N

N

Automated design of networks of Transport-Triggered
Architecture processors using Dynamic Dataflow
Programs

Hervé Yviquel, Jani Boutellier, Mickaél Raulet, Emmanuel Casseau

» To cite this version:

Hervé Yviquel, Jani Boutellier, Mickaél Raulet, Emmanuel Casseau. Automated design of networks of
Transport-Triggered Architecture processors using Dynamic Dataflow Programs. Signal Processing:
Image Communication, 2013, 28 (10), pp.1295 - 1302. 10.1016/j.image.2013.08.013 . hal-00909325

HAL Id: hal-00909325
https://hal.science/hal-00909325
Submitted on 26 Nov 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00909325
https://hal.archives-ouvertes.fr

Automated design of networks of Transport-Triggered
Architecture processors using Dynamic Dataflow
Programs

H. Yviquel?, J. Boutellier®, M. Raulet?, E. Casseau®

@ University of Rennes 1, IRISA, Inria, France.
bINSA of Rennes, IETR, France.
¢ CSE department, University of Oulu, Finland.

Abstract

Modern embedded systems show a clear trend towards the use of Multiprocessor
System-on-Chip (MPSoC) architectures in order to handle the performance and
power consumption constraints. However, the design and validation of dedicated
MPSoCs is an extremely hard and expensive task due to their complexity. Thus,
the development of automated design processes are of highest importance to
satisfy the time-to-market pressure of embedded systems.

This paper proposes an automated co-design flow based on the high-level
language-based approach of the Reconfigurable Video Coding framework. The
designer provides the application description in the RVC-CAL dataflow lan-
guage, after which the presented co-design flow automatically generates a net-
work of heterogeneous processors that can be synthesized on FPGA chips. The
synthesized processors are Very Long Instruction Word -style processors. Such
a methodology permits the rapid design of a many-core signal processing system
which can take advantage of all levels of parallelism.

The toolchain functionality has been demonstrated by synthesizing an MPEG-
4 Simple Profile video decoder to two different FPGA boards. The decoder is
realized into 18 processors that decode QCIF resolution video at 45 frames per
second on a 50MHz FPGA clock frequency. The results show that the given
application can take advantage of every level of parallelism.

Keywords: Co-design, RVC, Dataflow programs, MPSoC, TTA, FPGA

1. Introduction

Over the past few years, the use of multimedia applications in embedded
systems has massively grown thanks to the commercial success of devices such

Email addresses: herve.yviquel@irisa.fr (H. Yviquel), jani.boutellier@ee.oulu.fi
(J. Boutellier), mickael.raulet@insa-rennes.fr (M. Raulet), emmanuel.casseau@irisa.fr

(E. Casseau)

Preprint submitted to FElsevier February 4, 2013

as smartphones and tablets. The inefficiency, in terms of power consumption,
of General Purpose Processors (GPP) to execute multimedia applications has
already been shown [10].

As a remedy to the inefficiency of GPPs, Multiprocessor System-on-Chips
(MPSoCs) have been used in the embedded domain for some years already [24].
However, the design and validation of dedicated MPSoCs is an extremely hard
and expensive tasks, even more when the MPSoCs contain heterogeneous cores.
Thus, the development of automated design processes, such as the one proposed
in this paper, are of highest importance for the embedded industry.

Reconfigurable Video Coding (RVC) is an MPEG initiative to provide a
development framework dedicated to produce and maintain video coding tools
in a modular and reusable fashion [2]. The framework is based on the dataflow
programming paradigm which enables reuse and reconfiguration of the coding
tools. Thanks to the explicit parallelism and modularity within dataflow, the
framework is ideal for automated generation of efficient heterogeneous platforms.

This paper proposes an automated co-design flow that exploits the high-
level language-based approach of the RVC framework. The designer provides
the application description in the RVC-CAL dataflow language [6] , after which
the presented co-design flow automatically generates a network of heterogeneous
Very Long Instruction Word -style processors that can be synthesized on FPGA
chips and execute the application. The methodology permits the rapid design of
complex many-core signal processing systems and the automation of the design
flow enables easy and less error-prone development.

