PCF
program computing the function f : N Ñ N in a number of steps bounded
by g : N Ñ N can be proved to enjoy these properties by way of dℓPCFV,
provided two conditions are satisfied:
• On the one hand, the equational program E needs to be universal, meaning
that every partial recursive function is expressible by some index terms.
This can be guaranteed, as an example, by the presence of a universal
program in E .

• On the other hand, all true statements in the form φ; Φ (E I ď J must be
“available” in the type system for completeness to hold. In other words,

36



one cannot assume that those judgments are derived in a given (recur-
sively enumerable) formal system, because this would violate Gödel’s In-
completeness Theorem. In fact, our completeness theorems are relative
to an oracle for the truth of those assumptions, which is precisely what
happens in similar results for Floyd-Hoare logics [26].

PCF Typing. The first step towards completeness is quite easy: propositional
type systems in the style of PCF for terms, closures, stacks and processes need
to be introduced. All of them can be easily obtained by erasing the index
information from dℓPCFV. As an example, the typing rule for the application
looks like

Γ $PCF t : α ñ β Γ $PCF u : α

Γ $PCF tu : β

while processes can be typed by the following rule

$PCF π : pα, βq $PCF c : α

$PCF c ‹ π : β

Given any type σ (respectively, any type derivation δ) of dℓPCFV, the PCF

type (respectively, the PCF type derivation) obtained by erasing all the index
information will be denoted by p|σ|q (respectively, by p|δ|q). Of course both
terms and processes enjoy subject reduction theorems with respect to PCF

typing, and their proofs are much simpler than those for dℓPCFV. As an
example, given a type derivation δ for $PCF P : Nat (we might write δ ⊲ $PCF

P : Nat) and P ą R, a type derivation γ for $PCF R : Nat can be easily built
by manipulating in a standard way δ; we write δ ą γ.

Weighted Subject Expansion. The key ingredient for completeness is a dual-
isation of Weighted Subject Reduction:

Proposition 5.12 (Weighted Subject Expansion) Suppose that δ ⊲ $PCF

P : α, that δ ą γ, and that ǫ ⊲ φ; Φ $E

I R : τ where p|ǫ|q “ γ. Then there is
θ ⊲ φ; Φ $E

J P : τ with p|θ|q “ δ and φ; Φ (E J ď I ` 1. Moreover, θ can be
effectively computed from δ, ǫ and γ.

Proving Proposition 5.12 requires a careful analysis of the evolution of the
CEKPCF machine, similarly to what happened for Weighted Subject Reduc-
tion. But while in the latter it is crucial to be able to (parametrically) split
type derivations for terms (and thus closures), here we need to be able to
join them:
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Lemma 5.13 (Joining) Suppose E is universal. If δi ⊲ φ; Φ; Γi $E

Ni
v : τi,

p|δ1|q “ p|δ2|q, φ; Φ $E Γ Ď Γ1ZΓ2, φ; Φ $E τ1Zτ2 Ď τ and φ; Φ (E N1`N2 ď
M, then φ; Φ; Γ $E

M v : τ .

Lemma 5.14 (Parametric Joining) Suppose that E is universal. If a, φ; a ă
I,Φ;∆ $E

N v : σ, φ; Φ $E Γ Ď
ř

aăI ∆, φ; Φ $E

ř

aăI σ Ď τ and φ; Φ (E
ř

aăI N ď M, then φ; Φ; Γ $E

M v : τ .

Observe that the Joining Lemma requires the two type derivations to be
joined to have the same PCF “skeleton”. This is essential, because otherwise
it would not be possible to unify them into one single type derivation.

Completeness for Programs. We now have all the necessary ingredients to
obtain a first completeness result, namely one about programs (which are
terms of type Nat). Suppose that t is a PCF program and that t Ñ˚

v m,
where m is a natural number. By Proposition 3.1, there is a sequence of
processes

P1 ą P2 ą . . . ą Pn,

where P1 “ px t ; H y ‹ ˛q and Pn “ pxm ; H y ‹ ˛q. Of course, $PCF Pi : Nat
for every i. For obvious reasons, $E

0 Pn : Natrms. Moreover, by Weighted
Subject Expansion, we can derive each of $E

Ii
Pi : Natrms, until we reach

$E

I1
P1 : Natrms, where I1 ď n. See Figure 12 for a graphical representation of

the above argument. It should be now clear that one can reach the following:

Theorem 5.15 (Completeness for Programs) Suppose that $PCF t : Nat,
that t ón m and that E is universal. Then, $E

k t : Natrms, where k ď n.

