
HAL Id: hal-00910170
https://hal.inria.fr/hal-00910170

Submitted on 27 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bounding Reactions in the Pi-calculus using
Interpretations

Romain Péchoux

To cite this version:
Romain Péchoux. Bounding Reactions in the Pi-calculus using Interpretations. Third International
Workshop on Foundational and Practical Aspects of Resource Analysis (FOPARA 2013), Ugo Dal
Lago and Ricardo Pena, Aug 2013, Bertinoro, Italy. �hal-00910170�

https://hal.inria.fr/hal-00910170
https://hal.archives-ouvertes.fr

Bounding Reactions in the π-calculus using
Interpretations

Romain Péchoux?

INRIA project Carte, LORIA, and Université de Lorraine
romain.pechoux@loria.fr

Abstract. We present a new resource static analysis for the π-calculus
that provides upper bounds on the number of reactions that might occur
at runtime for a given process. This work is complementary to previous
results on termination of processes by capturing strictly more processes,
since it captures all the strongly normalizing processes, and by providing
precise upper bounds on the number of communications on each chan-
nel. For that purpose, it combines interpretation methods, inspired by
polynomial interpretations introduced in order to study the complexity
of term rewrite systems, with a notion of resource process that mimics
reaction keeping information about resource consumption in terms of
communication. We also show that presented analysis is general and can
be easily adapted to study space properties of processes (for example,
upper bounds on the size of the maximal value sent on a given channel
during reaction).

1 Introduction

Motivations. This work belongs to the Implicit Computational Complexity
(ICC) research line whose aim is to characterize complexity classes without re-
ferring to machines. In the last two decades, contributions have tried to extend
the characterizations to several computational paradigms such as function al-
gebra [3, 21], lambda-calculi [22, 10, 2], light and soft linear logics [11, 9], term
rewrite systems [4] and imperative programs [15, 25], to mention a few. Surpris-
ingly, only a few works have been carried out on resource control and analysis
of concurrent models. Such a lack mainly relies on the fact that most of these
models do not deal with functions as computational objects. However most of
these concurrent models have their own notions of time and space in analogy
with sequential models. More specifically for the π-calculus, it has been com-
monly accepted that the time can be seen as the maximal number of possible
communications between processes.
Contribution. In this paper, we try to tackle the problem of (first-order) π-
calculus time analysis by finding, if possible, an upper bound on the number of
possible reactions on each channel. For that purpose, we extend (polynomial)

? The financial support of ANR Complice and Inria Associate team Cristal is gratefully
acknowledged.

2

interpretations [23, 20], a well-known termination tool for Term Rewrite Systems
to a process calculus. The considered process calculus mainly consists in the
classical π-calculus where replication is replaced by the ability to call processes
recursively through the use of a case construct. Processes in P(N) are considered
with respect to a fixed set of names N. The analysis is performed in two steps
as illustrated by the following diagram:

P(N)
[−] // R(N)

J−K // NN∪{∗}

The first step corresponds to the interpretation [−], an assignment mapping each
process in P(N) to a resource process in R(N). Resource processes are processes
with extra prefixes, recording reactions on each channel, and without process
call. Consequently, they are strongly normalizing since they have neither the
ability to replicate, nor the ability to recurse. The interpretation enjoys some
simulation properties on resource processes guaranteeing that a resource process
will have at least as many resources (in terms of reaction) as the initial process
it represents.
In the second step, we interpret each resource process by a function of the re-
source algebra NN∪{∗} using the semantics J−K. Such a function maps each chan-
nel in N to a natural number in N, the upper bound on its possible reactions.
∗ is a special symbol for process calls that takes account of the recursive calls
performed by the studied process.
Results. Our main result (Theorem 1) is that, for a given process P , the function
J[P]K provides upper bounds on both the number of reactions, for each channel,
and the number of recursive calls occurring in a reduction of P . In other words,
for a given channel x, J[P]K(x) will be an upper bound on the number of reac-
tions based on a communication on channel x.
Moreover, we show that the presented analysis is complete for strongly normal-
izing processes, if no restriction is made on resource processes (Theorem 2) and
can be extended to study space properties of processes.
Another interest of our results lies in the transfer and use of well-known termi-
nation techniques for term rewrite systems to π-calculus.
Related works. Time properties of processes have been deeply studied in the
last decade adapting well-known ICC complexity classes characterizations based
on type systems [7, 27, 6], linear logics [14, 29, 19] and access control [17]. Con-
trarily to the present work, most of these studies are global and do not allow
the analyzer to infer precise upper bounds on the use of each channel. An im-
portant point to stress is that the results presented in this paper have a greater
expressivity than all the aforementioned studies, that are mostly tractable in
polynomial time. In opposition, our work captures all the strongly normalizing
processes. The pros are a greater expressivity, the cons are that our framework
needs to be restricted in order to be effective. However we think that it opens a
new line of research since decidable fragments are already delineated by consid-
ering restricted function spaces as discussed in the last section of the paper.
Another branch of research [26, 12], has tried to count the number of occur-
rences of processes during computation sequences using abstract interpretations

