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Abstract

We present a work-stealing algorithm for total-store memory ar-
chitectures, such as Intel’s X86, that does not rely on atomic read-
modify-write instructions such as compare-and-swap. In our algo-
rithm, processors communicate solely by reading from and writ-
ing (non-atomically) into weakly consistent memory. We also show
that join resolution, an important problem in scheduling parallel
programs, can also be solved without using atomic read-modify-
write instructions.

At a high level, our work-stealing algorithm closely resembles
traditional work-stealing algorithms, but certain details are more
complex. Instead of relying on atomic read-modify-write opera-
tions, our algorithm uses a steal protocol that enables processors
to perform load balancing by using only two memory cells per pro-
cessor. The steal protocol permits data races but guarantees cor-
rectness by using a time-stamping technique. Proving the correct-
ness of our algorithms is made challenging by weakly consistent
shared-memory that permits processors to observe sequentially in-
consistent views. We therefore carefully specify our algorithms and
prove them correct by considering a costed refinement of the X86-
TSO model, a precise characterization of total-store-order architec-
tures.

We show that our algorithms are practical by implementing
them as part of a C++ library and performing an experimental
evaluation. Our results show that our work-stealing algorithm is
competitive with the state-of-the-art implementations even on cur-
rent architectures where atomic read-modify-write instructions are
cheap. Our join resolution algorithm incurs a relatively small over-
head compared to an efficient algorithm that uses atomic read-
modify-write instructions.

1. Introduction

As parallel computing becomes mainstream with the advent of
multi- and many-core computers, techniques for writing and ex-
ecuting parallel programs have become increasingly important.
By allowing parallel programs to be written at a high level and
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in a style similar to sequential programs, implicit parallelism, as
elegantly exemplified by languages such as Cilk [16], Fork/Join
Java [27], NESL [4], parallel Haskell [24], parallel ML [15],
TPL [28], and X10 [8], has emerged as a promising technique
for parallel programming. Programs written in these implicitly par-
allel languages generate a plethora of fine-grained parallel threads,
requiring an efficient and scalable scheduler for execution. In the
course of the last decade, the work-stealing algorithm [6, 7, 16, 17]
has proved to be an effective scheduling strategy.

Work stealing can be expressed simply and elegantly at a high
level when assuming a sequentially consistent memory model and
low-cost synchronization operations such as locks. Each processor
maintains a pool of ready threads. When it creates a new parallel
thread, the processor adds the thread to its pool. When in need of
a thread, it takes one from its pool. If the pool is empty, then the
processor steals work from another processor’s pool. To guarantee
efficiency under a sequentially consistent memory model [6], it
suffices 1) to maintain pools as doubly-ended-queues, i.e., deques,
2) to choose randomly the processor to steal from, and 3) to steal
the “largest” (top) thread from a deque.

In practice, however, synchronization is expensive and can pre-
vent scalability. Furthermore, parallel architectures support only
weakly consistent memory models, where certain basic operations
such as memory writes are not atomic and making them atomic by
use of synchronization operations such as memory fences can be
expensive. There has therefore been much research on designing
concurrent data structures and algorithms for efficient work steal-
ing on weakly consistent memory. Much of this work focused on

• reducing the use of locks and other atomic read-modify-write
operations (e.g., compare-and-swap and fetch-and-add) to im-
prove efficiency and scalability, and

• reducing memory fences (e.g., a store-load barrier) so that the
benefits of weak memory architectures can be realized without
unnecessarily serializing memory operations.

Based on Dijkstra’s mutual exclusion protocol, Frigo et al [16]
present a work-stealing algorithm that uses locks only when per-
forming steals and only in an edge case of local deque operations.
Other papers [2, 9] present non-blocking work-stealing algorithms
that use atomic read-modify-write operations instead of locks. Such
non-blocking algorithms have been shown to perform well on cer-
tain existing hardware such as current multicores. Michael et al [29]
show that it can be beneficial to eliminate all memory fences and
atomic instructions from local deque operations in total-store or-



der memory models. Their approach, however, weakens the se-
mantics of work stealing by allowing a thread to be removed from
a deque (and thus executed) multiple times, which in some cases
can also adversely affect correctness and efficiency. More recent
work [1] presents a work-stealing algorithm that eliminates all
memory fences and atomic instructions from local deque opera-
tions on total-store-order memory models without weakening the
semantics of work stealing or adversely affecting its performance.

While much progress has been made in reducing the use of
atomic read-modify-write instructions and memory fences, the
question of whether they can all be eliminated remains open. We
find this question to be theoretically interesting, because it hints
at the limits of computing with processors that communicate non-
atomically via weakly consistent memory. The problem also ap-
pears to be of practical interest. In current architectures, atomic
instructions are relatively cheap, because they can take advantage
of the cache-coherence protocol implemented in hardware. It is
not known, however, whether they can scale to computers with
larger numbers of processors. For example, citing such concerns,
recent work [25, 32] proposes hardware support for work stealing
that can improve performance significantly by eliminating certain
atomic and synchronization operations. In addition, future paral-
lel hardware may not support at all the cache coherence protocols
on which fast implementations of atomic read-modify-write opera-
tions rely (e.g., [21]). For example, Intel’s SCC (Single Chip Cloud
computer) architecture provides for a shared memory architecture
but not for cache coherence nor for atomic read-modify-write in-
structions. Such architectures would require algorithms that do not
use atomic read-modify-write instructions.

In their work on work-dealing, Hendler and Shavit also describe
techniques that can be used to eliminate all atomic read-modify-
write operations [18]. The idea would be to establish pairwise com-
munication channels between processors implemented as producer-
consumer buffers without using atomic read-modify-write instruc-
tions. To send a message to another, a processor would write to their
dedicated channel; to receive a message, it would scan through its
channels. Unfortunately, for P processors, this approach would re-
quire Θ(P 2) communication channels in total, and Θ(P ) worst-

case time for receiving messages.1

In this paper, we present a work-stealing algorithm for weak
memory architectures that uses no atomic read-modify-write oper-
ations and no memory fences on total-store order, TSO for short,

architectures2 (Section 4). To ensure efficiency, our algorithm uses
only two memory cells per processor and permits data races to take
place, recovering from them to guarantee correctness. In addition,
we present a join-resolution algorithm for fork-join parallel pro-
grams for determining when threads become ready without using
any atomic read-modify-write operations or memory fences.

We carefully specify our algorithms and prove their correctness
and termination properties (Section 5). Since such proofs require
reasoning precisely about the memory operations, we consider a
specific TSO architecture, Intel’s X86, as formalized by the X86-
TSO memory model [33]. The X86-TSO model, however, is not
sufficient to reason about termination and efficiency. Inspired by
the work of Dwork et al. [12] on the partial synchrony model of
distributed computing, we therefore present a costed extension of
X86-TSO that bounds the time for a memory write to become vis-
ible to other processors. We denote this bound ∆. Our algorithms

1 Using atomic read-modify-write operations, Θ(P ) time for receiving a
message can be reduced to O(logP ).
2 Architectures that support weaker memory models such as ARM mul-
ticore chipsets can often emulate TSO, possibly by using some memory
fences, which tend to require local re-ordering of operations performed by
one processor.

do not assume knowledge of ∆. We refer to the costed model as
X86-ATSO, short for algorithmic X86-TSO.

Our correctness proof based on the X86-ATSO model estab-
lishes the invariants that our scheduler must observe and shows
that they remain true during execution, including as writes per-
formed by a processor become non-deterministically visible to
other processors. We don’t prove our algorithm to be theoreti-
cally efficient—such a proof seems to be another major undertaking
(without making strong assumptions). We do, however, briefly de-
scribe why we believe that our algorithms satisfy important invari-
ants for efficiency (Section 6) and provide experimental evidence
that our algorithms are practical (Section 7).

We show that our algorithms can be implemented without sig-
nificant difficulty and provide an empirical evaluation by consid-
ering a set of benchmarks, including standard Cilk benchmarks
as well as more recently proposed graph benchmarks from the
PBBS [3] suite (Section 7). For comparison, we use a compare-and-
swap-based private-deques algorithm, the traditional Chase-Lev al-
gorithm with concurrent deques [9], and CilkPlus [22]. We expect
our algorithms to be especially beneficial in future large-scale sys-
tems where atomic read-modify-write operations are expensive or
unsupported in hardware. Our experiments show that, even on cur-
rent architectures, our work-stealing algorithm is competitive with
the state of the art and that our join-resolution algorithm has a
small but noticeable overhead, suggesting that further work may
be needed on that problem.

Due to space constraints, we have included proofs and more
detailed experiments in a separately submitted appendix.

2. Background and Overview

We briefly present an overview of the main ideas in our algorithms
in the context of prior work. We make the ideas precise by present-
ing detailed specifications of the algorithms in Section 4.

Throughout the paper, we assume fork-join parallelism and
restrict ourselves to degree-two joins for simplicity. Since arbitrary-
degree joins can be represented with a collection of degree-two
joins, this assumption causes no loss of generality.

2.1 Work stealing

Centralized scheduling. The simple approach to scheduling is to
keep a centralized pool of threads shared by all processors. When a
processor creates a new thread, it places the thread into the shared
pool. When a processor goes idle, it removes a thread from the pool
to run. This algorithm requires the operations on the shared pool to
be atomic, making the approach inefficient and unscalable.

Work stealing with atomic read-modify-write operations. For
improved efficiency and scalability, work stealing employs multiple
pools instead of one and performs load balancing via steals to
keep processors busy. More specifically, each processor is assigned
a pool implemented as a doubly ended queue (deque). When a
processor creates a thread, it pushes the thread into the bottom
end of its deque. When it needs a thread, it pops a thread from
the bottom. If the deque is empty and thus there is no thread
to be popped, the processor attempts to steal a thread from the
top end of another process’s deque. Progressive advances in the
last two decades have reduced the need for atomic instructions
dramatically [1, 2, 9, 16, 29]. Existing approaches, however, all
rely on atomic insructions to support steals.

Work-stealing without atomic read-modify-write operations. Our
starting point is a recent work-stealing algorithm [1] that eliminates
all atomic read-modify-write operations and memory fences from
local deque operations. The idea behind that algorithm is to use a
private-deques architecture for work stealing, where each proces-
sor owns a non-concurrent, private deque (instead of a concurrent
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deque as is traditionally used) and relies on communication to
perform load balancing via steals; such communication can be per-
formed via well-understood polling techniques. The algorithm uses
atomic read-modify-write operations to support steals.

To see how we can eliminate all atomic operations (without
adding memory fences) by building on the private-deques archi-
tecture, suppose that we create pairwise communication channels,
a total of P (P − 1), between each pair of processors. We can
use each channel as a pairwise producer-consumer buffer and im-
plement it without using atomic read-modify-write primitives and
memory fences [18, 26]. This algorithm would be correct but it has
three shortcomings: 1) it requires P (P − 1) ∈ Θ(P 2) communi-
cation channels, 2) a processor needs Θ(P ) time for receiving a
message, and 3) it violates a key invariant of work stealing: since
an idle processor can receive multiple threads, one thread can re-
main “stuck” in a channel for some time during which it cannot be
stolen; this breaks a key efficency invariant of work stealing—that
the topmost thread in a deque is stolen first.

To regain efficiency, we reduce the number of channels and
limit them so that they can hold only one message at a time. More
specifically, instead of using P pairwise communication channels,
in our algorithm, each processor owns just two cells: one query
cell for receiving incoming steal queries and one transfer cell for
receiving the threads sent to it; each cell can hold only one query
or transfer object. When a processor wishes to steal from another
target processor, it sends a message to the target processor by non-
atomically writing to its query cell and waits for a response. When
a processor receives a steal query, it sends the thread at the top of
its deque by writing to the transfer cell of the querying processor;
if the processor has no threads then it denies the request again by
writing to the transfer cell of the querying processor.

This approach leads to at least two issues: 1) since the query is
made non-atomically, a query can be overwritten by another pro-
cessor’s query in a data race, and 2) since all communication takes
place via non-atomic write operations and no memory fences can
be used, writes can be delayed arbitrarily, causing inconsistenciens.
To solve these problems, our algorithm keeps a logical clock at
each processor, counting uninterrupted rounds of work. Each round
starts when a processor gets work, or satisfies (by sending work)
a steal query, or declines (because it has no work to share) the
steal query. To solve the first problem—the problem of steal queries
overwritten in a data race—we use the logical clocks, called round
numbers, as follows: when an idle processor a sends a steal query
to a target processor b, it tags its query with the round number of b.
When a’s query is overwritten by the query of another processor c,
b cannot see a’s request but will eventually respond to c (or an-
other processor) and increment its round number. Processor a can
detect that its steal attempt has failed by observing that the round
number of b has increased. The second problem—the problem of
delayed writes— can cause the query of an idle processor to be
overwritten by another query, which was made at an earlier round.
The idle processor detects such an inconsistent write by observing
the round number of the query cell of the target, and rewriting its
query as needed.

2.2 Join Resolution

For work-stealing to be efficient, it is important for a thread to be
made available for execution as soon as it becomes ready, i.e., all
its ancestor threads are executed. Threads with a single parent are
ready when created but join threads with two parents become ready
only when both parents complete execution. Since parents can be
executed by different processors, determining when join threads
become ready can involve coordination between processors.

Join resolution with atomic read-modify-write operations. It is
relatively straightforward to give a simple algorithm for join reso-

lution when using atomic read-modify-write instructions. For ex-
ample, each join thread can keep a counter of unfinished parent
threads. The counter initially contains the number of parents and
is atomically decremented by the processor that executes a parent.
The join thread is ready when the counter reaches zero. This al-
gorithm can be optimized to use atomic instructions only for non-
local joins that involve two processors [16]. With this optimiza-
tion, experimental evidence suggests that join resolution works ef-
ficiently on some modern parallel systems, because non-local joins
are rare (one per steal) and only two processors contend for the
same memory object. This optimization has been used in Cilk [16]
as well as our own comparison implementations. Another approach
to join resolution would be to keep a two-processor barrier. This
approach has the disadvantage of holding up the processor that
first completes a parent, breaking a crucial greedy property of work
stealing.