This paper extends preliminary work [3] in the following ways: the automat-
ically generated code has clearly higher performance than in the earlier work;
the compilation flow has been improved by the use of a better intermediate
representation; the design flow is described more formally and in higher detail.

The main contributions of this paper are:

e The description of a fully automated co-design flow for instantiation of a
network of heterogeneous processors from an application description based
on the dataflow programming paradigm.

e The use of a new intermediate representation (IR) of the software code in
order to increase the flexibility of the co-design flow. The adoption of a
new IR required designing several sophisticated software transformations
that are described in Section 4.2.

e A simulation infrastructure that eases the performance analysis, debug-
ging and system integration of the proposed design. This part is explained
in Section 4.3.

The paper is organized as follows. Section 2 introduces the RVC framework,
the LLVM intermediate representation and the Transport-Trigger Architecture
and their benefits when used in an MPSoC design flow. Related work on MP-
SoC design automation is presented in Section 3. Section 4 presents a precise
description of the proposed design flow. Section 5 illustrates the design flow

functionality by synthesizing an MPEG-4 Simple Profile video decoder to two
different FPGA boards.

2. Background

The design methodology proposed in this paper is based on several existing
technologies which are briefly described below to show their benefits when used
in an MPSoC design flow.

2.1. Reconfigurable Video Coding

RVC is an MPEG initiative to provide a development framework dedicated
to produce and maintain video coding tools in a modular and reusable fashion
[2]. The framework is based on a dataflow programming language called RVC-
CAL [6] which permits the description of an application by a dataflow graph
of interconnected components, called actors. The dataflow description enables
reuse of the components and dynamic reconfiguration of the application. The
explicit parallelism and modularity of RVC dataflow programs is ideal for auto-
matic generation of efficient heterogeneous platforms.

RVC-CAL is a Domain-Specific Language (DSL) [22] created to help the
development of signal processing systems. RVC-CAL is based on Dataflow Pro-
cess Networks (DPN) [18], a special case of Kahn Process Networks (KPN) [16].
These dataflow Models of Computation (MoC) are called dynamic, because their
components, called actors, can have data-dependent behavior. In other words,
the behavior of an actor can depend of its input data.

This DSL is supported by the Open RVC-CAL Compiler (Orcc) [1], an
open-source framework able to generate both hardware [21] and software [23]
descriptions from one RVC-CAL description of an application. Orcc is based on
Model-Driven Engineering (MDE) technologies [8] which speed up the design
process by automating time-consuming and error-prone tasks. The Orcc project
also contains the Just-in-time Adaptive Decoder Engine (Jade) [9], a software
implementation of a virtual machine -based universal decoder engine.

2.2. LLVM intermediate representation

Contrary to the previous work [3], the intermediate representation (IR) used
in our compilation flow is the one developed for the LLVM project (Low-Level
Virtual Machine) [17]. The new IR was adopted because of its potential to
carry additional information for the compiler via metadata. The potential of
metadata for adaptive compilation of actors has already been shown in Jade [9].
Moreover, the LLVM IR provides the flexibility to handle the bit-accurate word
lenghts of the RVC-CAL programming language.

The LLVM project is an open-source compilation framework which reaches
the performance of industrial compilers while maintaining modularity and reusabil-
ity. As a consequence, it has been widely used in both academia and industry.
LLVM provides type safety, low-level operations, flexibility and permits the

proper representation of (practically) all high-level languages. It is used during
all software-targeting phases of the presented design process.

The LLVM representation was developed to be used in three different con-
texts: in a classical compiler as an easily analyzable and transformable inter-
mediate representation (IR); as a Just-In-Time compiler for fast loading from
an on-disk bitcode; and finally as a human-readable assembly language repre-
sentation.