3

and relational domains [8]. In the same direction, some studies [16, 28] have tried
to infer buffer upper bounds of concurrent imperative programs communicating
via buffered channels. In the same spirit, [18] proposes an analysis that infers
lower and upper bounds on the number of active channels using a type system
combined to a lattice ordered monoid. The problems tackled in these papers are
more related to space consumption analysis during process reaction and, conse-
quently, orthogonal to the present study, though clearly related.
In another direction, Hennessy [13] and Pym [5] that have developed variants of
the π-calculus where channels come equipped with a notion of resource. Reac-
tions may only occur when there is enough resource in the owning channel. These
studies provide a dynamic analysis of system behaviors depending on whether
it has been fed with enough resources, whereas the work presented in this paper
is inherently static by trying to give an approximation of resources needed by a
process before reduction.
Outline. The syntax and semantics of processes is introduced in Section 2. Sec-
tion 3 describes the first step of our static analysis by introducing resource pro-
cesses, particular processes without recursive calls, and defining interpretations
and their properties. Section 4 describes the second step, a semantics that gives
a meaning to resource processes on a resource algebra. Some intermediate lem-
mata show that resources decrease during reactions. We show (Theorem 1) that
the resource algebra function corresponding to a process provides upper bounds
on the number of its reactions, for each channel, and that the analysis is com-
plete for strongly normalizing processes (Theorem 2). Moreover, some more toy
examples (and a counter-example) are developed in order to help the reader
to grasp the presented methodology. Section 5 discusses some extension of the
presented methodology to space upper bounds. Sections 6 deals with the inter-
pretation inference problem and shows that the presented methodology opens a
lot of perspectives in the study of process time and space complexity properties.

2 Preliminaries

Syntax of processes. The extended concurrent model considered in this pa-
per merely consists in the classical simply typed π-calculus constructs of [24],
inaction, input, output, parallel composition, sum and restriction where repli-
cation is replaced by the ability to call process definitions and where values are
extended to inductive data types. For simplicity, our study will be restricted to
integer data type. For that purpose, let V = {l,m, n, . . .} be a set of integer
variables. Moreover, let Op be a set of basic operators op of fixed arity over
integers. We consider a (possibly infinite) set N = {a, b, c, . . . , x, y, w, . . .} of
names and a distinguished element τ for reaction (i.e. N ∩ {τ} = ∅). We also
assume a fixed set F = {F,G, . . .} of process symbols of fixed arity. In what

follows, let
−→
t be a notation for the sequence t1, · · · , tn when n is clear from the

context. Expressions in E , values in V and processes in P(N) are defined by the
grammar of Figure 2. For a given process P , define fn(P), bn(P) and n(P) to
be respectively the free names, bound names and names of the process P . Define

4

E 3 e ::= n | 0, 1, 2, . . . | op(−→e)

V 3 v, w ::= x | e
P(N) 3 P,Q ::= 0 | x(y).P | xv.P | F (−→v) | P | P | P + P | (νx)P

Fig. 1. Syntax of processes

also fv(P) to be the free integer variables in P . A closed process is a process
such that fv(P) = ∅. Let V be the set of ground values, i.e. v ∈ V if fv(v) = ∅.
A process call F (−→v) corresponds to the application of the process symbol F .
Each process symbol F comes with exactly one process definition of the shape:

F (
−→
X) = Case

−→
X of −→v1 → P1, . . . ,

−→vk → Pk

We will assume that the distinct rules in a process definition are non-overlapping.
Moreover, we will assume that ∀i, fv(Pi) ⊆ fv(−→vi). For convenience, the notation
F (−→vi) = Pi will be used to denote the i-th pattern matching rule. Definitions
may be recursive. Consequently, the presented framework is at least as expressive
as the π-calculus since the definition F () = F ()|P encodes the replication !P .