Join resolution without atomic read-modify-write operations.
To develop some intuition for the problem, we start by assum-
ing that every memory write becomes visible to all processors in
some known time ∆ and that we know the two processors that will
execute the parents of the join thread. We create pairwise com-
munication channels between all processors and send and receive
messages through them without using atomic instructions [18, 26].
Now, when processor i finishes a parent thread, it sends a READY
message to the other processor j working on the other parent, which
we know by assumption, and waits for a response for 2∆ time units.
If j receives this message before it completes the parent thread,
then it will execute the join thread. If, however, j finishes before
hearing from i, then it sends READY to i, causing both processors to
receive READY, indicating a tie, which can be broken arbitrarily. If i
has not received READY from j after 2∆ units of time, processor i
continues to obtain other work.

We now describe how to eliminate three strong assumptions
made by this algorithm: 1) synchronous communication, 2) knowl-
edge of the processors executing the parents, 3) Θ(P 2) buffers. We
avoid using ∆ by requiring each processor to acknowledge the re-
ceipt of a READY message by sending an ACK message back. Thus,
after sending READY, a processor will wait until it eventually gets
back either READY, indicating a tie, or ACK, indicating success, and
may proceed accordingly in either case.

For the second problem, note it is impossible to know the
processors participating in a join a priori. Figure 1 illustrates
an example, where processor i starts to execute thread 0, which
creates thread 1 and thread 4, which is then stolen by proces-
sor j. At this time, our only knowledge for thread 6, the join
thread of 1 and 4, is that it might be decided between the pro-
cessors i and j. When 1 executes, however, it forks the threads 2
and 3, which is stolen by processor k. Thus, the processor that
executes the join thread of 2 and 3, either i or k, will actu-
ally participate in the resolution of thread 6 but there is no
way to know which—the outcome will be non-deterministic.

i 0

1

2 3

5

6

4 j

k

i

i

k

k

Figure 1. An
example join
resolution.

We overcome the second and the third
problems by allowing processors to com-
municate through the join threads. To al-
low for this, the data structures represent-
ing join threads must carry two communi-
cation channels for processors running the
parent threads. These processors are said to
be watching this join. A processor may be
watching many joins at a time and must pe-
riodically check its communication channels
for messages. To this end, each processor
maintains a watch list of joins to be watched.
Processors add a join to their watch lists
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when a parent thread is stolen and remove it when it is resolved.
Adding and removing joins can be done in constant time.

As the example in Figure 1 shows, watch lists must occasion-
ally be transferred between processors when joins are resolved. For
example, if the join on thread 5 is resolved such that processor k
executes it, i must transfer its watch list to k so that k is aware
of its responsibility to watch the join on thread 6. In general, the
invariant that we maintain is that the branch of a join is watched
by the leftmost processor (in tree order) that works on this branch.
Thus, watch list transfers must occur when a left branch is com-
pleted and removed from the DAG, changing which processor is
leftmost. It is a constant-time operation for a processor to append
a transferred watch list to its own. However, since the transfer in-
volves communication between processors, we avoid this operation
when possible.

3. The Model: Algorithmic X86-TSO

For designing and reasoning about our algorithms, we consider
the X86-TSO model [33] for total-store-order architectures (e.g.,
the X86 platform from Intel and AMD) and extend it with a cost
model that assigns a cost to each operation. The cost model enables
reasoning about termination and efficiency. We refer to this costed
model as algorithmic X86-TSO, abbreviated as X86-ATSO.
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Figure 2. The X86-TSO
model and the costs (in red).

Figure 2 illustrates the
abstract X86-TSO machine
model [33] for a 4-processor
(core/CPU) specimen of the
X86 archictecture with total-
store order memory system
and our cost model. The sys-
tem consists of a shared mem-
ory and one first-in-first-out
(FIFO) store buffer per pro-
cessor, each mapping loca-
tions to values. When writing
a location, the processor sim-
ply writes to its store buffer;
the values stored in the buffer can propagate to memory any time.
When reading a location, a processor first consults its store buffer
and reads the value written by the most recent store into that lo-
cation. If the location is not in the store buffer, then the processor
accesses the memory.

Many X86 instructions operate locally without requiring syn-
chronization with other processors but some, such as memory
fences and LOCK’ed instructions, don’t. LOCK’ed instructions
include the atomic XCHG (compare-and-swap) instruction and the
atomic versions of the many read-modify-write instruction (ADD,
INC, etc) that, when preceded by the LOCK prefix, run atomically.
A locked operation starts by taking a global read lock, which pre-
vents all other processors from performing reads, and completes by
flushing the store buffer and releasing the lock.

The X86-TSO model does not specify the cost of each opera-
tion, nor even termination. For example a memory-fence instruc-
tion may not return, or the values written into the store buffers may
never propagate to memory. The lack of a cost specification may
appear amiss, but it is in fact consistent with hardware because
manufacturers do not specify whether the protocols implemented
in hardware (e.g., cache coherency) are terminating and how fre-
quently the buffers are flushed.

To design effective algorithms and to prove them correct, termi-
nating, and efficient, a cost model is needed. Such a cost model
should at least posit the termination of all operations including
memory writes, because otherwise it would not be possible to rea-
son about termination. Therefore, in algorithmic X86-TSO, mem-
ory reads and writes complete in a single time step, but writes can

take up to an additional finite time, ∆ ≥ 1, to become visible to
all processors. Somewhat imprecisely, we illustrate the cost model
in Figure 2 by assigning a cost of ∆ for moving data from the store
buffer to memory—∆ is an upper bound on the time for a write
stored in a buffer to make it to memory.

While assuming that each operation takes at most ∆ steps for
some ∆ may be realistic, we choose not to assume our algorithms
are aware of the value of ∆ for several reasons. First, since ∆ can
vary between different hardware and can be difficult to know, an
algorithm designed for a particular ∆ may not work well in all
architectures. Second, the value of ∆ might be large in the worst
case but small in the common case, making an algorithm that uses
∆ suboptimal. Therefore, our algorithms assume the existence of ∆
but they don’t use it. When reasoning about termination, we assume
that some ∆ exists, without explicitly quantifying it; in other words,
we assume that each write eventually makes it to main memory.

4. The algorithms

Since we are primarily concerned with the design and the correct-
ness of the algorithm on weak memory models, we present rea-
sonably detailed and precise pseudo-code in C++-like syntax. To
remain realistic, we do not assume that we are given a computa-
tion DAG to schedule but also construct the DAG dynamically du
ring the execution. To express parallelism, we provide one primi-
tive, fork, which can only be called at the end of a parallel thread,
specifying the threads to be forked as well as their join. Given
a work-stealing framework supporting some basic infrastructural
data structures, these algorithms can be employed separately or to-
gether to perform load balancing with work stealing and perform
join resolution. In fact, our implementation follows closely the
pseudo-code and uses these algorithms paired with each other or
other algorithms for experimental evaluation. We start by present-
ing the abstract data types and the data structures for work stealing
along with the main scheduling loop and then describe the two al-
gorithms.

4.1 The data structures

Several key data structures facilitate our algorithms. One key data
structure is a doubly ended queue, a deque for short, for stor-
ing ready threads. Each processor owns a private deque that can
be accessed only by that processor. Each processor operates on
the deque following the work-stealing paradigm, by pushing new
parallel threads at the bottom of the deque, and popping threads
from the bottom when it completes the execution of a thread (with
push bottom, pop bottom operations). Since deques are not con-
current, there is no need for memory fences, which would otherwise
be needed at every pop bottom operation.

Figure 3 specifies the other data types and structures used in our
algorithm. The type query is used by the load-balancing algorithm
for packing an identifier and a round number into a single machine
word. A query consists of the identity of a processor and of a round
number. For correctness, it is critical for processors to be able to
make queries atomically. We therefore represent a query as a single
64-bit machine word (type query), using 24 bits for the identifier
and 40 bits for the round number (which makes it possible to
support computations up to 240 rounds with up to 224 processors).
The function q make constructs a query, and the functions q id
and q rnd project out the ID and the round numbers of the offer,
respectively.

The enumeration types stat and side are used by the join-
resolution algorithm. The record thread, used to represent a
thread, has three fields: the status field is an array of size two
used by the join algorithm to keep track of the completion of the
dependencies (if any) of this thread. These could be ACK indicating
that the branch will complete last, READY indicating that the branch
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1 // Query type with 40-bit round numbers.
2 type query = unsigned_int_64
3 query q_make(int i, int r)
4 return r + (i << 40)
5 int q_id(query q)
6 return (q >> 40)
7 int q_rnd(query q)
8 return (q & ((1 << 40) -1))
9

10 // Constants for representation of threads.
11 type stat = | WORK
12 | ACK
13 | READY
14 | TRANSFER { set <cont >* }
15 type side = int
16 const side LEFT = 0
17 const side RIGHT = 1
18 const side SINGLE = 2

19 // Representation of threads
20 type thread = {
21 stat status [2]; // state of dependencies
22 void run (); // body of the thread
23 cont conti; } // continuation
24
25 // Representation of continuations
26 type cont = {
27 thread* join; // end -point of the edge
28 side branch; } // position of the edge
29
30 // Global variables.
31 deque <thread*> deque[P] = {DEQUE_EMPTY , ..}
32 cont cur_cont[id]
33 set <cont > watching[P] = {SET_EMPTY , ..}
34 int round[P] = {1, ..}
35 query in_query[P] = {q_make (0,0), ..}
36 thread* received[P] = {NULL , ..}

Figure 3. Data types and global state.

has finished earlier than or concurrently with the other branch,
WORK indicating that the branch has not been yet completed, and
TRANSFER indicating the transfer of a watch list. These values,
along with a pointer to the watch lists in the case of TRANSFER, can
be packed into a single word and thus can be written atomically.
The run method corresponds to the body of the thread, and the
conti field describes the continuation of the thread. The continua-
tion (type cont) consists of a pointer on a join thread, which has
the current thread as a dependency, and a branch value, which in-
dicates whether the current thread is the left, the right, or the single
dependency of the join thread.

The shared state (global variables) include deques (called
deque in the pseudo-code), current continuations (cur cont),
the watch lists (watching) defined as a set of items describing
continuations that this processor must check for messages regard-
ing join resolution. The other global variables (round, in query
and received) are used for work stealing. All these variables are
processor-indexed arrays.

4.2 The main scheduling loop

Figure 4 shows the pseudo-code of the main scheduling loop, func-
tion main. Like all other functions of the algorithm, this function
takes as first argument the ID of the processor calling it. If a proces-
sor finds its deque empty, then it calls acquire to obtain a thread.
Otherwise, it pops the thread at the bottom of its deque and exe-
cutes it, after remembering the continuation of this thread. After
the thread completes, the processor handles the continuation using
the function handle cont, described below.

The fork function (Figure 4) takes as arguments the ID of
the caller, the left branch thread, the right branch thread, and the
join thread. When the currently-running thread calls fork, the
current continuation is captured and used as a continuation of
the join thread, while the current continuation is set to point to a
NULL pointer. We set the status fields of the join thread to WORK
in order to indicate that neither branch has completed execution.
The left and right threads are then pushed onto the deque, after
their continuation is set as the join thread and marked with the
corresponding branch (LEFT or RIGHT). Note that the content of the
status field of the branch threads is irrelevant because the threads
are ready when created.

Figure 5 contains the code of the function handle cont for
handling continuations. If the continuation describes the end of the
entire computation (END), the program exits. If the continuation
carries a null pointer, indicating that the thread that has just run has
forked, there is nothing to do. Otherwise, the continuation carries
a valid thread pointer c.join and a branch value, which is one of

SINGLE, LEFT or RIGHT. The value SINGLE captures the fact that
the thread that has just run was the unique dependency on the join
thread, so the join thread can be scheduled immediately. Otherwise,
in the particular case where the thread that has just finished is a
left branch and the corresponding right branch is still in the deque
(it was not sent away), the remaining right branch can be safely
converted into a single branch. In other cases, it must be that the
left branch and the right branch are running on different processors,
and therefore the join resolution algorithm needs to be invoked.

4.3 Our Work-Stealing Algorithm

To perform load balancing via steals without memory fences and
atomic read-modify-write operations operations, our algorithm re-
lies on explicit communication between processors and local op-
erations on deques. To communicate, each processor periodically
calls the function communicate. (Such periodic calls can be im-
plemented using several known techniques (e.g., [1] and references
thereof.) Since when exactly communication takes place does not
affect correctness as long as it takes place within the main body
of the scheduler (or by trapping into the scheduler from the user
code), we do not discuss this any further.

For load balancing, each processor maintains a round number
to differentiate between its own phases: starting from zero, the
round number gets incremented every time the processor serves
or declines a (steal) query. Each processor also uses two shared
memory cells: an in-query cell (in query) for receiving queries
from idle processors, and a reception cell (received) for receiving
thread pointers from busy processors.

The load-balancing algorithm (Figure 6) consists of two func-
tions, called acquire and communicate. A processor calls acquire
when its deque is empty. It starts by writing a null pointer in its re-
ception cell, and then repeatedly attempts to acquire work from
another randomly picked victim processor. To acquire work, it first
checks that the victim admits queries by checking that the round
number of the last query targeting the victim is less than victim’s
current round number. If so, then the processor writes a query con-
taining its own identifier and the victim’s round number into the
victim’s in-query field. The victim serves the query when it calls
communicate. If a thread is delivered, the processor receives the
thread, and updates its watch list to coordinate the resolution of the
join with the victim. Otherwise the processor tries to steal again.

When a busy processor calls communicate (which it does peri-
odically), it first reads its in query field. If it finds a query whose
round number matches its round number, then it means that (at
least) one idle processor is waiting for an answer to its query. To
serve the query, the processor checks if it has a thread that it can
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37 void main(int i)
38 while true do
39 if deque[i]. is_empty ()
40 acquire ()
41 thread* t = deque[i]. pop_bottom ()
42 cur_cont[i] = t.conti
43 t.run()
44 handle_cont(i, cur_cont[i])

45 void fork(int i, thread* t1 , thread* t2 , thread* tj)
46 tj.conti = cur_cont[i]
47 cur_cont[i].join = NULL
48 tj.status[LEFT] = WORK
49 tj.status[RIGHT] = WORK
50 t1.conti = cont { tj , LEFT }
51 t2.conti = cont { tj , RIGHT }
52 deque[i]. push_bottom(t2)
53 deque[i]. push_bottom(t1)

Figure 4. Main loop and fork function.

54 // Called after completion of a thread
55 void handle_cont(int i, cont c)
56 if c.join == END then exit (0)
57 if c.join == NULL then return
58 if c.branch == SINGLE
59 deque[i]. push_bottom(c.join)
60 ...