2.8. Transport-Triggered Architecture

The instruction processor technology used in our design flow is Transport
Triggered Architecture (TTA). TTA was chosen for the following reasons:

e Instruction-Level Parallelism: TTA processors are able to take advan-
tage of the only type of parallelism which is not inherent in RVC-CAL.
TTA processors resemble Very Long Instruction Word processors (VLIW)
in the sense that they fetch and execute multiple instructions each clock
cycle. A major difference, however, is that TTA processors have only one
instruction: move, which simply transfers data from a processor internal
place to another. For example, one move instruction can initiate a data
transfer from the output of an add execution unit of the TTA processor
to one of the inputs of a multiplier execution unit. Here, the concept eze-
cution unit is used in the sense of functional unit included in most of the
processors. The concept offunctional unit could be confusing because it
is another name for an actor in RVC.

e Embedded processors: TTA processor are ideal for targeting embedded
systems. In [5] it is stated that direct programming of the data transports
reduces the register file traffic when compared to VLIWSs, but on the other
hand makes the compiler design quite challenging, as it is the compiler that
schedules the data transports and makes sure conflicts are avoided. Since
the compiler makes these decisions at design time, the run-time system
is simplified and hence there are savings on the processor gate count and
energy consumption.

e Flexible architecture: TTA processors are extremely configurable. The
designer can make the processor tiny and energy-efficient or, if needed, in-
crease the instruction-level parallelism of the processor arbitrarily. The
TTA design environment also allows the creation of custom instructions
and custom execution units, which increase the processor efficiency at the
cost of making the processor somewhat more application-specific. Figure
1 shows a small example of a TTA processor composed of two buses, two
execution units, one register file, one load /store unit (to manage RAM ac-
cesses) and one control unit connected to the instruction memory (ROM).

e Robust tools: The open source TTA Co-design Environment (TCE) [7]
offers a robust toolset for the design and use of TTA processors. The
TCE toolset enables the design of custom processors and their realization

into VHDL files and memory images for easy FPGA synthesis. The TCE
toolset is composed of a compiler which is based on LLVM [17]. It also
contains a processor simulator which permit the profiling of the executed
application.

- Port

- Socket
.~ Connection
~~ - Bus

Figure 1: A simple TTA processor

3. Related work on MPSoC design flows

Park et al. classify MPSoC design approaches for signal processing systems
in [20] as follows: a) the use of model-based programming languages in order
to express parallelism explicitly, b) using compilation techniques to extract the
parallelism from the source code and ¢) extending programming languages to
explicitly express parallel parts of the algorithm. Our methodology consists of a
mixture of a) and b): the RVC-CAL language provides data-level parallelism on
the high level, whereas the TTA compiler automatically extracts the instruction-
level parallelism on the low level (inside dataflow actors).

3.1. Dataflow-based approaches

Design flows from RVC applications to hardware platforms (in the sense of
ASICs) have been implemented by two different tools: Openforge presented in
[13] and Orcc presented in [21]. The basic idea of these approaches is the direct
transformation of RVC-CAL descriptions into Register Transfer Level (RTL) de-
scriptions suitable for FPGA or ASIC synthesis. The major difference between
both methodologies comes from the abstraction level of the generated code:
Openforge generates low-level and optimized HDL code dedicated to a specific
platform (close-to-gate RTL), whereas Orcc generates high-level, portable and
readable HDL code (close-to-hand-written RTL). Both approaches obtain ex-
cellent results in terms of gate count and frame rate. However, both of these
methodologies suffer from a severe limitation as they are only applicable on
single-rate RVC-CAL programs, i.e. actors can only read and write single to-
kens at once. However, [14] describes a way to handle this limitation using an
automated transformation from multi-rate RVC-CAL programs to a single-rate

ones. Nevertheless, the results of both RTL-producing approaches show an ex-
plosion in the logical gate count and a significant reduction in the maximum
frequency of the designs due to the complexity of the resulting code.

In [11], the authors present an architecture dedicated to the RVC method-
ology, composed of a set of predefined hardware components (ASIC) and an
ARM processor. An actor is mapped to a hardware component if a suitable
ASIC is available. Otherwise, the ARM processor executes the software de-
scription of the actor. The authors do not use any single high-level language
description but resort to traditional software and hardware descriptions of the
components (mostly in C and VHDL). The use of predefined ASIC components
is a considerable limitation in terms of future evolution of the platform.

3.2. Compiler-based approaches

In [4], the authors presents a toolset which aims at parallelizing C applica-
tions for MPSoC platform. However, the process is not automated and needs the
assistance of the programmer. The method is limited to thread-level parallelism.