We will sometimes use the notation µ to denote either the input prefix x(y) or
the output prefix xv when there is no need to distinguish prefixes. Moreover, let
ν̃ be a notation for either the restriction νx or the empty restriction, depending
on the context. Finally, for readability, we will omit inaction, that is we write
µ instead of µ.0. Given a process P , D(P) is the set of process symbols called
either in P or (inductively) in the definition of process symbols called in P .

The structural congruence ≡ is defined as the least congruence relation on
processes that satisfies:

– 0 + P ≡ P , P +Q ≡ Q+ P , (P +Q) +R ≡ P + (Q+R),
– 0 | P ≡ P , P | Q ≡ Q | P , (P | Q) | R ≡ P | (Q | R),
– (νx)(νy)P ≡ (νy)(νx)P , (νx)0 ≡ 0,
– (νx)(P | Q) ≡ ((νx)P) | Q, if x /∈ fn(Q).

For simplicity, we will suppose that all considered processes have already been
carefully alpha-converted.

Operational semantics. We do not provide an explicit operational semantics
for expressions and we suppose that each operator corresponds to some fixed
total function JopK over ground values. We provide an annotated operational
semantics for processes, a slight change of usual operational semantics. It consists
in the transition system described in Figure 2. A transition has the shape P

α→ Q,
where α is a transition label that is equal to:

– xw if the transition corresponds to an input of the name w with respect to
input prefix x(y) (rule (In)),

– ν̃xw if the transition corresponds to an output of the name w with respect
to output prefix xw (rules (Out) and (Open)),

5

– τ(χ), χ ∈ N ∪ {∗} if the transition corresponds to a reaction (rules (Com)
and (Close)), in this case χ ∈ N, or to a process call (rule (App)), in this
case χ = ∗. Notice that n(τ(x)) = fn(τ(x)) = ∅, meaning that a name in
a reaction is just an annotation and not a free name. χ plays the role of
label recording either the reacting channel or the application of a process
definition, whenever χ = ∗

(In)
x(y).P

xw→ P{w/y}
(Out)

xw.P
xw→ P

P
α→ P

′
bn(α) ∩ fn(Q) = ∅

(Par)
P | Q α→ P

′ | Q

P
α→ P

′
Q ≡ P P

′ ≡ Q′

(Var)
Q
α→Q′

P
α→ P

′
x /∈ n(α)

(Res)
(νx)P

α→ (νx)P
′

P
xw→ P

′
x 6= w

(Open)
(νw)P

(νw)xw→ P
′

P
xw→ P

′
Q
xw→ Q

′

(Com)
P | Q τ(x)→ P

′ | Q′

P
(νw)xw→ P

′
Q
xw→ Q

′
w /∈ fn(Q)

(Close)
P | Q τ(x)→ (νw)(P

′ | Q′)
−→viσ = −→v F (−→vi) = Pi

(App)
F (−→v)

τ(∗)→ Piσ

P
α→ P

′

(Sum)
P +Q

α→ P
′

Fig. 2. Annotated operational semantics

Let D be a notation for N∪ {∗}. Note that the (App) rule of Figure 2 uses a
standard notion of substitution σ, a mapping from free names and free variables
to values of the same type. Among substitutions, we distinguish the ground
substitutions, substitution mapping variables to ground values in V. Let SNτ(χ)
be the set of processes P such that each sequence of reduction starting from the
closed process Pσ has a finite number of transitions labeled by τ(χ), for any
substitution σ : fv(P)→ N. For a given total function f : N→ N, let SNτ(χ)(f)
be the set of processes P such that for each substitution σ : fv(P) → N, if
∀n ∈ fv(P), nσ ≤ k then Pσ has at most f(k) transitions labeled by τ(χ). For
each f : N → N and each χ ∈ D, the following inclusion holds SNτ(χ)(f) ⊂
SNτ(χ). Moreover, we define SN = ∩χ∈DSNτ(χ) and we write P ∈ SNτ(χ)(f(k))
as an abuse of notation for P ∈ SNτ(χ)(f). Notice that the definition of SN
is standard since process syntax prevents us from building a diverging process
with a finite number of reactions on an infinite number of channel names.