61 else if (c.branch == LEFT
62 && not deque[i]. empty ())
63 // Optimize the local right branch
64 thread* t = deque[i]. peek_bottom ()
65 t.conti.branch = SINGLE
66 else
67 resolve_join(i, c)

Figure 5. Handling of continuations.
68 // Called when a worker runs out of work
69 void acquire(int i) // i = ID of caller
70 received[i] = NULL
71 while true
72 int j = random ∈ {0, .., P -1}\{i}
73 int r = round[j]
74 // Test whether target accepts queries
75 if q_rnd(in_query[j]) < r
76 // Send a query
77 in_query[j] = q_make(i, r)
78 while round[j] == r
79 // Resend same query if needed
80 if q_rnd(in_query[j]) < r
81 in_query[j] = q_make(i, r)
82 block(i)
83 // Receive the thread , if any
84 thread* t = received[i]
85 if t != NULL
86 watching[i].push(t.conti)
87 push_bottom(deque[i], t)
88 round[i]++ // Accept queries
89 return
90 block(i)

91 // Called periodically by a busy processor
92 void communicate(int i) // i = ID of caller
93 // Check for incoming queries
94 query q = in_query[i]
95 if q_rnd(q) != round[i]
96 return
97 // Process the incoming query
98 if size(deque[i]) > 0
99 && peek_top(deque[i]). conti.branch == RIGHT

100 thread* t = pop_top(deque[i])
101 cont conti = {t.conti.join , LEFT}
102 watching[i].push(conti)
103 received[q_id(q)] = t
104 round[i]++ // Starts a new query phase
105
106 // Auxiliary function for blocking queries
107 void block(int i) // i = ID of caller
108 int r = round[i]
109 if in_query[i] != q_make(i,r)
110 in_query[i] = q_make(i, r+1)
111 round[i] = r+1

Figure 6. Load-balancing algorithm.

send. If so, it pops the thread from its deque, writes the correspond-
ing thread pointer into the reception cell of the querying processor,
and updates its watch list to coordinate with the thief. If not, the
query cannot be served. In both cases, the processor increments its
round number to implicitly notify all processors that made queries
at the current round. A querying processor is thus able to detect
whether its query was served or declined by testing whether its re-
ception cell contains a non-null value.

The implementation of the function acquire involves two
small complications. First, for efficiency, an idle processor should
discourage other idle processors from making queries to it. To that
end, an idle processor uses the auxiliary function block for mak-
ing a query to itself (leaving it unanswered), thereby preventing
other processors from making a query. Second, when an idle pro-
cessor makes a query to a busy processor, it needs to ensure that,
if its query gets overwritten by another query tagged with an out-
of-date round number, then it resends its query. Without such a
resend operation, the busy processor targeted would simply ignore
the out-of-date query and never increment its round number.

4.4 Our Join-Resolution Algorithm

Figure 7 illustrates the pseudo-code for the join resolution algo-
rithm. When a processor i completes executing a parent of a join
thread, it calls the function resolve join with the continuation

for that join thread. The continuation consists of the join thread and
an identification of the parent; side = LEFT = 0 means the left
parent and side = RIGHT = 1 means the right parent. We start
by checking the status field of the join for the parent that has just
been completed. If the status field is ACK, then the other parent has
completed and the join thread is ready for execution. We therefore
push the thread into the bottom of the processor i’s deque. If the
status field is not ACK, then the parent has finished first or concur-
rently with the other parent. In this case, we set the status field of
the join for this parent to READY and remove this continuation from
the watch list of the processor. We then wait until we receive an ACK
from the other processor watching the join or see that it is READY.
If we receive an ACK, then this parent has finished first and thus the
join has to wait for the other parent to complete. If this is the left
branch, however, we first transfer the watch list of processor i to
the other processor by making it available as part of the status field.
If we receive a READY, then both parents completed at the same
time and the processor that executed the left branch pushes the join
thread into its deque (breaking the tie in this way avoids transfering
the watch list.)

The function watch, which is periodically called by each pro-
cessor, acknowledges the receipt of READY messages from other
parents of the join that the processor i is watching, and transfers
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112 // Called to resolve a non -local join
113 void resolve_join(int i, cont c)
114 int b1 = c.branch
115 int b2 = 1 - b1
116 int* status = c.join.status
117 if status[b1] == ACK // Finish second.
118 deque[i]. push_bottom(c.a.join)
119 else // May have finished first
120 status[b1] = READY
121 watching[i]. remove(c)
122 while status[b2] == WORK
123 noop // May call watch here
124 match status[b2] with
125 | ACK:
126 if b1 == LEFT // Transfer watch list
127 set <cont >* s = watching[i].copy()
128 status[b1] = TRANSFER{s}
129 watching[i]. remove_all ()
130 | READY:
131 if b1 == LEFT // Resolve race to left
132 deque[i]. push_bottom(c.join)

133 // Called periodically by a busy processor
134 void watch(int i)
135 foreach (cont c) in watching[i]
136 int b1 = c.branch
137 int b2 = 1 - b1
138 int* status = c.join.status
139 if status[b2] == READY
140 // Other branch done
141 status[b1] = ACK
142 watching[i]. remove(c)
143 if b1 == LEFT
144 continue
145 // Reception of the watch list
146 while status[b2] == READY
147 noop // May call watch
148 match status[b2] with
149 | TRANSFER{s}:
150 watching[i]. add_multiple(s)

Figure 7. Join resolution algorithm.

watch lists when necessary. To this end, it checks, for each join,
whether the other parent is READY. If so, it acknowledges by writ-
ing ACK to the status field of the join, indicating that this parent will
be responsible for the join and stops watching the join. If this parent
in the right branch, it transfers the watch list from the left parent.

5. Correctness

To prove the correctness of our algorithms, we must first define
what correctness means. We do this by building a formal, dynamic
notion of a valid scheduler and then proving a correspondence
between this formal notion and our concrete algorithm. Full details
of the (12-page) proof appear in the appendix.

Assumptions. For the proof, we assume the X86-ATSO model
described in Section 3. In particular, we assume that there exists a
fixed (but unknown) upper bound ∆ on the time in which writes
are flushed to memory. We also make a (relatively weak) fairness
assumption concerning the scheduling of our threads by the oper-
ating system: if a concrete execution does not terminate, then every
processor takes infinitely many steps.

Proof Outline. We formalize a valid scheduler as an abstract
semantics. The abstract semantics that we consider is presented as a
reduction relation on the abstract state, which is an idealized view
of the parallel computation to be performed. More precisely, the
abstract state consists of a quadruple of the form (N,E,X,M).
The pair (N,E) corresponds to the computation DAG, in which
threads are represented as nodes and dependencies between threads
are represented as edges. The map X maps each processor to the
thread that it runs, if any. (Technically, X also includes the not-
yet-run code of the running threads.) The variable M describes the
application state. M is a concrete representation of memory that
follows the X86-ATSO model, but contains only the application
memory and not the data structures used by our scheduler.

The abstract semantics consists of transitions between abstract
states, written A −→ A′. There are four possible transitions from a
state (N,E,X,M). First, an idle processor (i.e. a processor bound
by X to no thread) may be associated a ready thread (i.e., a node
from N that has no incoming edge according to E). Second, a
processor may execute one atomic instruction from its assigned
thread; as a result, the application state M may be updated. The
remaining two transitions describe the case of a processor that
completes a thread and then becomes idle, after removing from
N the corresponding node and removing from E all associated

edges. Which of the two rules applies depends on whether the last
operation performed by the thread is a fork operation. Formal rules
for these transitions are given in the appendix.

The initial abstract state, called A0, is defined as ({n0}, ∅, ∅, ∅),
where n0 is the initial thread. This thread describes the entire
parallel computation in the sense that it will fork other threads,
which themselves fork other threads which eventually build the en-
tire computation DAG. When it terminates, an abstract execution
reaches a state of the form (∅, ∅, ∅,M), where M , the final appli-
cation state, typically contains the final result of the computation.
We use the abstract semantics as a model for all valid schedulers.

The concrete state corresponds to the state of our program code
(including scheduling code) at a given point in time. A concrete
state C includes the code pointer of each of the processors and
the content of all the shared memory. C includes the application
memory, which is identical to the M component of the abstract
state, as well as the data structures used by the scheduler such as
the set of allocated thread objects, the state of the deques, etc. We
project out the application memory component of C by writing
Mem(C). The initial concrete state, written C0(n0), describes a
state where all deques are empty, except that of one processor,
which holds the initial thread corresponding to the initial node n0.
Transitions on the concrete state, written C =⇒ C′, correspond to
execution of one atomic instruction by one of the processor or one
flush from a write buffer into shared memory.

Our theorem, stated below, has two parts. The first half (correct-
ness) asserts that if there is a reduction sequence for the concrete
execution that terminates on a memory state C, then there exists a
reduction sequence for the abstract state that reaches a state with
application memory Mem(C). The second part (liveness) asserts
that if the concrete execution may diverge, there there exists a re-
duction sequence for the abstract state that diverges as well.

Theorem 5.1 (Correctness and liveness). For any initial thread
node n0, and for any concrete state C in which all processors have
run out of threads and are running acquire,

C0(n0) =⇒
∗ C implies ({n0}, ∅, ∅, ∅) −→

∗ (∅, ∅, ∅,Mem(C))

C0(n0) =⇒
∞ implies ({n0}, ∅, ∅, ∅) −→

∞

Note that, in the particular case of a deterministic terminating
parallel program, our theorem implies that if the program reaches
some application state in the abstract semantics, then it also reaches
this application state in the concrete semantics.
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The proof of the correctness result is based on a simulation
lemma. This lemma shows that we are able to exhibit a relation
R between abstract and concrete states, such that any action taken
by the algorithm corresponds (in a way defined by the relation R)
to an abstract transition, that is, to an allowed action of a scheduler.

Lemma 5.2 (One-step simulation). There exists a relation R for
which the following implication holds: if C =⇒ C′ and RC A,
then there exists A′ such that A −→∗ A′ and RC′ A′.

The definition of R includes relations between the data struc-
tures of the algorithm code and the components of the abstract state,
as well as all the invariants of the concrete state that are required to
show that our algorithms are correct. These invariants are stated in
terms of the main memory and the state of the write buffers associ-
ated with the processors.

To make this proof tractable and more modular, we separate the
write buffers into one buffer per core and per memory location.
Since there are situations where the order between the writes is
crucial, we associate with each write a (logical) time-stamp. These
time-stamps, local to each processor, allow us to express in our
invariants comparisons between the times of writes by the same
processor to two different locations. In addition to Lemma 5.2, we
show that the flush of any write from a buffer to main memory
preserves all the invariants.

6. Efficiency

At a high level, the behavior of our load balancing algorithm is
very close to the compare-and-swap-based, receiver-initiated work
stealing algorithm with private deques [1], which has been proved
efficient. We believe that, under the assumption that the time taken
by write operations to reach the main memory (the time bounded
by ∆) follows a Poisson distribution, it would be possible to extend
that proof to prove a similar result for our work-stealing algorithm.
We find this assumption rather unrealistic, however. Without the
assumption, it seems that a different proof technique might be
needed. Setting up such proof is beyond the scope of this paper.

In this section, we discuss rather informally (mostly without
proof) the key aspects regarding the efficiency of our algorithms.
Following the presentation of the proof of the CAS-based algo-
rithm [1], we let τ denote the average delay between calls to the
functions communicate and watch. As established by the proof,
for parallel computations exhibiting a reasonable amount of par-
allelism, τ can be set to a large value without adversely affecting
performance. In particular, for most practical purposes, we can as-
sume τ to be at least an order of magnitude greater than ∆, which
is a rather small value.

Efficiency of the work stealing algorithm. A successful steal
operation involves sending a query, which takes no more than ∆,
waiting for the targeted processor to call communicate, which
takes τ on average, and receiving the answer, which takes no more
than ∆. Overall, instead of the τ bound on the successful steal
operations in the CAS-based algorithm [1], we now have a bound
of τ +2∆. This overhead, charged to the steals, is relatively small.
Successful steals always steal the top task in the target’s deque and
the stolen task starts executing immediately afterwards.

Unsuccessful steals are slightly more delicate to analyze, be-
cause of the stale queries, which may appear to slow down the load
balancing process. We argue that stale queries in fact do not harm
performance. When a processor increments its round number, this
number is seen by all other processors after a delay of ∆. Therefore,
after a 2∆ delay, a processor cannot receive stale queries, unless it
has incremented its round number in the meantime. In other words,
unless the processor goes idle or serves a valid query, after a period
of 2∆, we know that this processor can only receive valid queries.
Stale queries therefore can cause a small delay to successful steals.

When τ ≫ ∆, stale queries are even less likely. (Indeed, in our
experiments, we rarely observed stale queries; the few that were
observed could be due to swapping of workers by the operating
system.)

Efficiency of the join-resolution algorithm. Our join resolution
algorithm operates on watch lists in constant time, except for the
watchlist traversal operation. We therefore show that items con-
tained in all watchlists, summed over all P processors, does not
exceed P − 1. This result suffices to show that the relative, amor-
tized overhead associated with periodic checking of watchlists does
not exceed O(1/τ) per processor. The proof of this result, detailed
in Appendix C, relies on the intuition that the number of open inter-
processor joins does not exceed P−1. Intuitively, since the proces-
sors are always working on disjoint sub-DAGs of the computation
DAG, the paths in the DAG from these sub-DAGs down to the fi-
nal join form a reverse tree structure. This tree has P leaves (the
sub-DAGs), so it cannot have more than P −1 nodes of arity 2 (the
open join nodes).

7. Experiments

Because atomic read-modify-write operations are quite efficient on
current multicore computers, especially when they are rare as in the
state-of-the art implementations of work stealing, we do not expect
our algorithms to outperform state-of-the-art implementations on
today’s multicore computers. Our work is primarily motivated by
the theoretical question of whether atomic read-modify-write oper-
ations may be eliminated completely and with the possibility that
such operations may be absent from future hardware or may not be
efficient. Nevertheless, we feel that an experimental evaluation on
current hardware would be valuable to assess the implementabality
and practicality of the algorithms. We report some of our findings
here; the reader can find more details in the submitted appendix.