A manually designed TTA processor for Inverse Discrete Cosine Transform
(IDCT) for a video decoder is described in [19]. As our results also show, a
VLIW-like processor can easily take advantage of the instruction-level paral-
lelism of the IDCT algorithm. The authors present a real-time framerate for
a 720p sequence with a clock frequency of 200MHz, but the design only en-
compasses a single algorithm. Moreover, the authors of [19] do not present
any results about the quantity of work of manually designing such a dedicated
processor.

3.3. Language-extension approaches

In [12], the authors present a multicore TTA co-design flow for parallel pro-
gramming languages OpenCL and OpenMP. Contrary to our model, the pro-
cessor cores are interconnected using a shared memory and exploit mechanisms
such as threads and synchronization.

A parallel programming model, called embedded Message Passing Interface
(eMPI), is used in [15] to establish a complete MPSoC co-design methodology
using distributed memory Network on Chips (NoC) from . However, this model
is based on processes and network mechanism which results of an enormous
overhead according to the fine granularity of our actors.

4. Proposed TTA-based MPSoC design flow

This section presents the automated process for generating TTA-based MP-
SoCs from RVC application descriptions and is organized as follows: first, the
hardware design flow for generating the MPSoC HDL description is presented;
then, the flow of compiling the executables for each processor is described. Fi-
nally, a description of the testing infrastructure is given.

4.1. Hardware design flow

The design approach illustrated in Figure 2 shows a direct mapping of the
RVC application to a hardware network of TTA processors. Each part in the
application dataflow graph is mapped to an equivalent hardware component.
For example, an actor is associated to a processor and a connection between
two actors is replaced by a hardware FIFO channel.

Design process

Figure 2: Design approach

Our co-design flow presented in Figure 3 is implemented around two open-
source projects: Orcc and TCE. Orcc can be considered as an RVC-CAL front-
end for TCE and TCE as a TTA back-end for Orcc. In practice, the design flow
is decomposed to network and actor levels. The network level corresponds to the
instantiations and interconnections of the components of the design (processors
and FIFO channels). This step is performed by Orcc. The actor level is a
full co-design flow wherein both TCE and Orcc are involved. Orcc generates a
high-level description of the processors and the intermediate representation of
the software code associated to each actor, then TCE uses this information to
generate a complete processor design: The description of the processor enables
the generation of its VHDL description using a pre-existing database of standard
hardware components and the software code is compiled into executable binary
code.

The processors need to be capable of executing dynamic dataflow programs.
RVC programs often consist of actors that have data-dependent behavior, i.e.
their execution depends on the value of their input data. To enable this, some
specific execution units called stream wunits had to be developed. These stream
units enable the communication between the concurrently executing processors
over hardware FIFO channels. Figure 4 presents an example of an interconnec-
tion between two processors. Such stream units have to reproduce the behavior
of RVC-CAL FIFOs, particularly their ability to give the number of available
tokens and to read data without consuming it (also known as peeking).

Analysis
& transformations
s LRI

Orcc ‘ Flattening
| & instanciation

Software compilation
TCE [& hardware building]
1

I TTA-BASED PROCESSORS NETWORK |

Figure 3: Design flow

Hardware FIFO

fl RAM | |1 ROM

Glogal
Control

Output

Figure 4: An example of an interconnection between two processors

4.2. Software design flow

The compilation flow is composed of two distinct steps as presented in Figure
5. In the first part, Orcc translates the RVC-CAL code to the intermediate
representation. In latter part, performed by the TCE compiler and presented
in [7], the intermediate representation is transformed to parallel assembly that
is executable by a TTA processor.

The transformation from RVC-CAL code to the LLVM IR was created for
this work to enable the proposed design flow. It incorporates several sophisti-
cated transformations and optimizations that are explained below:

1. Special FIFO operations: Direct FIFO read, FIFO peek, FIFO status
(acquire number of tokens) and FIFO write operations are instantiated to

(High-level

Orcc transformations |
CELEISIETED)

Low-level ‘
transformations |
e

TCE

&

)

Figure 5: Compilation flow

the LLVM IR. In contrast to, e.g., memory-mapped FIFO access, these
special operations allow very fast FIFO communication.

. Action scheduler: In RVC-CAL, the scheduling of actions is expressed
using priorities, finite-state machines, guards and constraints on the FIFO
states. This transformation expresses the action scheduler in a procedural
way to make it understandable by the TTA compiler.