Uniformization and Completeness for Functions. Completeness for programs,
however, is not satisfactory: the fact (normalizing) PCF terms of type Nat can
all be analyzed by dℓPCFV is not so surprising, and other type systems (like
non-idempotent intersection types [14]) have comparable expressive power.
Suppose we want to generalize relative completeness to first-order functions:
we would like to prove that every term t having a PCF type Nat ñ Nat (which
terminates when fed with any natural number) can be typed in dℓPCFV. How
could we proceed? First of all, observe that the argument in Figure 12 could
be applied to all instances of t, namely to all terms in tt n | n P Nu. This
way one can obtain, for every n P N, a type derivation δn for

$E

In
t : ra ă Jns ¨ NatrKns ⊸ NatrHns,
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δ1⊲ $PCF P1 : Nat

��

θ1⊲ $E

I1
P1 : Natrms

δ2⊲ $PCF P2 : Nat

��

θ2⊲ $E

I2
P2 : Natrms

OO

δn´1⊲ $PCF Pn´1 : Nat

��

θn´1⊲ $E

In´1
Rn´1 : Natrms

OO

δn⊲ $PCF Pn : Nat θn⊲ $E

In
Pn : Natrms

OO

Figure 12: Completeness for programs, sketch of the Proof.

where Jn can be assumed to be 1, while Kn can be assumed to be n. Moreover,
the problem of obtaining δn from n is recursive, i.e., can be solved by an
algorithm. Surprisingly, the infinitely many type derivations in tδn | n P Nu
can be turned into one:

Proposition 5.16 (Uniformization of Type Derivations) Suppose that
E is universal and that tδnunPN is a recursively enumerable collection of type
derivations satisfying the following constraints:
1. For every n P N, δn⊲ $E

In
t : σn;

2. all derivations in tδnunPN have the same skeleton, i.e., for every n,m P N,
p|δn|q “ p|δm|q.

Then there is a type derivation θ⊲a;H;H $E

I t : σ such that (E Itn{au “ In
and (E σtn{au ” σn for all n.

Proof. The proof proceeds by first proving three lemmas:
• First of all, one can prove that any family of semantic judgment in the
form t(E Itn{au “ Jtn{auunPN can be turned into one semantic judgment
(E I “ J.

• Then, it is possible to uniformize index terms themselves: if tInunPN is
a family of index terms, then there is one index term I such that (E

Itn{au – In.
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• Subtyping judgments can be made uniform themselves.
The three lemmas are exactly the necessary ingredients to carry out an in-
duction on the structure of any δn (they all have the same structure, anyway).
For more details, one can consult [27]. l

Uniformization of type derivations should be seen as an extreme form of
joining: not only a finite number of type derivations for the same term can
be unified into one, but any recursively enumerable class of them can. Again,
the universality of E is crucial here. We are now ready to give the following:

Theorem 5.17 (Completeness for Functions) Suppose that $PCF t : Nat ñ
Nat, that t n ókn mn for all n P N and that E is universal. Then, there are
index terms I and H such that a;H;H $E

I t : rb ă 1s ¨ Natras ⊸ NatrHs,
where (E Itn{au ď kn and (E Htn{au “ mn.

5.5. Weight and Time Complexity

The intensional soundness and relative completeness results show a tight
relation between the weight of a program and its evaluation time in the
CEKPCF machine. Notice that, because of the subsumption typing rule, the
weight of a term can be arbitrarily increased. However, the following corol-
lary emphasizes that the lowest weight that can be associated to a program
provides a rather tight bound of its complexity.

Corollary 5.18 Assume t is a PCF program that evaluates to m with n steps
in the CEKPCF, and E is a universal equational program. Then one can derive
$E

k t : Natrms in dℓPCFV, with k ď n ď k ¨ |t|.