Implementation and experimental setup. We implemented our
algorithms in the context of a C++ library for multithreading and
evaluated them with a relatively broad range of benchmarks. Our
implementation creates one POSIX thread (i.e., pthread) for each
core available, and allows for dynamically selecting a scheduler of
our choice, leaving the rest of the code the same. As basis for com-
parison, we used two other schedulers: first, a publicly available im-
plementation of the CAS-based private-deques algorithm [1] and,
second, our own implementation of the Chase-Lev [9] algorithm. In
addition, we compare our work to Cilk Plus, which is an extension
of GCC that implements an algorithm that is similar to Chase-Lev.
Cilk Plus benefits from many years of careful engineering and sets
a high standard for the performance of our algorithm. The private-
deques algorithm, on which our algorithm is based, helps us isolate
the cost of our steal protocol and compare it to the cost of perform-
ing steals with CAS instructions. Our own implementation of the
Chase-Lev algorithm, even though it is not as optimized as Cilk
Plus’s implementation, helps us isolate the effect of the difference
between our benchmarks and Cilk bencmarks, when needed.

For the parallel executions, all schedulers produce exactly the
same computation DAG for all benchmarks, with the exception
of the sort benchmark, for which Cilk Plus is using a different
granularity control technique for the parallel loops (creating 8P
subtasks). For our measurements, we used a 32-core, 2.0GHz Intel
machine with 1Tb of RAM (our benchmarks use a fraction of
the available memory). We consider just 30 out of the 32 total
cores in order to reduce interference with the operating system.
The baseline performance is, for each benchmark, from the single-
core run time of the purely-sequential version of the code. To tame
the variance observed in the measures when running with 30 cores
(usually 5% to 10% noise), we averaged the measures over 20 runs.
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PD/CAS PD/CAS Our Our
WS WS+JR

(speedup) (sec) (%) (%)

matmul 26.1 2.1 -0.0 +2.2
cilksort (exptintseq) 19.1 1.3 -0.1 +14.3
cilksort (randintseq) 22.2 1.5 -0.2 +8.1
fib 27.5 3.7 -1.9 +0.9
matching (eggrid2d) 19.4 1.6 +5.4 +13.6
matching (egrlg) 19.4 4.1 +0.7 +7.7
matching (egrmat) 18.9 3.6 -0.7 +7.2
MIS (grid2d) 15.7 0.8 -11.2 +9.8
MIS (rlg) 18.8 1.9 -0.9 +13.4
MIS (rmat) 19.0 2.1 -1.6 +12.6
hull (plummer2d) 17.3 2.3 -3.5 -2.4
hull (uniform2d) 18.3 4.4 -0.4 +1.5
sort (exptseq) 23.3 1.6 -0.9 +0.7
sort (randdblseq) 24.4 2.2 -1.3 +1.3

Table 1. Comparison with private-deques algorithm with
CAS’s and fetch-and-add (smaller % is better).

Cilk Cilk Chase Our Our
Plus Plus Lev WS WS+JR

(speedup) (sec) (%) (%) (%)

matmul 23.3 2.4 +7.0 -10.8 -8.8
cilksort (exptintseq) 20.1 1.2 +7.1 +5.4 +20.5
cilksort (randintseq) 23.0 1.4 +4.6 +3.5 +12.1
fib 25.7 4.0 -5.6 -8.6 -5.9
matching (eggrid2d) 17.6 1.7 +7.2 -4.1 +3.4
matching (egrlg) 19.7 4.0 +9.5 +2.4 +9.4
matching (egrmat) 18.5 3.6 -1.8 -2.8 +5.0
MIS (grid2d) 16.8 0.7 +13.2 -5.2 +17.3
MIS (rlg) 18.2 2.0 +3.0 -3.9 +9.9
MIS (rmat) 17.3 2.3 +6.1 -10.4 +2.4
hull (plummer2d) 19.8 2.0 +8.0 +10.6 +11.8
hull (uniform2d) 18.9 4.2 +3.6 +2.8 +4.8
sort (exptseq) 15.0 2.5 -38.5 -36.0 -35.0
sort (randdblseq) 15.0 3.5 -40.1 -39.2 -37.7

Table 2. Comparison with Cilk Plus and Chase Lev (smaller % is better).

Benchmarks. As benchmark, we consider three classic programs
ported from Cilk and a number of programs from Blelloch et al.’s
recent problem-based benchmark suite (PBBS) [3]. Cilk bench-
marks include cilksort, which is based on a parallel version of
merge-sort; matmul, which multiplies two dense matrices in place
using a cache-efficient, divide-and-conquer algorithm [16]; and fi-
bonacci, which computes Fibonacci number using the exponen-
tial algorithm. (This last benchmark is useful to perform analyses
without observing interference from the memory.) PBBS bench-
marks include internally-deterministic parallel programs targeting
Cilk: matching, which computes the maximal matching of an undi-
rected graph; MIS, which computes the maximal independent set of
an undirected graph; hull, which computes a 2-dimensional convex
hull; and sample-sort, which is a low-depth, cache-efficient version
of the classic sample sort algorithm. Note that two of the bench-
mark programs, namely matching and MIS, make use of atomic
CAS instructions [3], but the others do not.

Terminology. We use the following terminology: ‘‘Our WS’’
refers to our work-stealing algorithm that uses no atomic read-
modify-write instructions for stealing work but uses fetch-and-
add operations for join resolution; ‘‘Our JR’’ refers to our join-
resolution algorithm with no atomic read-modify-write operations.
We use our join-resolution algorithm only with our work-stealing
algorithm. ‘‘Our WS+JR’’ refers to this algorithm. ‘‘PD/CAS’’
refers to the private-deques algorithm with CAS-based steals.
‘‘Chase Lev’’ refers to our implementation of the Chase-Lev al-
gorithm. ‘‘Cilk Plus’’ refers to Cilk Plus. All these approaches
( ‘‘PD/CAS’’, ‘‘Chase Lev’’, and ‘‘Cilk Plus’’ use the op-
timized fetch-and-add based join resolution (Section 2).

Work Stealing. To understand the overheads of our work-stealing
algorithm (described in Section 4.3), we can compare its perfor-
mance to the private-deques algorithm with CAS’s, which differs
from our algorithm only in how the steals are performed. Table 1
reports on the absolute speedups of these algorithms and on the
the relative differences between the three. Our algorithm is consis-
tently the same or slightly faster, except for one case where it is
5% slower. Our algorithm is on average 1.2% faster. These mea-
surements show that even on current architectures, where CAS op-
erations are cheap, there is no measurable overhead to eliminating
them from work stealing.

Table 2 gives the speedup and absolute run time of Cilk Plus and
gives the relative value of the run time of the other algorithms: the
Chase-Lev algorithm, our work-stealing algorithm, and our work-

stealing algorithm with our join-resolution algorithm. Compared
with Cilk Plus, our work-stealing algorithm (the second column
from the last) is in some case faster and in some cases slower, but
never more than 10% slower. Compared to Chase Lev, our algo-
rithm is almost always faster—on average, 6.9% and 5.6% faster
compared to Cilk and Chase Lev respectively. For sorting bench-
marks sort, the run time of Cilk Plus is quite poor. As measure-
ments with Chase-Lev confirms, this is due to the different treat-
ment in Cilk Plus of the granularity in parallel loops. These mea-
surements indicate that our work-stealing algorithm is competitive
with the state of the art CAS-based work-stealing algorithms.

Our join-resolution algorithm. As can be seen in Tables 1 and 2,
by comparing the last two columns, our atomic-read-modify-write-
free join resolution algorithm is slower, by at most 15% but usually
less than 5%, than the optimized fetch-and-add algorithm for join
resolution employed by the other schedulers. To understand why
it is slower, we examined in more detail the statistics of the worst
case, namely cilksort(exptintseq). From the statistics, we were able
to rule out factors such as higher latency or larger total-parallel-
work. Few potential factors remain. One is the overhead of main-
taining watch lists. These findings suggest that 1) join resolution
with atomic read-modify-write operations performs well on cur-
rent architectures, and 2) that join resolution without atomic read-
modify-write instructions can be noticeably slower, which might
become an important issue in future, larger-scale architectures.

8. Related work

While there is a lot of work on scheduling for parallel computations
on hardware shared memory machines, all of the previous work
relies on synchronization operations such as locks, memory fences,
and atomic read-modify-write operations [2, 5, 9, 16, 31]. Some
research has looked into eliminating memory fences, sometimes by
weakening the correctness guarantees of work stealing [29], some
in the general case [14, 15, 18, 20, 32, 34]. Recent work shows
that memory fences can be eliminated from work stealing without
detrimentally effecting efficiency [1].

The cost of synchronization in concurrent algorithms has been
an important subject of study. Non-blocking algorithms and data
structures [19] disallow the use of locks but rely instead on atomic
read-modify-write operations such as compare-and-swap. The al-
gorithms that we propose appear to be non-blocking due to the ab-
sence of any locks and other synchronization operations but they
are not wait-free because an idle worker can wait for another busy
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worker indefinitely if that worker is suspended by the operating sys-
tem. This problem, however, appears not too difficult to remedy.

To eliminate memory fences and atomic read-modify-write
operations, our algorithms use explicit communication between
processors. Our algorithms therefore have some similarities to
distributed algorithms, which communicate by message pass-
ing. There has been much work on distributed scheduling al-
gorithms considering both the receiver- and sender-initiated ap-
proaches [1, 10, 11, 13, 30]. In the sender-initiated approach, busy
processors periodically share work with other idle (low-load) pro-
cessors; in the receiver-initiated approach idle (low-load) proces-
sors demand work from busy (high-load) processors. Both ap-
proaches perform quite well though certain specifics regarding
delays and system load can make one preferable over the other.
Our algorithms differ from distributed algorithms because they use
shared memory for storing the shared state (e.g., threads) between
processors. In addition, for efficient steals, our work-stealing al-
gorithm allows certain data races; for efficient join resolutions, it
carefully creates and manages message channels.

9. Conclusion

This paper shows that it is possible to perform work-stealing and
join-resolution without atomic read-modify-write operations and
memory fences. In our algorithms, as in distributed algorithms, pro-
cessors communicate explicitly. Unlike in distributed algorithms,
our algorithms take advantage of shared memory by, for example,
sharing state and permitting and taking advantage of data races. Our
algorithms seem practically efficient, and we informally reason,
but do not prove, that they are efficient in theory. Such proofs, left
to future work, seem non-trivial especially because of the partial-
synchrony-like assumptions required to account for the effects of
the weak memory model.
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A. Experiments

Detailed description of test machine. Our test machine hosts four eight-core Intel Xeon X7550 [23] chips with each core running at
2.0GHz. Each core has 32Kb each of L1 instruction and data cache and 256 Kb of L2 cache. Each chip has an 18Mb L3 cache that is shared
by all eight cores. The system has 1Tb of RAM and runs Debian Linux (kernel version 3.2.21.1.amd64-smp). We consider just 30 out of the
32 total cores in order to reduce interference with the operating system. All of our code is compiled by the CilkPlus GCC (v4.8.0 20120625)
with the -O2 option.

Thread granularity. For simplicity, we make the assumption that the granularity of threads is controlled appropriately, so that it suffices to
check between every two threads whether the time has come to call the communication functions. (Otherwise, local interrupts can be used,
as described in [1].)

Input data. The input sizes of the benchmarks are as follows: cilksort: random and exponentially-distributed, 240m integers, matmul:
square matrix of size 3500, fibonacci: n = 50, matching and MIS: 3-d grid with 140m nodes, random graph with 500m nodes and 5b edges,
and rMat graph with 500m nodes and 5b edges, hull: uniform and plummer with 800m points, sample-sort: random and exponentially-
distributed, 240m doubles.

In-depth analysis of our results. By comparing with the performance of the Chase-Lev algorithm, and by investigating detailed statistics
on the runs, we can identify several causes of the difference in performance of our algorithm with respect to Chase-Lev and Cilk Plus.
Tables 8 and 9, and Table 10 show the three key statistics: number of steals, total parallel work, and relative idle time. Total parallel work is
measured by summing the running times of all the sequentialized leaves of the call tree. The statistics show that the two algorithms which use
concurrent deques achieve a slightly better utilization of the cores by performing quicker steals. However, better utilization does not always
pay off because in a few cases there is a corresponding increase in the number of steals, cache misses, and in a few cases CAS conflicts.
We see the impact of the cache misses and CAS conflicts by examining the total parallel work measures, which show that, for example
for matching(eggrid2d), poorer utilization correlates with less total parallel work. In this case, better utilization of cores effectively slows
down the application by creating a bottleneck on the memory. Another cause of their relative poor performance is that the concurrent deques
algorithms have to pay for the cost of the fence, which we have measured, when running with a single processor, to represent almost 5% of
overhead.

Our WS Our WS Chase PD/CAS
+ Our JP Lev

(nb. steals) (%) (%) (%)

matmul 2199 +0.9 +1.8 -3.1
cilksort (exptintseq) 3169 -13.0 +2.6 -1.3
cilksort (randintseq) 3127 -9.4 +4.8 -7.4
fib 833 -14.1 +7.8 -7.3
matching (eggrid2d) 63449 -25.7 +15.4 +2.9
matching (egrlg) 74326 -21.2 +13.4 +2.1
matching (egrmat) 74118 -21.5 +13.3 +2.5
MIS (grid2d) 31328 -29.5 +13.9 +0.4
MIS (rlg) 40223 -27.0 +13.6 +3.1
MIS (rmat) 40840 -26.3 +12.5 +1.7
hull (plummer2d) 8780 -21.4 +8.9 +2.9
hull (uniform2d) 10915 -16.0 +5.8 -0.7
sort (exptseq) 3852 -14.1 +10.5 +3.3
sort (randdblseq) 3953 -13.4 +9.1 -1.8

Figure 8. Number of steals.