. Representation properties: A total transformation procedure had to
be designed to enable making LLVM IR representations out of RVC-
CAL actors by respecting properties such as Static-Single Assignment
and Three-Address Code. This procedure consists of variable indexing,
¢-function addition and splitting of complex expressions to multiple prim-
itive instructions.

. Correct handling of word lengths: The RVC-CAL language allows
the designer to express bit-accurately the word length of each variable
and communication channel. The respective property is also found in the
LLVM IR. However, when a computation is to be performed with two
variables of different word lengths, the correct result must be ensured by
the use of an explicit cast instruction, as it is done in the proposed work.

After applying these fundamental transformations, the resulting LLVM IR rep-
resentation is suitable for the target-independent powerful optimizations of the
LLVM compiler then the specific optimizations of the TTA compiler.

4.8. Proposed simulation and debugging infrastructure

Much of the difficulty of adopting MPSoC platforms is due to the following

reasons:

e Debugging of parallel hardware is very difficult when compared to de-
bugging of software debugging. Execution tracing of hardware blocks is
very limited when compared to tracing of software executions.

e Performance analysis at platform level is very difficult. Based on the
performance of individual blocks, it is impossible to tell anything about
the performance of the whole platform.

e System integration for MPSoC is a slow and error-prone process.

Our design flow tackles these difficulties by offering a cycle-accurate simula-
tion, using the TCE [7], which can operate at different levels:

e Actor level: Each processor can be tested independently from the others.
The testing workbench compares automatically produced output data to
reference output. A reference output is obtained by running the appli-
cation on a general purpose processor (for which the C back-end of Orcc
generates the software).

e Network level: The whole design is simulated to check the functionality
of the application including the communication between the processor.
This enables evaluating the performance of the application without using
an FPGA board.

Moreover, our co-design flow also creates files to enable using a hardware
simulator (e.g. Mentor Graphics ModelSim) to check the HDL description. The
software simulator is about two hundreds time faster than the hardware one.

5. Experiments

The previous sections presented in detail the automated design flow from
RVC-CAL descriptions to a hardware platform composed of a network of TTA
pProcessors.

After the generation of such a design, the designer evaluates the performance
of the generated hardware components using the simulation tools. If the required
performance is not reached, the designer customizes the processors that are
identified as bottleneck actors.

In this section, we demonstrate the applicability of our approach using the
MPEG-4 Simple Profile video decoder as a case study.

5.1. RVC-CAL description

We have used a description of an MPEG-4 Simple Profile video decoder
known as M VG, which is available in the Open RVC-CAL Applications bundle
at [1]. This description is composed of twenty actors (of which two are simple
broadcasts), which communicate using forty FIFO channels. These actors are
classified as following sub-networks: the parser is dedicated to the entropy de-
coding, texture is used to decompress the image texture information and motion
that performs the motion compensation.

The actors are described at a fine granularity level, most of them compute
one block (8x8 pixels) at a time, with very dynamic behavior.

10

Processor
Blkexp

VA

Processor
Parser

Processor Processor
DCsplit s
Processor
Processor
Addressing

Processor
IAP

Processor
Q
Processor
Add

=

Invpred

4

Processor
IDCT2D

Processor
Serialize

Processor
Source

Hardware

Processor
Interpolation
Broadcast
Hardware Processor
Processor
- Broadcast Merger
Mvseq
Processor
M

el Mvrecon Processor

Processor

::lchecksum

Figure 6: The network of T'T'A processors that has been synthesized from dataflow description
of the MPEG-4 Simple Profile decoder. The arrows between the processors represent the
hardware FIFO channels.

The design generated from this description of the MPEG-4 Simple Profile
video decoder is presented in Figure 6. This design is composed of 18 processors,
two hardware broadcast and 40 hardware FIFOs. The performance evaluation
of the generated design has been done by decoding the nine first frames of the
Foreman sequence (QCIF), available on the website of Orcc.