Proof. The typing judgment with the lower bound k ď n are given by
Theorem 5.15. The upper bound n ď k ¨ |t| follows from Theorem 5.8. l

Actually, the minimum weight of a program t represents the number of sub-
stitutions in its cbv evaluation or, formally, the number of steps of kind (1)
or (2) in its evaluation by the CEKPCF machine (Remark 5.1). It is thus a
lower bound on its time complexity in CEKPCF. Between two such substi-
tution steps, the machine only scans the term to reach the head subterm
(or to select one branch of the test for zero, when a fork rule is applied).
At most |t| scanning steps can be done consecutively (during the evaluation,
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the machine only contains subterms2 of the initial term t), and so the total
number of steps is bounded by the weight multiplied by |t|.

6. Perspectives and Developments

6.1. dℓPCFV, dℓPCFN and their Peculiarities

In this section, we briefly describe in which senses dℓPCFV, the type
system we introduce here, differs from dℓPCFN [1].

As already pointed out in Section 2.2, in dℓPCFN all arguments to func-
tions are marked as duplicable, while in dℓPCFV the same role is played
by functions themselves. This, coupled with linear dependency, implies
that:
• When typing a term t in dℓPCFN any subterm u of t which can potentially
be used as an argument to a function is typed parametrically on an index
variable a, each value of a corresponding to a possible “use” of u;

• If t is typed in dℓPCFV, the same holds for any λ-abstraction λx.u in t:
all possible uses of λx.u need to be taken into account in the underlying
type if we want the latter to be precise and, ultimately, if we care about
relative completeness.

Saying it another way, both dℓPCFN and dℓPCFV are non-modular, in that
the way one attributes a type (and ultimately a weight) to certain subterms
can possibly depend on how they are used by the environment. This is
indeed true if one builds a type derivation by way of a fixed (maybe weak)
equational program. Typing a term and defining the underlying equational
program at the same time, leaving some of the index terms unspecified, is a
way to alleviate this problem, and is actually the main idea behind a linear
dependent type inference algorithm [28].

Technically, the metatheory of dℓPCFV can be explored with tools similar
to those employed in dℓPCFN. However, the authors claim that most results
about the former system, soundness and completeness in primis, are not
easy consequences of the one enjoyed by the latter. An example are splitting
lemmas, which are much easier to be proved in dℓPCFN (see [1] for more
details).

2To claim this, we formally need to consider an extension of the subterm relation where
all natural numbers n are equivalent.
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6.2. Further Developments

Relative completeness of dℓPCFV, especially in its stronger form (Theo-
rem 5.17) can be read as follows. Suppose that a sound, finitary formal sys-
tem C deriving judgments in the form φ; Φ $E I ď J is fixed and “plugged”
into dℓPCFV. What you obtain is a sound, but necessarily incomplete formal
system, due to Gödel’s incompleteness. However, this incompleteness is only
due to C and not to the rules of dℓPCFV, which are designed so as to reduce
the problem of proving properties of programs to checking inequalities over
E without any loss of information.

In this scenario, it is of paramount importance to devise techniques to
automatically reduce the problem of checking whether a program satisfies
a given intentional or extensional specification to the problem of checking
whether a given set of inequalities over an equational program E holds. In-
deed, many techniques and concrete tools are available for the latter problem
(take, as an example, the immense literature on SMT solving), while the same
cannot be said about the former problem. The situation, in a sense, is simi-
lar to the one in the realm of program logics for imperative programs, where
logics are indeed very powerful [26], and great effort have been directed to
devise efficient algorithms generating weakest preconditions [29].

Actually, at the time of writing, the authors are actively involved in the
implementation of relative type inference algorithms for both dℓPCFN and
dℓPCFV, which can be seen as having the same role as algorithms computing
weakest preconditions. Efficient type inference algorithms can indeed be
defined [28]: the idea is to start with a PCF type derivation and decorate it
with index terms, defining an appropriate equational program along the way.
A detailed description of the type inference process is however outside the
scope of this paper.

6.3. Related Work

Complexity analysis of higher-order programs has been (and continues to
be) an object of study in the programming language research community.