Our WS Our WS Chase PD/CAS
+ Our JP Lev

(total seq.) (%) (%) (%)

matmul 64.3 -2.7 +17.4 -1.9
cilksort (exptintseq) 36.1 -0.4 -0.5 -0.9
cilksort (randintseq) 41.5 +0.6 -0.8 -0.2
fib 107.0 -0.0 -1.0 +0.9
matching (eggrid2d) 42.0 -2.6 +9.8 +2.4
matching (egrlg) 108.0 -0.0 +25.7 -0.7
matching (egrmat) 92.8 -0.7 +11.6 +7.4
MIS (grid2d) 16.0 -2.0 +13.4 +0.2
MIS (rlg) 50.5 -7.8 -1.7 -9.7
MIS (rmat) 53.0 -2.2 +11.9 +5.7
hull (plummer2d) 28.5 -0.4 -2.4 +0.9
hull (uniform2d) 65.7 -2.1 -0.8 -1.8
sort (exptseq) 22.9 -0.5 +0.0 -0.6
sort (randdblseq) 37.0 +0.5 -0.4 -0.3

Figure 9. Total parallel work (i.e., total time spent in processing the sequentialized leaves of the computation tree; smaller % is better).
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Our WS Our WS Chase PD/CAS
+ Our JP Lev

(rel. idle %) (%) (%) (%)

matmul 0 +12.6 -77.6 -8.9
cilksort (exptintseq) 1 -32.1 -89.2 -32.1
cilksort (randintseq) 0 +34.2 -81.8 -14.0
fib 0 +73.7 -67.3 +79.0
matching (eggrid2d) 5 +82.0 -73.8 -3.3
matching (egrlg) 3 +81.4 -80.4 +5.6
matching (egrmat) 3 +93.8 -77.3 +2.6
MIS (grid2d) 5 +104.2 -71.2 -4.4
MIS (rlg) 2 +121.4 -76.5 +2.1
MIS (rmat) 2 +104.4 -78.7 -4.2
hull (plummer2d) 6 +4.1 -14.2 +25.7
hull (uniform2d) 1 +29.4 -28.0 -14.9
sort (exptseq) 2 +3.1 -63.0 +37.5
sort (randdblseq) 1 +1.7 -66.6 +47.7

Figure 10. Relative idle time (smaller % is better).

B. Correctness proof

B.1 Overview of the proof

The structure of the proof is as follows. First, we describe the abstract semantics, which gives a high-level description, in terms of nodes and
edges, of valid scheduling behavior. Second, we describe the relation between the concrete semantics, which corresponds to the pseudo-code
given in the paper, and the abstract semantics. This relation captures in particular all the invariants of work stealing executions. The invariants
on the concrete state include constraints on the private and shared variables, including contents of the buffers for shared variables. Then, we
prove that the load balancing algorithm and join resolution algorithm are correct in that they preserve the relation between the concrete state
and an appropriate abstract state. This shows that the concrete semantics never displays behavior that is invalid according to our abstract
definition. We also argue for the liveness of our entire scheduling algorithm. Putting all the pieces together, we are able to conclude that
Theorem 5.1 is correct.

In order to show Lemma 5.2, we must show that the invariants we define hold under any transition of the concrete state. These transitions
are:

1. One processor executes any atomic instruction from the scheduler or program code.

2. The last item in one processor’s write buffer is flushed to main memory. An invariant that holds under this kind of transition is called
stable.

In order to prove that the invariants are stable under flush operations, we present a technique to reason modularly about the x86-TSO
shared memory. We decompose the store buffer of each processor as a collection of store buffers, one per memory cell. When needed (and
only when needed) we state constraints relating the times at which a same processor has pushed two different writes in its store buffer.

Notation. For a memory location x, we write X the value of this location in the shared memory, and we write X̄i the list of values that
correspond to the write requests stored in the buffer of processor i for the location x. We follow the convention that the more recent request
is at the head of the list. Moreover, for convenience, we introduce two other pieces of notation related to shared memory locations. We write
~Xi for the concatenation of the list X̄i with the value X . We write Xi the value at the head of the list ~Xi. This value corresponds exactly
to the value value returned when processor i reads at location x. Finally, we introduce notation to refer to local (non-shared) variables in the
pseudocode, when the processor whose stack contains the variable is clear from context. The notation xn refers to the value of variable x at
line n in the pseudocode.

Outline. We first present formal definitions of abstract and concrete states. Abstract states and their transitions are defined in Appendix B.2.
The defintion of abstract states is extended with additional information and invariants relating to work stealing in Appendix B.3. The relation
R between abstract and concrete states is defined in Appendix B.4. Lemma 5.2, which states that all concrete transitions preserve this
relation, is then proved in stages. Appendix B.5 proves the stability of invariants related to the load balancing algorithm, and proves that all
invariants hold under atomic transitions in the load balancing algorithm. Appendix B.6 gives similar proofs for the join resolution algorithm.
Appendix B.7 puts the pieces together to prove Lemma 5.2. Liveness is proven in Appendix B.8, which sets up the proof of Theorem 5.1 in
Appendix B.9

B.2 Abstract semantics

We first describe an abstract semantics which describes abstractly what we consider to be valid behavior of any scheduler (not necessarily a
work-stealing scheduler.) An abstract state gives the state of the abstract scheduler at any point in time. The abstract semantics describes how
valid abstract states transition to one another.

Definition 1 (Representation of the abstract state). An abstract state A is represented as a tuple (N,E,X,M) and consists of:

− N : a set of nodes, representing threads to be scheduled.

− E: a set of edges (n1, n2), where n1, n2 ∈ N . If (n1, n2) ∈ E, then the thread corresponding to n2 depends on n1 and cannot be
scheduled until n1 completes.

− X: a map that binds a processor id either to NO CODE or to a pair (n, k) where n ∈ N and k describes the remaining computation to be
performed.
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Figure 11. An example of an abstract state

START

X[i] = NO CODE

n ready with respect to (N,E,X,M)

X ′[i] = (n,BodyOf (n))

(N,E,X,M) −→ (N,E,X ′,M)

STEP

X[i] = (n, k)
Step(k,M) = (k′,M ′)

X ′[i] = (n, k′)

(N,E,X,M) −→ (N,E,X ′,M ′)

FORK

X[i] = (n, fork(n1, n2, nj))
X ′[i] = NO CODE

N ′ = N \ {n} ⊎ {n1, n2, nj}
E1 = replace n by nj everwhere in E

E′ = E1 ∪ {(n1, nj), (n2, nj)}

(N,E,X,M) −→ (N ′, E′, X ′,M)

END

X[i] = (n,noop)
X ′[i] = NO CODE

N ′ = N \ {n}

E′ = {(n1, n2) ∈ E | n1 6= n}

(N,E,X,M) −→ (N ′, E′, X ′,M)

Figure 12. Transitions for abstract states
− M : the abstract shared memory (under the x86-TSO weak-memory model).

In future definitions, we let n range over nodes, e range over edges, and i over processor identifiers.
The abstract state allows us to determine certain properties of threads, which will be defined here.

Definition 2 (Running nodes). In a state (N,E,X,M), a node n ∈ N is running if there exist i and k such that X[i] = (n, k).

Definition 3 (Ready nodes). In a state (N,E,X,M), a node n ∈ N is ready if n has no incoming edges, that is, ∀n′ ∈ N. (n′, n) /∈ E.

Figure 11 represents an abstract state as a graph. This graph appears to have the structure of a tree, but with edges reversed (pointing
toward the root.) Indeed, Lemma B.1 will show this to be the case in general. The “leaves” of the reverse tree (nodes with no incoming edges)
are the ready nodes. Certain ready nodes n are labelled with a processor i such that X[i] = (n, k) for some k. These are the running nodes.

We now define abstract transitions, which complete the abstract semantics by providing a set of rules by which the scheduler can change
from one abstract state to another.

Definition 4 (Abstract transitions). Figure 12 shows the definition of the relation A −→ A′, which describes the allowed transitions for
abstract states. Compositions of these transition rules capture all of the behaviors which we allow of our abstract scheduler. The auxiliary
function Step executes one (atomic) instruction from the code, returning the new state of abstract memory and the remaining code. The
auxiliary function BodyOf returns the code associated with a node. Rule START starts executing a ready node n on an idle processor. Rule
STEP performs an atomic step in a running node and updates the continuation and memory. Rule FORK removes a forking node, replacing it
with nodes n1, n2 and nj , where nj depends on both n1 and n2 and nj inherits any outgoing edges of n. Rule END removes a running node
n without forking.

Definition 5 (Accessible abstract state). An abstract state A is accessible if it can be reached by a sequence of transitions from an abstract
initial state, that is, if ({n0}, ∅, ∅, ∅) −→

∗ A holds for some n0.
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We can now prove by induction on the relation that the graph (N,E) maintains the structure of a reverse tree, as described informally
above.

Lemma B.1 (Reverse tree). If (N,E,X,M) is an accessible abstract state, then it forms a reverse tree in the sense that (N,ER), where

ER = {(n2, n1) | (n1, n2) ∈ E}, is a tree with nodes of arity at most 2.

Proof. By induction on the reduction sequence, maintaining the property that only ready nodes can be running (i.e., assigned by X). We
consider each of the rules that may apply.

• Rule START: does not change the graph (N,E), and ensures that the assigned thread is ready.

• Rule STEP: does not change the graph (N,E), and thread not change the set of running threads.

• Rule FORK: replacing the node n by nj in the tree preserves its structure; adding two new nodes n1 and n2 with associated edges pointing
to nj also preserves the tree structure.

• Rule END: removes a ready node and its associated edges; because the node is ready, it corresponds to a leaf, so removing it preserves
the reverse tree structure.

B.3 Work stealing states

The definition of the abstract scheduler enforces rules that must hold for any valid scheduler (for example, processors may execute only
one thread at a time and may only start ready threads) but makes no mention of the scheduling mechanism. In particular, a work-stealing
scheduler imposes additional invariants on the state. We extend abstract states with additional information relating to work stealing, and
strengthen the induction hypothesis of the proof with the additional work-stealing invariants. We refer to these extended abstract states as
work stealing states.

The state of a work-stealing scheduler must include an assignment of ready threads to processors (the threads in each processor’s deque).
It also includes information about the threads on which a non-ready thread depends (its parents.) Since these parent threads arose from a
forking thread, we refer to these as the branches of a join, and label them as the left and right branches, keeping with prior literature on work
stealing. The right branch may be stolen by another processor, resulting in a remote join or may remain at the original processor in a local
join. For reasons relating to the proof, we add an additional designation to represent single branches of join threads which currently have only
one parent. If the right branch of a remote join finished before the left, we will re-designate the left branch as a single branch. For technical
reasons, we need not do this in the case of a left branch finishing first. In a local join, the left branch will always finish first because it is
pushed onto the queue first.

We also assign some nodes an owner, if it is clear that the node has exactly one processor “responsible for it.” This includes nodes in a
processor’s deque, but also non-ready nodes both of whose parents are owned by the same processor.

The following definitions formalize branch and ownership labeling.

Definition 6 (Branch labeling). In an accessible state (N,E,X,M), a branch labeling is a map that binds each edge e ∈ E to a value from
the set {LEFT,RIGHT, SINGLE}, in such a way that the following two conditions are satisfied:

• if Branch(n1, nj) = SINGLE, then the edge (n1, nj) must be the only incoming edge of nj ,

• if Branch(n1, nj) = LEFT, then there must exist an edge (n2, nj) ∈ E such that Branch(n2, nj) = RIGHT,

• if Branch(n1, nj) = RIGHT, and if there exists another edge (n2, nj) ∈ E, then Branch(n2, nj) = LEFT.

Note: if a branch is tagged LEFT, then the corresponding right branch must belong to the tree; however, if a branch is tagged RIGHT, then
the corresponding left branch might be absent. If (n1, n2) ∈ E and Branch(n1, n2) = b, we will sometimes write (n1, n2, b) ∈ E.

Definition 7 (Ownership labeling). In an accessible state (N,E,X,M), an ownership labeling is a map that binds each node in N
to either a processor id or to the constant NO OWNER, in such a way that, if we call this map Owner and define OwnedBy(i) as
{n ∈ N | Owner(n) = i}, the following three conditions are satisfied:

• no leaf node n has Owner(n) = NO OWNER.

• for every processor i, the set of nodes in OwnedBy(i) and the edges between them form a subtree of (N,E).
• if i 6= j then the subtrees OwnedBy(i) and OwnedBy(j) are completely disjoint.

Figure 13 shows the work stealing information for the tree of Figure 11. Each edge is labeled with its branch labeling, and the OwnedBy(i)
sets are circled. Note that the circled sets of nodes and the edges between them form subtrees of the large tree.

Definition 8 (Work stealing state). We say that A is a work stealing state if A is an accessible abstract state such that there exists a branch
labeling Branch and an ownership labeling Owner for this state A. In this case, we write Workstealing(A,Branch,Owner).

B.4 Relation between abstract and concrete states

The following definitions operate on the abstract state and are helpful to characterize the parts of the abstract state corresponding to the
content of certain data structures involved in the concrete states.

Definition 9 (Deque). In a work stealing state (A,Branch,Owner), we define Deque(i) to be the list of leaf nodes in the subtree
OwnedBy(i) listed in the order in which they appear in the tree, from left to right.

Recall that open remote joins must be watched by the two processors responsible for resolving that join. That is, if (n1, n, b1), (n2, n, b2) ∈
E, then nj is a join thread that must be watched by two processors. Since each processor must know whether it is watching the left or right
branch of the join, it is sometimes convenient to instead talk about processors watching edges. This hints at part of the relation between
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Figure 13. An example of a work-stealing state
the abstract and concrete states: while nodes in the abstract state correspond to concrete threads, edges in the abstract state correspond to
continuations. Since concrete watch lists contain continuations, abstract watch lists will contain edges. That is, one processor, i, will watch
(n1, n, b1) and another, j, will watch (n2, n, b2). We write Watcher(n1) = i and (n1, n, b1) ∈ Watchlist(i), and similarly for n2 and j.
These notations are defined below.

Definition 10 (Watcher processor). In a work stealing state (A,Branch,Owner), we define Watcher to be a map that binds each node
n ∈ N to the identifier of the owner of the leftmost leaf accessible from n. The formal definition is by recursion on the tree. If Owner(n)
is equal to some processor id i (this is always the case when n is a leaf) then we let Watcher(n) = i. Otherwise, if Owner(n) is equal to
NO OWNER then we let Watcher(n) = Watcher(n′) where n′ is the left parent of n if it exists, or the unique parent otherwise.