5.2. Benchmarks

Table 1 describes three different configurations of TTA processors used dur-
ing the experiments. The first one, called standard, is almost equivalent to a
RISC processor: inside the TTA processor the interconnection network is com-
posed of two buses that can provide two operands to an execution unit at each
clock cycle and move the result when it is available. The two last configurations,
custom and huge, define larger processors composed of several execution units
and many buses able to take advantage of the instruction-level parallelism of the
application (like a Very Long Instruction Word processor). The huge configura-
tion is only used for simulation purposes to acquire the maximal performance.

The simulation results of each actor for the Standard and Huge configura-
tions are presented in Table 2. These results represent the number of processor
cycles needed to produce enough data to decode the given sequence. The simula-
tor assumes that input data are always available during the processor execution.
During a real execution, a processor may have to wait for its predecessors. This
table shows the maximum performance limited by the application’s instruction-
level parallelism (ILP).

Unfortunately, the Huge configuration can not be used to implement net-
works of TTA processors on our FPGA boards due to the limited quantity of

11

Processor Standard Custom Huge

Buses 2 6 32
Arithmetic and logical units 1 4 12
Logical units 1 1 0
Multipliers 1 1 8
Load/Store units 1 1 2
Stream units 2 2 2
Integer register files (32 bits) 2x12 4x12 8x32
Boolean register files (1 bit) 1x2 1x2 1x3
Bus-Unit Interconnection Full Full Full

Table 1: Description of the three different processor configurations used in the experiments

Actor Network Standard Huge Speedup
Invpred Texture 260000 195000 1,33
Addressing Texture 484000 415000 1,17
MV sequencing Parser 530000 338000 1,57
MYV reconstruction Parser 1886000 1560000 1,21
Serialize - 2153000 1735000 1,24
Inverse scan Texture 3130000 918000 3,41
DC split Texture 4337000 3740000 1,16
Parseheader Parser 5367000 4129000 1,30
Inverse AC pred. Texture 5370000 2808000 1,91
Block expand Parser 5399000 4731000 1,14
Inverse quantization = Texture 7014000 3343000 2,10
Merger - 7325000 2221000 3,30
Interpolation Motion 7363000 2276000 3,24
Add Motion 8882000 4186000 2,12
IDCT 2D Texture 12110000 4648000 2,61
Frame buffer Motion 15361000 6208000 2,47

Table 2: Simulation results in clock cycles for each actor of a MPEG-4 Simple Profile decoder
using two different processor configurations (Standard and Huge).

available logic. Consequently, we use the smaller Custom configuration for the
six bottleneck actors and the Standard processor for the other ones. Table 3
shows the detailed simulation results for the six bottleneck actors of this RVC
decoder. The Custom configuration is a good compromise between complexity
and performance. This is confirmed by the speedup presented in table 3; it is
close to the one acquired with the simulated Huge configuration.

The performance results of hardware synthesis are presented in Table 4 for
two FPGA boards: Altera Stratix III (EP3SL150F1152C2) and Xilinx Virtex 6

12

Actor Network Standard Custom Speedup

Inverse quantification = Texture 7014000 3840000 1,83
Merger - 7325000 2957000 2,48
Interpolation Motion 7363000 3037000 2,42
Add Motion 8882000 4733000 1,88
IDCT 2D Texture 12110000 6059000 2,00
Frame buffer Motion 15361000 7646000 2,01

Table 3: Simulation results in clock cycles for six bottleneck actors of a MPEG-4 Simple
Profile decoder using two different processor configurations (Standard and Custom)

(XC6VLX240T). The generated designs dedicated to Xilinx and Altera boards
differ only by the proprietary memory components used for RAM, ROM and
FIFOs.

FPGA Standard Mixed Ratio

All Clock Cycles 19800000 9950000 0.5
FPS (@50MHz) 23 45 2

Altera Stratix 11T~ F},,q, (MHz) 151 106 0.7
Register 28685 36741 1.3

Logic 58214 96224 1.6

RAM (M9K/M144K) 203 /16 268 / 16 -

DSP block 18-bit 72 72 -

Xilinx Virtex 6 Frrae (MHz) 100 91 0.9
Registers 40251 51286 1.3

LUTs 58354 90270 1.6

RAM (B18/B36) 32 /135 30/ 152 -

DSP48 60 60 -

Table 4: Hardware synthesis results for a whole MPEG-4 Part 2 Simple Profile decoder using
a Standard configuration and a mixed (Standard and Custom) one of the processors network
on two different FPGA boards

5.3. Discussion

We have demonstrated the functionality of our design flow by implementing a
whole RVC-CAL MPEG-4 Part 2 Simple Profile decoder on two FPGA boards.
This application is composed of actors that have very different behavior and
granularity. Simulation results with the Huge configuration of the processors
show two categories of actors, control and computational actors:

1. Control actors have very limited ILP, between 1 and 2 instructions per
clock cycle. Their computational needs are minimal or the scheduling of

13

their actions is too complex to take advantage of the execution parallelism
of TTA processors without software strategies like branch predication or
hardware mechanisms such as a branch predictor.