Example 1. Consider the process fac(m, a) and the process definition:

fac(n, r) = Case n of 0→ r〈1〉
m+ 1→ (νr′)(fac(m, r′) | r′(x).r〈x× (m+ 1)〉)

For each substitution σ such that nσ = k, k ∈ N, and rσ = a, a ∈ N, fac(n, r)σ
computes k! through k communications on internal channels r′, k + 1 recursive

6

calls of the process symbol fac and outputs the result on channel a. Indeed, we
have the following sequence of reductions:

fac(n, r)σ = fac(k, a)
τ(∗)→ . . .

τ(∗)→︸ ︷︷ ︸
k+1 times

. . .
τ(r′)→ . . .

τ(r′)→︸ ︷︷ ︸
k times

a〈(k − 1)!× k〉

Consequently, we have fac(n, r) ∈ SNτ(∗)(k+1), fac(n, r) ∈ SNτ(r′)(k),fac(n, r) ∈
SNτ(r)(0) and fac(n, r) ∈ SN .

3 Resource analysis by interpretation

A resource analysis based on interpretation methods in order to control the time
complexity of process computations is presented in this section.

3.1 Resource processes

Resource processes will be the codomain of the first interpretation. They mainly
consist in processes with no process call and with extra input prefixes of the
shape τnχ , with χ ∈ D and n ∈ N, and are defined by the following grammar:

R(N) 3 R,S ::= 0 | τnχ .R | µ.R | R|R | R+R | (νx)R

Intuitively, a resource process τnχ .R will be able to perform n transitions labeled
by τ(χ). The notions of names, bounded names, free names, and free variables are
defined in a standard way. Resource processes structural congruence is similar
to process structural congruence but extended by τ0χ.R ≡ R. In what follows, a
context C[−→�] is a resource process with exactly one occurrence of each hole �i.
Let C[

−→
R] be the resource process obtained by filling the holes −→� with

−→
R .

Resource process operational semantics is defined by the rules of Figure 2
and is extended by the following rule:1

(Tn+1)

τn+1
χ .R

τ(χ)→ τnχ .R

Definition 1. The partial preorder & on resource processes is a simulation de-
fined by R & R′ if ∀S′ ∈ R(N) s.t. R′

α→ S′, ∃S ∈ R(N) s.t. R
α→ S and S &

S′.2

Lemma 1. The relation & enjoys the following properties:

(1) ∀σ, if R & S then Rσ & Sσ (Stability by substitution)

(2) ∀C[−→�], if ∀i,
−→
R &

−→
S then , C[

−→
R] & C[

−→
S] (Stability by context)

1 Notice that rule (App) of Figure 2 is meaningless for resource processes since they
do not involve process calls.

2 we recall that α ∈ {xv, x(y), τ(χ)} as in the annotated operational semantics.

7

3.2 Process assignment

An assignment consists in annotations provided by the analyzer on the resources
consumed by process symbols and is defined as follows:

Definition 2 (Assignment). Given a process P s.t. D(P) = {F1, · · · , Fm}, an
assignment [−] is a total map from D(P) to V → R(N) assigning to each process
definition Fi of arity n a total function [Fi] such that for each v1, · · · , vn ∈ V,
[Fi](v1, · · · , vn) ∈ R(N).

Example 2. Consider the process fac(k, a) of Example 1: We have D(fac(k, a)) =
{fac}. Consequently, the function [−] such that [fac](n, r) = τn+1

∗ |(νr′)τnr′ |r〈n!〉
is an assignment. The informal meaning of this assignment is that the process
fac(n, r) will react at most n times on internal names r′, perform at most n+ 1
transitions labeled by τ(∗) and output at most once the value n! on channel r.
Notice that all the internal channels r′ under a restriction in the initial process
are abstracted as a whole. However we still infer upper bounds since n is, by
definition, an upper bound on the number of reactions of each internal channel.
Notice also that internal names are treated as constant names and, consequently,
do not need to appear in the parameters of the assignment.