Definition 11 (Watch list). In a work stealing state (A,Branch,Owner), we define Watchlist to be a map that binds each processor to the
set of edges that it is responsible for watching periodically. Intuitively, Watchlist(i) corresponds to the edges whose source node is owned
by no processor but watched by i, and which are not the only incoming edge into the destination node. Formally,

Watchlist(i) = {(nj , b1) | ∃n1, n2, b1, b2. n1 6= n2

∧ Owner(nj) = NO OWNER

∧ (n1, nj , b1) ∈ E
∧ (n2, nj , b2) ∈ E
∧ i = Watcher(n1)

}

In Figure 14, the running example tree from the previous subsections is annotated with information relating to deques and watchers. The
deque of each processor is circled. Note that the running thread is the leftmost thread of each deque and is specially marked. For each open
remote join, its two incoming edges are marked with the number of the processor watching that continuation. In all cases, this is the owner
of the leftmost leaf of the subtree rooted at the edge’s source node.

We are now ready to define the relation R that relates an abstract state with a concrete state. This relation is built from a large number
of invariants, some enforcing properties of either the abstract or concrete states, and some enforcing relations between them. Intuitively,
the relation need only ensure that the data structures of the concrete state (the deques of the processors, the dependencies recorded in the
continuation structures, etc.) reflect the structure of the abstract state. As long as this relation holds, the scheduler can be considered valid.

However, we must include more information in the relation in order to ensure that it is preserved over concrete transitions. This is similar
to strengthening the induction hypothesis of an inductive proof. In particular, we require that the abstract state is a work-stealing state, and
include in the large relation R some sub-relations that mention the branch and ownership assignments and the corresponding data structures
of the concrete state.

Definition 12 (Relation between abstract and concrete states). Given an abstract state A and a concrete state C, the relation RAC holds
if there exists Branch and Owner such that (A,Branch,Owner) is a work stealing state, if there exists a bijection φ between nodes of
the concrete state A and thread objects allocated in the concrete state C, and if all the invariants listed below are true. In the statement of
these invariants, we let (N,E,X,M) be the components of the abstract state A. Moreover, we let Di denote the array of deque objects
(deque[i]) let Wi denote the array of watch lists (watchlist[i]), let Ki denote the array of current continuations (cur cont[i]), let
Mem(C) denote the concrete application state, all of which are allocated in the concrete state C. Li denotes the next line of code (numbered
based on the psuedocode figures presented in this paper) to be executed by processor i. We denote continuations by {t, b}, where t is the
continuation task and b is the branch.

We introduce the invariants by category, starting each category with an informal description of those invariants.
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Figure 14. The example annotated with deques and watcher processors labeled
• Deques: The abstract set Deque(i) matches the concrete deque Di, using φ to map nodes to threads. If a thread is currently running or

being stolen, it will appear in the abstract state but not the concrete deque. These threads are concatenated to the deque to complete the
bijection.

− RD: For each processor i, the list obtained by mapping φ over Deque(i) is equal to the concatenation of RunningThread(i) and Di
i

(items taken from the bottom of the deque to the top) and MigratingThread(i), where MigratingThread is defined in the load balancing
protocol and where RunningThread(i) is the singleton list made of φ(n) if X[i] = (n, k) for some k, is the singleton made of t41 if
Li ∈ [42; 43] (between pop and run), and is the empty list otherwise.

• Threads: The bijection φ correctly maps nodes and edges of the abstract state to corresponding concrete structures: the run method of
the thread is preserved (i.e. the node and thread have the same code), and the continuation of φ(n) corresponds to the outgoing edge of
n.

− RT1
: The bijection φ maps nodes to thread objects with corresponding run methods, in the sense that for any n ∈ N , we have

BodyOf (n) = φ(n).run.

− RT2
: The continuations of the threads implement the edges of the abstract state in the following sense: for any n ∈ N , if (n, n′) ∈ E,

then φ(n).conti = {φ(n′),Branch(n, n′)}, where this equality holds in the eye of processor i if Owner(n) is i, and holds in the eye of
all processors if Owner(n) is NO OWNER.

• Current continuations: For all processors i, the continuation of the thread assigned to i is correctly stored in the current-continuation
variable of i, in the following sense:

− RC1
: If X[i] = (n, k) for some k 6= fork(·) or if Li ∈ [45, 47] (beginning of the fork function), then Ki

i = φ(n).conti.

− RC2
: If X[i] = NO CODE, then Ki

i = NULL ∨ Li = 43 (after assigning the current continuation but before running the run method).

• Running threads: For all processors i, the thread assigned to i in the abstract state matches that running on i in the concrete state, in the
following sense:

− RX1
: Li ∈ φ(n).run for some n ∈ N ⇒ X[i] = (n, k) for some k 6= noop.

− RX2
: Li ∈ [45, 53] ⇒ X[i] = (n, fork(n1, n2, nj)) for some n, n1, n2, nj such that t145 = φ(n1), t245 = φ(n2), tj45 = φ(nj).

− RX3
: otherwise, X[i] = NO CODE.

− RX4
: X[i] = (n, k) for some n, k 6= noop ⇒ Li ∈ φ(n).run. Remark: by invariant RT1

, the code φ(n).run corresponds to k.

− RX5
: X[i] = (n,noop) ⇒ Li ∈ {44} ∪ [55, 132] (running the handle cont function) Remark: X[i] could also be NO CODE when

Li is in this range.

− RX6
: X[i] = (n, fork(n1, n2, nj)) for some n, n1, n2, nj ⇒ Li ∈ [45, 53] ∧ t145 = φ(n1), t245 = φ(n2), tj45 = φ(nj) (running the

fork function with matching arguments.)

• Application State: The application state (which is stored as a concrete representation of memory even in the abstract state) must match
in A and C.

− RM : M = Mem(C)

• Watchlists: The concrete watch list for each processor i contains all and only the continuations corresponding to edges in Watchlist(i),
except when watch lists are being transferred. We let Wltransi denote a watch list being transferred to i and enforce that all of the
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continuations in this watch list belong in the abstract watch list of i. We also define the shorthand W (i, n, b) to indicate that (n, nj , b) is
in i’s abstract watch list for some nj . Formally:

Let W (i, n, b) = ∃nj .(n, nj , b) ∈ Watchlist(i) ∧ φ(n).status[b]i = WORK ∧ ¬Bi,φ(n) (the property B will be defined in the load
balancing section).

Let Wltransi = if Li ∈ [141, 150]∧t.status[b2]i = TRANSFER{S} then S else ∅}, where i is the processor that “owns” t.status[b2].
This concept will be defined formally in the proof of the join resolution protocol.
Let Wlinc = {87, 103, 121, 142}. These are lines of code at which the state of the watch lists may be inconsistent.

− RW1
: For all n, {φ(n), b} ∈ Wi ⇒ W (i, n, b) ∨ Li ∈ Wlinc.

− RW2
: W (i, n, b) ⇒ {φ(n), b} ∈ Wi ∨ {φ(n), b} ∈ Wltransi.

− RW3
: {φ(n), b} ∈ Wltransi ⇒ W (i, n, b).

The above are the main invariants relating the abstract and concrete states. At any point in time, they are sufficient to hold that the abstract
state is a valid model of the concrete state of the scheduler. However, the proofs that the load balancing and join resolution protocols maintain
the relation will require additional invariants, which will be introduced in the appropriate sections of the proof.

• Load balancing invariants: See Appendix B.5.

• Join resolution invariants: See Appendix B.6.

B.5 Correctness of the load balancing algorithm

Notation We introduce single-letter variables to represent the variables from the code. R denotes the round numbers (round). Q denotes
the query fields (in query). T denotes the reception fields (received). We subscript these variables with the index of a processor, and
we use the notation for describing the contents of store buffers and of the shared memory cell associated with the variables. We extend the

notation xn from the previous section, and use the notation ji72, ri73 and ti100 to refer to the variables in the stack of processor i when these
variables are in its execution scope (these are the three specific variables that will be of special important to the proof, and the line numbers
refer to the lines on which each variable is assigned the relevant value.)

Definition 13 (Load balancing auxiliarly variables). We introduce several auxiliary definitions to help in stating the invariants.

Ai ≡ Li ∈ [71; 90]
(i is in the main loop of the acquire function)

Bi ≡ Ai ∧ (∀k 6= i. T̄ k
i = nil) ∧ (T̄ i

i = NULL :: nil ∨ (T̄ i
i = nil ∧ Ti = NULL))

(i has set its reception field and is in the main loop of acquire)

Ci,j,r ≡ Li ∈ [78; 82] ∧ j = ji72 ∧ r = ri73 ≤ Rj
j

(i has made an answer to j at round r and is waiting for an answer)

Ei,j,t ≡ Li ∈ [78; 87] ∧ i 6= j ∧ j = ji72 ∧ (∀k 6= j. T̄ k
i = nil) ∧ ((T̄ j

i = t :: nil ∧ H) ∨ (T̄ j
i = nil ∧ Ti = t))

where H asserts that the last write in T̄ j
i occured before the write of any value greater than ri73 in ~Rj

j

(i has obtained the thread t from j but has not yet pushed it its in deque)

Ei ≡ ∃j, t. Ei,j,t

Definition 14 (Migrating threads). We define MigratingThread to be a map that binds each processor to a list of length zero or one,
containing the thread that has just been popped from the deque and not yet sent, or the thread has just been received and not yet pushed to
the deque. More precisely,

− MigratingThread(i) is the singleton list made of ti100 if Li ∈ [101; 103] (i has just popped a thread and not yet sent it),

− MigratingThread(i) is the singleton list made of t if Ei,j,t is true (i has just obtained a thread t from j but has not yet pushed it to its
deque),

− MigratingThread(i) is the empty list otherwise.

Remark: this definition asserts that the ownership transfer (in the sense of the ownership labeling Owner ) happens at the moment where the
sender writes the thread pointer into the reception field of the target.

We now define several invariants which are part of R, but only relate to the load balancing protocol.

Definition 15 (Load balancing Invariants). The following invariants are satisfied at any time during the execution.
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IA1
≡ If Ai is false then ∀k. T̄ i

k = nil.

IA2
≡ If Ai is false and if ~Qi

i contains a query with id i, then round number of this query is less than Ri
i.

IR1
≡ ∀j 6= i. R̄i

j = nil (meaning that processors update only their own round numbers).

IR2
≡ ~Ri

i is a list of stricly decreasing values (meaning that round numbers only increase through time).

IQ1
≡ All the queries in Q̄i

j have an id equal to i (meaning that queries always contain the id of their sender).

IQ2
≡ All the queries in ~Qi

j have a round number no greater than Rj
j ,

with one exception: the case where Lj = 111 (block function) and the query has round number Rj
j + 1.

IQ3
≡ If a query in ~Qk

j has a round number equal to Rj
j and an id i with i 6= j, then Ci,j,r is true for r = Rj

j

and this query is the last write in ~Qi
j and it occured after the last write in T̄ i

i .

IT1
≡ If Ai is true (i in the main loop of acquire) then either Bi or Ei is true

(in the first case, T i
i is NULL, whereas in the second case T i

i is or will soon become not NULL).

IT2
≡ If Li ∈ [84; 85] (just about to read the reception field) then ri73 < Rj , where j = ji72.

IT3
≡ If Li ∈ [86; 85] (just read a non-null pointer) then Ei is true and Tj is the thread pointer read, where j = ji72.

We prove all of these invariants stable under flushes from store buffers to main memory.

Lemma B.2 (Stability of the invariants). The flush of any value from the tail of a store buffer to the shared memory is an operation that
preserves the invariant.

Proof. Observation 1: variables of the form Xi are never affected by a flush of a write into the memory cell X . Observation 2: a property

that holds of all the values in a vector of the form X̄i is preserved by flushes of writes taken from this buffer. Observation 3: a property that

holds of all the values in a vector of the form ~Xi is preserved by flushes of writes taken from this buffer, if i is the only processor writing in

X . Observation 4: a property that holds of all the values in all the vectors of the form ~Xi (for all i) is preserved by flushes of writes taken

from this buffer. Observation 5: an assertion that a buffer X̄i is empty is preserved by flushes because no flush can be performed.

− IA1
: Preserved, by observation 5.

− IA2
: Preserved, by observation 2 and the fact that round numbers only increase.

− IR1
: Preserved, by observation 5.

− IR2
: Preserved, thanks to IR1

and because a flush would just trim the list ~Ri
i, perserving the fact that it is ordered in decreasing order.

− IQ1
: Preserved, by observation 2.

− IQ2
: Preserved, by observation 4 and the fact that round numbers only increase.

− IQ3
: We use observation 3. Assume that the premise of IQ3

was true. If the round number of j increases, then the premise becomes false,
so the statement holds. Otherwise, we use the fact that Ci,j,r is stable, which is true because round numbers can only increase. Also, the
constraint on the order of the writes gets preserved.

− IT1
: We show that both Bi and Ei are stable. For the stability of Bi, there are two cases. If k 6= i, we use observation 5. Otherwise, the

flush originates from T̄ i
i , which must therefore be non empty. In this case, the NULL value gets transfered to Ti and T̄ i

i becomes empty. For
the stability of Ei, we use a similar argument for the flush of the thread pointer t. Also, the assertion H is stable because it is an ordering
constraint.

− IT2
: Preserved, by the fact that round numbers only increase.

− IT3
: Preserved, using the stability of Ei established before.

Lemma B.3 (Increment of the round number). The incrementation of the round number of processor i at any time preserves all invariants,
except when i has just sent a thread, in which case it must be the case that the thread pointer was sent just before.

Proof. Straightforward, because all invariants except IQ3
always assert that a value is less than a round number. For IQ3

, the comparison
to the round number appears in a premise, so changing the round number preserves the invariant, as explained in the previous lemma. The
particular constraint on the thread pointer is needed to preserve invariant Ek, where k is the processor to which i sends a thread.

The following lemmas show that the invariants are preserved under atomic instructions executed in the functions of the load balancing
algorithm.

Lemma B.4 (Correctness of the acquire function). Let A be an abstract state and C be a concrete state. If R A C, and C =⇒ C′, where
this transition is accomplished by processor i executing an atomic instruction in the acquire function, then either R;A;C′ or there exists
A′ such that A −→ A′ and R;A′;C′.

Proof. We consider one by one each of the lines that perform a write operation and thereby modify the shared memory, and also all the lines
that are mentioned as boundries in the invariants.
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− Line 70. Before the execution of this line, Ai is false, so the conclusions of IA1
and IA2

are true, so (∀k.T̄ i
k = nil). After the execution

of this line, the premise Ai of IT1
becomes true. We show that this invariant is satisfied by proving Bi to be true. Indeed, we have

(∀k 6= i. T̄ k
i = nil) and T̄ i

i = NULL :: nil.