2. Computational actors like the inverse discrete cosine transform (IDCT)
and interpolation are the traditional bottlenecks of the MPEG-4 SP de-
coder. The resulting speedup for these actors, between 2.0 and 3.5, depicts
their high instruction-level parallelism. They are ideal for execution on
VLIW-like processors. This is the reason why it is interesting to use in
this case a configuration of TTA processors providing more ILP, like the
custom configuration.

The performance on the FPGA board after synthesis shows a speedup of two
between the Standard configuration and Custom. In this particular application,
the buffer actor remains as the bottleneck that limits the performance of the
whole design.

On both FPGA boards, the use of larger processors reduces the maximum
clock frequency. Indeed, the critical path of the design increases according to
the complexity of the interconnection network in each processor.

In our designs, most of the processors are identical: at most two different
TTA processors configurations are used to implement 18 actors. For an optimal
performance / resource usage tradeoff, each actor should have a tailored pro-
cessor. However, the use of identical processors is a first step towards a more
generic multi-processor platform able to execute several RVC applications.

6. Conclusion

This paper presents a co-design flow for instantiating many-core systems
out of a high-level application description. The many-core system is a network
of heterogeneous processors based on the Transport-Trigger Architecture. The
presented co-design flow allows a rapid development and evaluation process of
complex signal processing applications. We have validated the method with the
RVC-CAL description of an MPEG-4 Simple Profile decoder and we are able to
automatically generate an FPGA implementation in a few seconds.

The work described in this paper enables future works concerning the dataflow-
based design approach of signal processing MPSoCs. The programmability of
the TTA processors permits the design of domain-specific platforms able to exe-
cute various applications. To reach this target, a generic interconnection model
has to be defined.

The platform generation process needs to be improved to reach the perfor-
mance requirements of modern signal processing systems, such as real-time HD
video decoding performance. The application could be accelerated by generat-
ing a mixed platform containing some instruction processors and some hardware
accelerators generated directly from the RVC-CAL code.

14

7. Acknowledgments

We would like to thank the following people for their contributions in the

Orcc project: Matthieu Wipliez, Antoine Lorence, Khaled Jerbi and Jérome
Gorin. We would also give special thanks to Pekka J&iskeldinen for the time
and effort he took to help us with the TCE.

References

1]

2]

3]

[4]

[5]

[6]

7]

8]

[9]

Orcc and some RVC-CAL applications are available at the following web-
site. http://orcc.sourceforge.net.

S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz, M. Mattavelli, and
M. Raulet. Overview of the MPEG Reconfigurable Video Coding Frame-
work. Journal of Signal Processing Systems, 63:251-263, 2011.

J. Boutellier, O. Silvén, and M. Raulet. Automatic synthesis of TTA pro-
cessor networks from RVC-CAL dataflow programs. In IEEE Workshop on
Signal Processing Systems (SiPS), pages 25-30, 2011.

J. Ceng, J. Castrillon, W. Sheng, H. Scharwachter, R. Leupers, G. Ascheid,
H. Meyr, T. Isshiki, and H. Kunieda. MAPS: An integrated framework for
MPSoC application parallelization. In 45th ACM/IEEE Design Automa-
tion Conference, pages 754-759, 2008.

H. Corporaal. Microprocessor Architectures : From VLIW to TTA. John
Wiley & Sons, December 1997.

J. Eker and J. W. Janneck. CAL Language Report Specification of the CAL
Actor Language. Technical Report UCB/ERL M03/48, EECS Department,
University of California, Berkeley, 2003.