Definition 3 (Process assignment). Given an assignment [−], a process as-
signment is a map from P(N) to R(N) defined inductively by:

[0] = 0 [(νx)P] = (νx)[P]

[P +Q] = [P] + [Q] [F (−→v)] = [F](−→v)

[P | Q] = [P] | [Q] [µ.P] = µ.[P]

Example 3. Consider the subprocess (νr′)(fac(m, r′)|r′(x).r〈x× (m+1)〉) of Ex-
ample 1 together with the assignment [fac](n, r) = (νr′)τnr′ |τn+1

∗ |r〈n!〉:

[(νr′)(fac(m, r′) | r′(x).r〈x× (m+ 1)〉)]
= (νr′)[fac(m, r′) | r′(x).r〈x× (m+ 1)〉]
= (νr′)([fac](m, r′) | [r′(x).r〈x× (m+ 1)〉])
= (νr′)(((νr′)τmr′ | τm+1

∗ | r′〈m!〉) | (r′(x).r〈x× (m+ 1)〉)

Structural congruence and reaction are preserved on resource processes:

Lemma 2. If P ≡ Q then [P] ≡ [Q].

Lemma 3. Given a process P and an assignment [−], ∀α ∈ {ν̃xw, xw, τ(x)}, if

P
α→ P ′ then [P]

α→ [P ′].

Proof. By induction on the annotated semantics. ut

8

3.3 Interpretation

Now we introduce the notion of interpretation, the cornerstone of the presented
analysis. Interpretations enforce the semantics of assignments to satisfy inequal-
ities that allow the analyzer to infer upper bounds on reactions.

Definition 4 (Interpretation). Given a process P , an assignment [−] is an
interpretation of P if for each process definition F ∈ D(P) of the shape:

F (
−→
X) = Case

−→
X of −→v1 → P1, . . . ,

−→vk → Pk

for each ground substitution σ the following holds:

∀i ∈ {1, . . . , k}, [F (−→vi)σ] & τ1∗ .[Piσ]

In such a case, we say that P has interpretation [-].

The informal meaning of an interpretation is that the process call has more
resources than its evaluation since & is the simulation preorder. The prefix τ1∗
is needed since one τ(∗) transition has already been done when process call the
computation is under consideration.

Example 4. Consider the process fac(n, r) and the assignment [−] of Example 3:

[fac](0, r) = τ0r′ | r〈0!〉 | τ1∗ ≡ r〈1〉 | τ1∗ & τ1∗ .r〈1〉 = τ1∗ .[r〈1〉] Since τ0r′ .0 ≡ 0

[fac](m+ 1, r) = (νr′)τm+1
r′ | τm+2

∗ | r〈(m+ 1)!〉
& τ1∗ .[(νr

′)(fac(m, r′) | r′(x).r〈x× (m+ 1)〉)]
= τ1∗ .(νr

′)(((νr′)τmr′ | τm+1
∗ | r′〈m!〉) | (r′(x).r〈x× (m+ 1)〉) By Example 3

Note that the above inequality & for simulation holds since the traces of

τ1∗ .(νr
′)(((νr′)τmr′ | τm+1

∗ | r′〈m!〉) | (r′(x).r〈x× (m+ 1)〉)

are strictly included in the traces of [fac](m + 1, r). Consequently, [−] is an
interpretation of the process fac(n, r).

We start to state an obvious lemma showing that interpretations are pre-
served under τ reductions:

Lemma 4. Given a closed process P having interpretation [−], if P
τ(∗)→ P ′ then

[−] is also an interpretation of P ′.

Proof. There are no new process definitions introduced in P ′. Consequently, the
inequalities of Definition 4 remain valid. ut

Another interesting result is that [P] is an over approximation of P :

Lemma 5. Given a closed process P having interpretation [−], [P] strongly sim-
ulates P , i.e. [P] & P .

9

Proof. This result is straightforward as a consequence of Definition 4 though
both processes are not in the same domains. ut

Lemma 6. Given a closed process P having interpretation [−], if P
τ(∗)→ P ′ then

[P] & τ1∗ .[P
′].