− Line 77. We have to show that IQ1
, IQ2

and IQ3
remain true. Let j = ji72 denote the target processor. IQ1

remains true because the id

associated with the query sent is i. IQ2
remains true because the round number ri73 associated with the query sent is the round number of

j as seen be i, that is, the value Rj . This value is, by invariant IR2
, less than Rj

j . IQ3
remains true because after the write, Ci,j,r holds:

Li ∈ [78; 82] and and ri73 ≤ Rj
j as we have just explained.

− Line 81. Preserves invariants for exactly the same reasons as the send on line 77.

− Line 84 (when reaching this line). First, if we exit the loop, then it means that the round number of j read by i, that is, Rj , has become

greater than ri73. So, IT2
is established. Second, we have to show IQ3

to be preserved. Consider a query whose round number was equal to

Rj
j before existing the loop. When in the loop, we had ri73 = Rj . Because we exit the loop, it must be now the case that ri73 < Rj . Since

Rj ≤ Rj
j , the premise is now false, so the invariant is satisfied.

− Line 85. The thread pointer T i
i is tested. By IT1

, either Bi is true or Ei is true. Assume that the value T i
i is not NULL. This implies that

Bi is false. So Ei must be true. We thus establish IT3
.

− Line 86. See the proof of the join protocol.

− Line 87. Global invariant RD is maintained because IT5
is now true because after this line Ei becomes false since the function exits (the

writing of the round number can be safely considered to happen before the push in the deque, since the deque is private).

− Line 88. As proved separately in Lemma B.3, incrementing the round preserves all invariants.

Lemma B.5 (Correctness of the communicate function). The communicate function preserves R in the same way as defined in Lemma B.4.

Proof. We consider one by one each of the lines that perform a write operation. Note that communicate is not called during acquire, so we
can assume Ai to be false.

− Line 103. Let k = q id(q) and let t be the thread popped from the deque. When reaching this point in the code, Qi
i is a query such that

its round number is equal to Ri
i. By invariant IA2

, queries in ~Qi
i with id i all carry a round number less than Ri

i. So, it must be the case

that k 6= i. By IQ1
, it must be the case that Qi

i = Qi. At this point, by IQ3
applied to processor k and this particular query, processor k is

such that Ck,i,r is true for r = Ri
i, moreover, because this query has reached the shared memory, it must be the case that T̄ k

k is empty. By

definition of Ck,i,r , it must be the case that i = jk72. After the write in the reception field of k, Ek becomes true, so IT1
is preserved. At this

point, we update the Owner map: the node n such that φ(n) = t is now mapped to processor k instead of processor i.

− Line 102. See proof of the join resolution protocol.

− Line 104. By Lemma B.3, incrementing the round preserves all invariants, using for Ei,j,t the fact that the write of the round number
occurs after the write in the reception field of the target.

Lemma B.6 (Correctness of the block function). The block function preserves R in the same way as defined in Lemma B.4.

Proof. The block function is only called from inside the acquire function, so we can assume Ai to be true.

− Line 110 We have to show that IQ1
, IQ2

and IQ3
remain true. IQ1

remains true because the id associated with the query sent is i. IQ2

remains true because the next line is 111. IQ3
remains true because for this new query, the assumption j 6= i is false.

− Line 111. Invariant IQ2
is now fixed, as the round number has catched up on the query. By Lemma B.3, incrementing the round number

preserves all invariants.

Lemma B.7 (Correctness of load balancing). Assume that an abstract state A and a concrete state C are related in the sense that relation
RAC holds. Then, for any transition C =⇒ C′ in the concrete state that involves a step in the acquire function, the block function or the
communicate function, the relation RAC′ holds.

Proof. By definition of RAC, we have (A,Branch,Owner). When performing load balancing, the computation graph does not change, so
there is no transition on the abstract state A. The branch labeling does not change either. The ownership labeling is only updated at the time
when a thread gets sent in the communicate function, as explained in the lemma associated with the verification of this functions.

B.6 Correctness of the join resolution algorithm

The lemmas in this section show that the global invariants and relation between abstract and concrete states are preserved under transitions
relating to the join algorithm. We first present helper definitions and invariants relating specifically to the join algorithm.
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Definitions In the invariants and the proof, we use the following additional helper definitions. Pk(n) is true if and only if processor k
has executed line n in the current round of the join algorithm (with the current continuation.) F (l, v) states that location l contains, or will
eventually contain, the value v and will not have any other value written to it later.

Pk(n) ≡ Lk has held the value n with the current continuation c55.

F (l, v) ≡ (l = v ∧ l̄i = nil ∀i) ∨ (l = WORK ∧ l̄i = {v} for some i ∧ ∀j 6= i, l̄j = nil)

In showing that invariants involving F (l, v) are preserved, it will be important to show that this condition is stable, that is, it is not violated
when writes are flushed from write buffers into shared memory. This is proven in Lemma B.8.

Lemma B.8. The invariant F (l, v) is stable under any flush of a write buffer to shared memory.

Proof. Either l = v or l = WORK. If l = v, then, for all i, l̄i = nil and no flush to l can occur. Suppose l = WORK. Then, there exists

a processor i such that l̄i = {v}. Since for all j 6= i, l̄i = nil, the flush to l must come from the write buffer of i, resulting in l = v and

l̄i = nil. This maintains the invariant.

Definition 16 (Ownership of status fields). We say S is a status field belonging to k if S = t.status[b] where {t, b} is either in Wi or is
φ(n).cont for a node n in the deque of i or already executed by i.

Lemma B.9 (Uniqueness of status field ownership). A status field S belongs to at most one processor.

Proof. Deques are disjoint by the correctness of the load balancing algorithm, so no two processors can own the same thread, and the
structure of the reverse tree ensures that distinct threads have distinct continuations. Watch lists are disjoint because Watcher is uniquely
defined. A continuation φ(n).cont cannot be in one processor’s deque and another processor’s watch list because this would imply
Owner(n) 6= NO OWNER but Owner(n) 6= Watcher(n).

We next present the set of invariants specific to the join algorithm.

Invariants

Definition 17 (Permanent join algorithm invariants). IJ1 enumerates four cases into which all join threads fall. The remaining invariants
concern writes to status fields: only the owner of a status field may write to it, and may only write certain values depending on the value of
the corresponding field. IJ4 states that, under certain conditions, the value read by a processor was the last value written to it.

IJ1 ≡ For all nj ∈ N , one of the following cases applies:

1. There doesn’t exist n1 such that (n1, nj) ∈ E, and processor k is running resolve join with a continuation c such that c.a.join =
φ(nj).

2. (n1, nj) ∈ E, there does not exist n2 ∈ N such that (n2, nj) ∈ E, and no processor other than Watcher(n1) is running resolve join
or handle cont with a continuation c such that c.join = φ(nj).

3. (n1, nj , LEFT) and (n2, nj ,RIGHT) ∈ E

4. There doesn’t exist n1 such that (n1, nj) ∈ E, and no processor is running handle cont or resolve join with a continuation c such
that c.a.join = φ(nj).

In the following invariants, let k be any processor, let Sk be a status field belonging to k and let Sk refer to the other status field of the
same thread, that is, Sk = t.status[1− b].

IJ2 ≡ ∀m 6= k, S̄k
m

= nil.

IJ3 ≡ ~Sk

k
consists of at most one instance of WORK possibly preceded by:

READY (if Sk
k = WORK ∨ Sk

k = NULL)

READY possibly preceded by TRANSFER{·} (if Sk
k = ACK)

ACK or READY (if Sk
k = READY or Sk

k = TRANSFER{·})

IJ4 ≡ Sk
k 6= WORK ∧ Sk

k 6= NULL ∧ Sk
k 6= ACK ⇒ Sk

k = Sk
k

Definition 18 (Invariant for case 1). The following invariant applies only in case 1 and ensures that this processor will not schedule the join
thread, since the other processor did so.

IJ5 ≡ Lk 6= 118 ∧ Lk 6= 132 ∧ Sk
k 6= ACK ∧ (F (Sk,ACK) ∨ Branch(n1, nj) = RIGHT) ∧X[k] = NO CODE

Definition 19 (Invariant for case 2). The following invariant applies only in case 2 and ensures that the remaining processor will schedule
the join thread. Let t = φ(n1), let j = Watcher(n2) and let Sk = φ(nj).status[Branch(n1, nj)] (if Branch(n1, nj) 6= SINGLE).

IJ6 ≡ Branch(n1, nj) = SINGLE ∨ Sk
k = ACK ∨ (F (Sk,READY) ∧ Branch(n1, nj) = LEFT) ∨ Lj = 53

Definition 20 (Invariants for case 3). The following invariants apply only in case 3, and rule out invalid states of the status fields: both
processors may not write ACK, a processor only writes READY in resolve join and a processor only writes ACK after reading READY.
Let t1 = φ(n1), let t2 = φ(n2), and let a be the activation record such that φ(n1).c.a = φ(n2).c.a = a. Let i = Watcher(n1), let

j = Watcher(n2), let Si = a.status[0] and let Sj = a.status[1]. k refers to either i or j and k refers to the other.
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IJ7 ≡ ¬(Si
i = ACK ∧ Sj

j = ACK)
IJ8 ≡ ¬Pk(120) ⇒ Sk

k 6= READY

IJ9 ≡ Sk
k 6= READY ⇒ Sk

k 6= ACK

In the proof of some invariants, we use the additional fact that if, at some point in the past, Sk
k held a value other than WORK or READY

in some cases, it still holds that value. This fact follows from invariants IJ2 and IJ3.
The next two lemmas prove that any transition in the concrete state preserves the invariants relating to the join protocol.

Lemma B.10 (Stability of the invariants). The flush of any value from the tail of a store buffer to the shared memory is an operation that
preserves the invariants.

Proof. Note that we only need to consider the stability of invariants that involve Sk
i for i 6= k. This is because all other references to shared

memory cells involve either write buffers, which aren’t affected by flushes to main memory, or Sk
k, which, by IJ2, can’t be affected by

writes from any write buffers other than that of k. This fact, together with Lemma B.8 implies the stability of all remaining invariants.

− IJ3. This invariant can only be invalidated by a flush to shared memory if

• WORK or ACK is flushed to Sk and ~Sk

k
contains ACK. However, this would mean that Sk previously held READY or TRANSFER{·}

and, by IJ2, before the flush, Sk
k held WORK or ACK ahead of READY or TRANSFER{·} or

• WORK, READY or TRANSFER{·} is flushed and ~Sk

k
contains TRANSFER{·}. In this case, Sk previously held ACK and, before the

flush, Sk
k held WORK or READY or TRANSFER{·} ahead of ACK.

In either case, IJ3 would have been violated before the flush.

− IJ4. If Sk
k 6= ACK, then by IJ2 and IJ3, Sk

k 6= ACK, so if there is a write to Sk, it must have been pulled from S̄k

k
and there are no

other such writes in S̄k

k
. Therefore, the write flushed to main memory is the one value in ~Sk

k
, and is now the value that will be read from

Sk by both k and k.

Lemma B.11. Let A be an abstract state and C,C′ be concrete states, Suppose RAC and C =⇒ C′. If the transition C =⇒ C′ takes
the form of processor k executing an atomic instruction in [61, 67] ∪ [113, 150] then RAC′ or there exists an abstract state A′ such that
RA′ C′ and A −→ A′.

Proof. The proof is broken into the cases described in IJ1. The proof then follows from IJ1. We need not consider case 4 because a relevant
transition cannot occur in case 4. Let A = (N,E,X,M). Unless an A′ is specified, we show that RAC′.

Case 1

− Line 117. By invariant IJ5, this test fails and so the else branch will be taken.

− Lines 126, 129. If control exits resolve join at either of these points, all invariants are preserved since X[k] is already NO CODE. nj is
now in case 4 of IJ1.

− Line 131. If control reached this point, by IJ5, Branch(n1, nj) = RIGHT, so this test will fail and control will exit resolve join. As
above, this preserves all invariants.

Case 2

− Lines 59, 118 and 132. Since (n1, nj) ∈ E, nj isn’t already ready and isn’t in a deque. Let A′ = (N \ {n1}, E \ {(n1, nj)}, X[k 7→
None],M). nj has no incoming edges so is ready in A′. Since t1 was executing, by RD and the definition of Deque(·), n1 was the leftmost
leaf of the subtree formed by OwnedBy(i), and thus nj is now the leftmost leaf of the new subtree formed by OwnedBy(i). Since nj is
added to the bottom of Di, RD is preserved. The removal of a node and its outgoing edge maintains Workstealing(A′,Branch,Owner)
and the preservation of the remaining invariants implies RA′ C′. A −→ A′ by END. nj is now in case 4 of IJ1.

− Line 120. Since this branch was taken, Sk
k 6= ACK, so writing to Sk

k cannot invalidate IJ6.

− Line 126. Since this branch was taken, Sk
k 6= ACK, so by IJ6, F (Sk,READY). Control exited the while loop, so Sk

k 6= WORK and thus

Sk
k = READY. This means control will not reach this line.

− Lines 131. By IJ6, Branch(n1, nj) = LEFT so control will not exit resolve join.

− Line 65 By assumption, the other parent of tj has been run, so Dk = nil and this line will not run, so control will not exit from handle cont
here.
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Case 3

− Line 141. IJ2 is maintained because this line writes only to Sk. IJ3 is maintained because RW1
and RW2

imply that Sk
k = WORK, which

by IJ3 means that only WORK has been written into S̄k
k

. IJ7 is maintained because the success of the test ensures Sk
k = READY 6= ACK.

By IJ4, Sk
k 6= ACK, so IJ9 is maintained.

− Line 118. nj has incoming edges, so it isn’t ready and isn’t in a deque. Let A′ = (N \ {n | (n, nj) ∈ E}, {(n, n′) ∈ E | n′ 6=
nj}, X[k 7→ NO CODE],M). nj has no incoming edges so is ready in A′. RA′ C′ and A −→ A′ as above for case 2. Suppose nj is now in

case 1 of IJ1 and processor k is executing resolve join on the corresponding continuation. Then modify A′ such that X[k] = NO CODE.

Since Sk
k = ACK, IJ7 gives Sk

k 6= ACK. Invariant IJ2 implies that Sk
k 6= READY, and these two results give that Lk 6= 118, 132, so

invariant IJ5 is preserved. Otherwise, nj is now in case 4 of IJ1.