O. Esko, P. Jididskeldinen, P. Huerta, C. S. de La Lama, J. Takala, and
J. I. Martinez. Customized exposed datapath soft-core design flow with
compiler support. In Proceedings of the 2010 International Conference
on Field Programmable Logic and Applications, FPL ’10, pages 217-222,
Washington, DC, USA, 2010. IEEE Computer Society.

A. Floch, T. Yuki, C. Guy, S. Derrien, B. Combemale, S. Rajopadhye,
and R. B. France. Model-driven engineering and optimizing compilers: a
bridge too far? In Proceedings of the 1jth international conference on
Model driven engineering languages and systems, MODELS’11, pages 608—
622, Berlin, Heidelberg, 2011. Springer-Verlag.

J. Gorin, M. Wipliez, F. Préteux, and M. Raulet. LLVM-based and scalable
MPEG-RVC decoder. Journal of Real-Time Image Processing, 6:59-70,
2011.

15

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee,
S. Richardson, C. Kozyrakis, and M. Horowitz. Understanding Sources of
Inefficiency in General-Purpose Chips. Annual International Symposium
on Computer Architecture, pages 8593, 2010.

J.-M. Hsiao and C.-J. Tsai. Analysis of an SOC Architecture for MPEG
Reconfigurable Video Coding Framework. IEEFE International Symposium
on Clircuits and Systems, pages 761-764, 2007.

P. Jaaskelainen, E. Salminen, C.S. de La Lama, J. Takala, and J.I. Mar-
tinez. TCEMC: A co-design flow for application-specific multicores. In In-
ternational Conference on Embedded Computer Systems (SAMOS), pages
85-92, 2011.

J. W. Janneck, I. D. Miller, D. B. Parlour, G. Roquier, M. Wipliez, and
M. Raulet. Synthesizing hardware from dataflow programs: An MPEG-
4 simple profile decoder case study. In 2008 IEEE Workshop on Signal
Processing Systems (SiPS), pages 287-292, 2008.

K. Jerbi, M. Raulet, O. Déforges, and M. Abid. Automatic Generation Of
Optimized And Synthesizable Hardware Implementation From High-Level
Dataflow Programs. VLSI Design, 2012:Article ID 298396, 2012.

J. Joven, O. Font-Bach, D. Castells-Rufas, R. Martinez, L. Teres, and
J. Carrabina. xXENoC - An eXperimental Network-On-Chip Environment
for Parallel Distributed Computing on NoC-based MPSoC Architectures.
In 16th Euromicro Conference on Parallel, Distributed and Network-Based
Processing, pages 141-148, 2008.

G. Kahn. The Semantics of a Simple Language for Parallel Programming.
In J. L. Rosenfeld, editor, Information Processing ’74: Proceedings of the
IFIP Congress, pages 471-475. North-Holland, New York, NY, 1974.

C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. page 75. IEEE Computer Society,
2004.

E. A. Lee and T. M. Parks. Dataflow Process Networks. 83(5):773-801,
1995.

L. Nurmi, P. Salmela, P. Kellomaki, P. Jadskeldinen, and J. Takala. Recon-
figurable video decoder with transform acceleration. In 2009 IEEE Work-
shop on Signal Processing Systems (SiPS), pages 81-86. IEEE, 20009.

H.-W. Park, H. Oh, and S. Ha. Multiprocessor SoC Design Methods and
Tools. IEEE Signal Processing Magazine, 26:72-79, 2009.

N. Siret, M. Wipliez, J.-F. Nezan, and A. Rhatay. Hardware code genera-
tion from dataflow programs. In Conference on Design and Architectures
for Signal and Image Processing (DASIP), pages 113-120, 2010.

16

[22] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: an
annotated bibliography. SIGPLAN Not., 35(6):26-36, 2000.

[23] M. Wipliez, G. Roquier, M. Raulet, J.-F. Nezan, and O. Déforges. Code
generation for the MPEG Reconfigurable Video Coding framework: From
CAL actions to C functions. In IEEFE International Conference on Multi-
media and Ezpo (ICME), pages 1049 — 1052, 2008.

[24] W. Wolf, A.A. Jerraya, and G. Martin. Multiprocessor System-on-Chip
(MPSoC) Technology. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 27(10):1701-1713, 2008.

17