Proof. By Lemma 5 and by induction on the
τ(∗)→ transitions. ut

4 Resource algebra for bounded reaction

4.1 Resource algebra.

Resource algebra will be used to compute the resource upper bounds of the
presented analysis. The resource algebra is the set of total functions ND mapping
each annotation χ ∈ D to a natural number k ∈ N.
Let kA, k ∈ N, A ⊆ D be a notation for the characteristic function of A defined
by:

kA(χ) =

{
k, ∀χ ∈ A
0,∀χ ∈ D−A

In what follows, let δ0 be a notation for the function defined by ∀χ ∈ D, δ0(χ) =
0. The commutative operator ⊗ is defined by:

∀χ ∈ D, (δ ⊗ δ′)(χ) = δ(χ) + δ′(χ)

where (N,+, 0) is the usual commutative monoid over natural numbers. Note
that δ0 is the neutral element for ⊗ since δ⊗δ0 = δ. Moreover, we have kA⊗k′A =
(k + k′)A. The commutative operator ⊕ is defined in the same way by:

∀χ ∈ D, (δ ⊕ δ′)(χ) = max(δ(χ), δ′(χ))

where (N,max, 0) is the usual commutative monoid over natural numbers.

Lemma 7. (ND,⊗,⊕) is a max-plus algebra.

The resource algebra underlies a poset structure (ND,�), where � is defined by
δ � δ′ iff δ ⊕ δ′ = δ.

4.2 Resource process semantics

We introduce a semantics of resource processes J−K, a partial map from R(N) to
ND. For that purpose, we define the reachability relation between resource pro-
cesses. Given a resource process R and a name χ ∈ D, define the set of reachable

processes Reachχ(R) from R through χ by Reachχ(R) = {S | R τ(χ)→ S}. Finally,
define the set of reachable processes from R by Reach(R) = ∪χ∈DReachχ(R).

10

Definition 5 (Resource Process semantics). The resource process seman-
tics J−K is defined by:

JRK = ⊕{1{χ} ⊗ JSK | ∀χ ∈ D, ∀S ∈ Reachχ(R)} if Reach(R) 6= ∅
JRK = δ0 otherwise

Lemma 8. If R & S then JRK � JSK.

Proof. There are two cases to consider:

– If Reach(S) 6= ∅ then by definition of the resource process semantics J−K:

JSK = ⊕{1{χ} ⊗ JS′K | ∀χ ∈ D, ∀S′ ∈ Reachχ(S)}

However for each S′ ∈ Reachχ(S), there exists R′ ∈ Reachχ(R) such that
R′ & S′, by definition of &. Suppose by induction hypothesis (I.H.) that
JR′K � JS′K. We obtain that:

JSK = ⊕{1{χ} ⊗ JS′K | ∀S′ s.t. S
τ(χ)→ S′} By definition of J−K

� ⊕{1{χ} ⊗ JR′K | ∀R′ s.t. R
τ(χ)→ R′}) (I.H.) and monotonicity of ⊕,⊗

= JRK Since R′ ∈ Reachχ(R)

– If Reach(S) = ∅ then JSK = δ0 � JRK. ut

Lemma 9 (Resource consumption). Given a closed process P having inter-

pretation [−], if P
τ(χ)→ P ′, χ ∈ D, then J[P]K � 1χ ⊗ J[P ′]K.

Proof. There are two cases to consider:

– If χ ∈ N then, by Lemma 3, we have [P]
τ(χ)→ [P ′]. Consequently, [P ′] ∈

Reachχ([P]) 6= ∅. By definition of J−K, we obtain that J[P]K � 1{χ} ⊗ J[P ′]K.
– If χ = ∗ then, by Lemma 6, [P] & τ1∗ .[P

′]. Consequently, by Lemma 8, we
obtain that J[P]K � Jτ1∗ .[P ′]K � 1{∗} ⊗ J[P ′]K, by definition of J−K. ut

4.3 Bounded reactions and completeness of the analysis

Theorem 1. Given a process P having interpretation [−], we have:

∀χ P ∈ SNτ(χ)(J[P]K(χ)).

Proof. By Lemma 9, if P
τ(χ)→ P ′, χ ∈ D, then J[P]K � 1χ⊗J[P ′]K. Consequently,

J[P]K(χ) ≥ (1χ ⊗ J[P ′]K)(χ) = 1 + J[P ′]K(χ). Moreover, if P
τ(χ′)→ P ′, χ′ 6= χ

then J[P]K(χ) ≥ (1χ′ ⊗ J[P ′]K)(χ) = J[P ′]K(χ). Consequently, there are at most
J[P]K(χ) reactions labeled by χ. ut

Theorem 2. A process P has interpretation [−] if and only if P ∈ SN .