− Line 120. Since the test on Line 117 failed and IJ8 applies, ~Sk

k
previously had no instance of READY or ACK. By IJ3, then,

Sk
k = WORK. READY is added, and invariant IJ3 is preserved. IJ4 must be preserved since no writes have been flushed to Sk and

Sk
k must be WORK. Invariant IJ8 is preserved since Lk = 120, so ¬Pk(120) is now false.

− Lines 126, 129 and 131. Suppose control exits from resolve join and handle cont on one of these lines. If X[k] = (n,noop), then let
A′ = (N \ {n}, {(n1, n

′) ∈ E | n1 6= n}, X[k 7→ None],M). A −→ A′ by END. This coincides with tk being removed from T in C′.

nj is not yet ready and is in case 2 since it still has an edge from tk. If the line is 126 or 129, then Sk
k = ACK. By IJ4, Sk

k = ACK. If the

line is 131, then Branch(nk, nj) = RIGHT and Sk
k = READY. We then know that Branch(nk, nj) = LEFT and, by IJ4, Sk

k = READY.
In either case, IJ6 holds for the remaining edge to nj , and RA′ C′. The removal of a node and its edge preserves the fact that OwnedBy(i)
is a subtree of (N,E) disjoint from all other OwnedBy sets, so Workstealing(A′,Branch,Owner).

− Line 132. See Line 118 above. Suppose nj is now in case 1 of IJ1 and processor k is executing resolve join on the corresponding

continuation. Then, since Sk
k = READY, IJ2 implies Sk

k 6= ACK. Since control reached this branch, the definition of Branch means that
the corresponding continuation has branch RIGHT, and these two results give that Lk 6= 118, 132, so invariant IJ5 is preserved. Otherwise,
nj is in case 4.

− Line 65 By the standard deque invariant for work-stealing schedulers, if the deque is non-empty, the thread at the bottom of the deque was
the right branch of this thread. Let A′ = (N \ {n1}, E \ {(n1, nj)}, X[i 7→ NO CODE],M). A −→ A′ by END. This coincides with tk
being removed from T in C′. The join thread is not yet ready since it still has an edge from tk. Update Branch(n2, nj) to be SINGLE. RT2

is preserved since t.c.branch = SINGLE, there does not exist an edge (n′

1, nj) ∈ E \ {(n1, nj)} and control is not in resolve join. This
means nj is in case 2 of IJ1. IJ6 is preserved since the branch is Branch(n2, nj) = SINGLE. The removal of a node and its edge preserves
the fact that OwnedBy(i) is a subtree of (N,E) disjoint from all other OwnedBy sets, so Workstealing(A′,Owner).

− Line 59. Since both branches exist, c.branch 6= SINGLE, so this line is not reached.

Lemma B.12. Let A = (N,E,X,M) be an abstract state and C,C′ be concrete states, with Workstealing(A,Owner) and RAC. If
C =⇒ C′, then C′ satisfies the conjunction of invariants IJ1 through IJ9.

Proof. The stability of these invariants has already been shown. We show cases not covered by Lemma B.11

− Line 52. Invariant IJ6 now applies, and is true since the added thread is owned by k and Lk = 53.

− Line 53. Invariants IJ7 through IJ9 now apply to t1, t2 and tj = φ(nj). The status fields have been initialized on the previous lines such
that these invariants are true.

− Lines 86 and 87. These actions might change ownership of a status field S = φ(n).status[RIGHT] from j to k for some n, b. Invariants

will be preserved unless Sk 6= Sj , that is, if S̄j 6= nil. If S̄j consists only of WORK, then since φ(n) must have been initialized before the
offered thread and the offered thread must have been initialized before it was offered, this write has already been flushed to main memory.
Processor j could not have written READY into S since this is only done after the right parent of n is finished, so i could only have written
ACK in watch, but this would imply that the thread was already migrated.

− Line 150. Invariants will be preserved unless S̄j 6= nil where S = t.status[b] for some {t, b} transferred from j to k. However, all writes
to such fields by j must have occurred before j cleared its watch list and wrote TRANSFER{s}. Since this write was flushed to memory, all
writes to S must have been flushed as well.

B.7 Proof of the correctness lemma

Before proving the correctness lemma, we prove that atomic transitions preserve the watch list invariants of R, which have so far not been
covered by any previous lemmas.

Lemma B.13. Any atomic transition preserves the watch list invariants.

Proof. We now consider all atomic transitions in the pseudocode that affect the watch lists or deques.

− Lines 86, 102, 120 and 141. Establish Wlinci, preserving RW1
.

− Lines 121 and 142. c55.join.status[c55.branch]
i 6= WORK, so RW2

is preserved.
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− Line 87. Let tj = t84.cont.join. Owner(tj) is now NO OWNER since there exists an n1 such that (n1, nj) ∈ E such that Owner(n1) =
j 6= i, so since Owner(t84) = i and t84.cont ∈ Watchlist(i), and line 86 preserved the invariants.

− Line 103. Let tj = t100.cont.join. Owner(tj) is now NO OWNER since there exists an n2 such that (n2, nj) ∈ E and Owner(n2) =
j 6= i, so since Owner(t) = i and {tj , LEFT} ∈ Watchlist(i), and line 102 preserved the invariants. The invariants on Watchlist(j) are
not violated since Bj,t100 .

− Line 129. By Defintion 7, OwnedBy(i) becomes empty, so there can be no n ∈ N such that Watcher(n) = i, and clearing the watch list
preserves the watch list invariants. Any thread n that previously had Watcher(n) = i now has Watcher(n) = j, where j is the processor

that won this race. After line 128, Si
i = TRANSFER{s} where s contains all continuations {n′, b} such that W (i, n′, b) was previously

true, for which W (j, n′, b) is now true. This preserves RW2
and RW3

.

− Line 150. This line transfers Wltransi to Wi, preserving RW2
. RW3

implies RW1
.

We now recall and prove Lemma 5.2.

Lemma 5.2. There exists a relation R for which the following implication holds:
if C =⇒ C′ and RC A, then there exists A′ such that A −→∗ A′ and RC′ A′.

Proof. We verify the transitions not covered by previous lemmas. That is, those outside the load balancing and join resolution algorithms.

− Line 41. Li becomes 42, so RunningThread(i) becomes t41. Since this was previously the bottom element of Di
i with RunningThread(i) =

∅, RD is preserved.

− Line 42. RC2
is preserved.

− Line 43. Let A′ = (N,E,X[i 7→ (n,BodyOf(n))],M), where n is the node such that φ(n) = t41. This corresponds to calling the
run method of t in the concrete state, so RX1

and RX5
are preserved. The corresponding transition in the abstract state is allowed since

n ∈ Deque(i) and so n is ready. Since φ(n) = t41, RunningThread(i) doesn’t change and RD is preserved. The previous line set Ki
i to

φ(n).cont, preserving RC1
.

− End of fork. If X[i] = (n, fork(n1, n2, nj)), then let
A′ = (N∪{n1, n2, nj}, E∪{(n1, nj), (n2, nj), (nj , n

′)}, X[i 7→ NO CODE],M), where φ(n′) = φ(n).cont.join. Since the continuation
field of tj was set when Li was 46, by RC1

, the current continuation at that point was φ(n).cont, and so tj has the correct continuation.
Extend φ such that φ(n1), φ(n2) and φ(nj) are t1, t2 and tj respectively. Let Owner(n1) = Owner(n2) = Owner(nj) = i. Since n
was previously at the bottom of the deque, RD states that it was the leftmost leaf owned by i. It has been replaced by n1 and n2 whose
corresponding threads have been pushed, in order, onto Di, so RD is maintained. The invariant on OwnedBy(i) is maintained because n
has been replaced by another subtree contained in OwnedBy(i). The transition A −→ A′ is allowed.

− The program code takes an atomic step. Let A′ = (N,E,X[i 7→ (n, k′)],M ′), where Step(k,M) = (k′,M ′). By definition,
Mem(C′) = M ′, so RM is preserved.

B.8 Proof of liveness

The following lemmas lead to a proof of the liveness part of Theorem 5.1. Lemma B.14 shows that, under the assumption of fairness stated
in Section 5, all processors call watch periodically during any infinite reduction of a concrete state.

Lemma B.14 (Periodic watch list operations). Let A be an abstract state, and let i be any processor. Let C0, C1, ... be concrete states. If
RAC0 and C0 =⇒ C1 =⇒ C2 =⇒ ... and c ∈ Watchlist(i), then there exists some n such that in Cn, Li = 135 with c135 = c (running
the outer loop of the watch function with c).

Proof. We assume that watch is called periodically by busy processors, so consider processors i not currently in run methods of threads.
Either i will enter a run method at some Cm or it remains in one of the while loops in acquire, resolve join or watch in all Cm for
m > n for some n. In the latter two cases, watch may be safely called and we assume the implementation will do so periodically. In the first
case, since i is running acquire, OwnedBy(i) = ∅, so there is no n ∈ N such that Watcher(n) = i, and Watchlist(i) = ∅.

We therefore know that there exists some n1 for which i calls watch in Cn1
. There then exists some Cn for n > n1 such that in Cn,

Li = 135 with c135 = c, unless i becomes stuck in the inner while loop. However, if this happens, the continuation that caused it to become
stuck has been removed from Watchlist(i). By induction, there exists some Cn2

for n2 > n1 at which watch will be called again with the
smaller watch list. Eventually, c will be reached in the outer loop or watch will be called with a watch list containing only c, at which point
it will follow immediately that c135 = c.

Lemma B.15 states that if a processor i is in the while loop in resolve join, a processor is watching or has already written into the
corresponding status field. This shows that i will eventually receive a reply to the READY message it has written.

Lemma B.15. Let A and C be abstract and concrete states, respectively, such that Workstealing(A,Branch,Owner) for some Owner
and RAC. If Li ∈ [122, 123] with c113 = {φ(n), b} for some n ∈ N , then there exists some processor j and node n′ such that

(n′, n, 1− b) ∈ Watchlist(j) or φ(n).status[1− b]j 6= WORK.
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Proof. Proceed in the first three cases given by IJ1 for φ(n). In case 1, the result follows from F (Sk,ACK) in IJ5. In case 2, since this
branch was reached, it must be the case that F (Sk,READY). In case 3, there exists an n′ ∈ N such that (n′, n, 1 − b) ∈ E, and so
(n′, n, 1− b) ∈ Watchlist(Watcher(n′)).

Lemma B.16 asserts that the concrete state makes progress relative to the abstract state. That is, there is no infinite reduction of concrete
states that does not result in a change in the abstract state.

Lemma B.16 (Liveness). Let A0 be an abstract state with an ownership labelling Owner0 such that Workstealing(A0,Owner). Let
C0, C1, ... be concrete states in which ready threads exist. If RA0 C0 and C0 =⇒ C1 =⇒ C2 =⇒ ..., then there exist some A1, Owner1
and n such that RA1 Cn and A0 −→ A1.

Proof. If any processor is in a run method of a thread, then, given the fairness assumption of Section 5, that processor will eventually take
a step Cn−1 =⇒ C, and the abstract state will take the corresponding step A0 −→ A1 with rule STEP. We may therefore assume that no
processors are running threads and are instead in one of the functions of the scheduler. However, a processor in one of these functions will
eventually proceed through and enter the run method of a thread unless it remains in one of the while loops in acquire, resolve join or
watch in all Cm for m > n for some n. Therefore, such an infinite reduction sequence can only exist if all processors are in one of these
loops. If all processors are in acquire, then Deque(i) = nil for all processors i, and the computation is finished. Thus, there exists at least
one processor i such that one of the following applies.

• Li ∈ [122, 123]. In this case, Lemma B.15 implies that there is a processor j such that status122[b2]
j 6= WORK, in which case i will

eventually see this write and exit the loop, or Watchlist(j) contains the corresponding continuation to c113. In this second case, since

status122[b1]
i = READY, this write will eventually be seen by j. By Lemma B.14, j will run the outer watch loop on this continuation

at some point after the flush of this write, and will write ACK into status122[b2], which will cause i to enter the loop when this write is
flushed.

• Li ∈ [146, 147]. In this case, b1114 = RIGHT and there exists a processor j that has executed line 120 with b1114 = LEFT and written
READY into status146[b2]. Similarly, i has written ACK into status146[b1]. This write will eventually be seen by j, which will exit the
loop and write TRANSFER{s}. This write will eventually be seen by i, which will exit its loop.

B.9 Proof of Theorem 5.1

Recall Theorem 5.1:

Theorem 5.1 (Correctness and liveness). For any initial thread node n0 and concrete state C in which all processors have run out of threads
and are running acquire,

C0(n0) =⇒
∗ C implies ({n0}, ∅, ∅, ∅) −→

∗ (∅, ∅, ∅,Mem(C))
and C0(n0) =⇒

∞ implies ({n0}, ∅, ∅, ∅) −→
∞

Proof. We first show that if A = (N,E,X,M) is any abstract state such that RAC, then A = (∅, ∅, ∅,Mem(C)). Since all processors
have run out of threads, for all processors i, it must be the case that Di = nil. By RD , we must have that Deque(i) = nil. Thus,⋃

i OwnedBy(i) = ∅ and, since all leaf nodes must have an owner and (N,E) must be a reverse tree, N = E = ∅. If all processors
are running acquire, then X is the trivial map from all processors to NO CODE. This gives the desired result. The correctness part can then
be shown by inductive application of Lemma 5.2. Liveness is shown by inductive application of Lemma B.16.

C. Bound on the number of open remote joins

Lemma C.1. Let A be a work stealing state. Let Owner be the corresponding ownership labelling. Let Pb be the number of busy
processors (processors i such that X[i] 6= NO CODE). There are at most Pb − 1 threads tj such that (t1, tj), (t2, tj) ∈ E and
Owner(tj) = NO OWNER and Watcher(t1) 6= Watcher(t2).

Proof. Since for each busy processor i, OwnedBy(i) consists of a subtree of (N,E), we may consider a reverse tree constructed from
(N,E) by collapsing each of these Pb subtrees into a single (leaf) node. The desired threads consist of the non-leaf nodes of this reverse
tree, each of which has exactly two parents. The number of non-leaf nodes in such a tree is at most one less than the number of leaves, so the
number of such threads is at most Pb − 1.
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