Among the many works in this direction, we can mention the proposals
for type systems for the λ-calculus characterizing in an extensional sense,
e.g. polynomial time computable functions. Many of these techniques can
be seen as static analysis methodologies: once a program is assigned a type,
an upper bound to its time complexity is relatively easy to be synthesized.
The problem with these systems, however, is that they are usually very weak
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from an intentional point of view: the class of typable programs is quite
restricted.

More powerful static analysis methodologies can actually be devised. All
of them, however, are either limited to very specific forms of resource bounds
or to a peculiar form of higher-order functions or else they do not get rid
of higher-order as the underlying logic. Consider, as an example, one of the
earliest work in this direction, namely Sands’s system of cost closures [30]:
the class of programs that can be handled includes the full lazy λ-calculus,
but the way complexity is reasoned about remains genuinely higher-order,
being based on closures and contexts. In Benzinger’s framework [31] higher-
order programs are translated into higher-order equations, and the latter are
turned into first-order ones; both steps, and in particular the second one,
are not completeness-preserving. More generally, there is an inherent risk
in doing program analysis by way of program transformation (see [32, 33]):
if the automatic analysis of the transformed program fails, one is left with
an unintelligible piece of code, which can hardly be analyzed manually or
semi-automatically. In this respect, type systems constitute a very good
compromise.

Recent works on amortized resource analysis are either limited to first-
order programs [19] or to linear bounds [7]. A recent proposal by Amadio and
Régis-Gianas [34] allows to reason on the the cost of higher-order functional
programs by way of so-called cost-annotations, being sure that the actual
behavior of compiled code somehow reflects the annotation. The logic in
which cost annotations are written, however, is a higher-order Hoare logic.
None of the proposed systems, on the other hand, are known to be (relatively)
complete in the sense we use here.

Complexity analysis of first-order functional programs, or of programs
written in other programming paradigms is a much more developed research
area. Examples are the work by Crary And Weirich [35] or the SPEED
project [36]

Linear dependency can be seen as a way to turn games and strategies
into types, this way facilitating verification. A recent work going in the same
direction is Geometry of Synthesis, in particular when the latter is supported
by type systems [37].

6.4. dℓPCFV and Implicit Complexity

There is a price to pay for the kind of relative completeness dℓPCFV (and
dℓPCFN) enjoys: checking a type derivation for correctness is undecidable
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in general, simply because it relies on semantic assumptions in the form of
inequalities between index terms, or on subtyping judgments, which them-
selves rely on the properties of the underlying equational program E . Indeed,
dℓPCFV should not be thought of as a type system, but rather as a framework
in which various distinct type systems can be defined. Concrete type systems
can be crafted by either instantiating E , or by choosing specific and sound
formal systems for the verification of semantic assumptions. By the way,
the just described problem is not peculiar to dℓPCFV: Floyd-Hoare program
logics are themselves undecidable.

The main motivation behind the introduction of linear dependent types
comes from implicit computational complexity. Traditionally, what prevents
(most) ICC techniques to find concrete applications along this line is their
poor expressive power: the class of programs which can be recognized as
being efficient by (tools derived from) ICC systems is often very small and
does not include programs corresponding to natural, well-known algorithms.
In this respect, dℓPCFN and dℓPCFV are fundamentally different: all PCF

programs with a certain complexity can be proved to be so by deriving a
typing judgment for them.

6.5. Conclusions

Linear dependent types are shown to be applicable to the analysis of in-
tentional and extensional properties of functional programs when the latter
are call-by-value evaluated. More specifically, soundness and relative com-
pleteness results are proved for both programs and functions. This general-
izes previous work by Gaboardi and the first author [1], who proved similar
results in the call-by-name setting. This paper shows that linear dependency
not only provides an expressive formalism, but is also robust enough to be
adaptable to calculi whose notions of reduction are significantly different (and
in many cases more efficient) than normal order evaluation.

Topics for future work include some further analysis about the applicabil-
ity of linear dependent types to languages with more features, including some
form of inductive data types, or ground type references. Another interesting
problem is tuning linear dependent types in such a way as to capture the
complexity of call-by-need evaluation.
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