11

Proof. Soundness: By Theorem 1, P ∈ SNτ(χ)(J[P]K(χ)),∀χ ∈ D. Consequently,
P ∈ ∩χ∈DSNτ(χ)(J[P]K(χ)) ⊂ SN . Completeness: If P ∈ SN then the traces
of P are finite. From these traces, we can rebuild a resource process simulating
P . We do exactly the same for all the Pi appearing in the right hand side of a
definition. The simulation inequalities are clearly satisfied since for each trace ti
of Pi, τ(∗).ti is a trace of P . ut

4.4 Examples

In this section we illustrate some toy examples and one counter-example to help
the reader to understand the interpretation based method.

Example 5. Consider the process fac(n, r) of Example 1 wrt to the closed sub-
stitution σ such that nσ = k and rσ = a, we have:

[fac(n, r)σ] = [fac(k, a)] = (νr′)τkr′ | τk+1
∗ | a〈k!〉

Consequently, J[fac(k, a)]K = k{r′} ⊗ (k + 1){∗} and:

fac(a, k) ∈ SNτ(r′)(J[fac(k, a)]K(r′)) = SNτ(r′)(k) By Theorem 1

fac(a, k) ∈ SNτ(∗)(J[fac(k, a)]K(∗)) = SNτ(∗)(k + 1)

fac(a, k) ∈ SNτ(r)(J[fac(k, a)]K(r)) = SNτ(r)(0)

which means that the process fac(k, a) may react at most k times on the internal
channels r′, may call processes at most k + 1 times and will never react on a
(note that r′ occurs freely here since internal channels are abstracted as a whole).
Notice that k can be abstracted as the identity function mapping each integer k
to itself. Clearly fac(a, k) ∈ SN , by Theorem 2.

Example 6. Consider the process F (a, k) with respect to the process definition:

F (c, n) = Case c, n of c, 0→ c〈0〉
c,m+ 1→ c〈m+ 1〉 | F (c,m)

It admits the following interpretation [F](c, n) = τn+1
∗ | c〈0〉 | . . . | c〈n〉 since:

[F (c, 0)] = τ1∗ | c〈0〉 ≥ τ1∗ .c〈0〉 = τ1∗ .[c〈0〉]
[F (c,m+ 1)] = τm+2

∗ | c〈0〉 | . . . | c〈m+ 1〉
& τ1∗ .(c〈m+ 1〉 | τm+1

∗ | c〈0〉 | . . . | c〈m〉)
& τ1∗ .[c〈m+ 1〉 | F (c,m)]

Moreover, J[F (a, k)]K = Jτk+1
∗ | a〈0〉 | . . . | a〈k〉K = (k + 1){∗}. Consequently,

F (a, k) ∈ SNτ(∗)(k + 1) and F (a, k) ∈ SNτ(a)(0).

12

Example 7. Consider the process F (a, k) with respect to the process definition:

F (c, n) = Case c, n of c, 0→ c〈0〉
c,m+ 1→ F (c,m) + F (c,m)

It admits the following interpretation [F](c, n) = τn+1
∗ | c〈0〉 since:

[F (c, 0)] = τ1∗ | c〈0〉 & τ1∗ .c〈0〉 = τ1∗ .[c〈0〉]
[F (c,m+ 1)] = τm+2

∗ | c〈0〉
& τ1∗ .((τ

m+1
∗ | c〈0〉) + (τm+1

∗ | c〈0〉))
= τ1∗ .[F (c,m) + F (c,m)]

Moreover, J[F (a, k)]K = Jτk+1
∗ | a〈0〉K = (k + 1){∗} and F (a, k) ∈ SNτ(∗)(k + 1)

and F (a, k) ∈ SNτ(a)(0).

Example 8. Consider the process F (a, k) with respect to the process definition:

F (c, n) = Case c, n of c, 0→ c〈0〉
c,m+ 1→ F (c,m) | F (c,m)

It admits the following interpretation [F](c, n) = τ2
2n

∗ | c〈0〉 | . . . | c〈0〉︸ ︷︷ ︸
2n+1 times

since:

[F (c, 0)] = τ1∗ | c〈0〉 | c〈0〉 & τ1∗ .c〈0〉 = τ1∗ .[c〈0〉]

[F (c,m+ 1)] = τ2
2m+4

∗ | c〈0〉 | . . . | c〈0〉︸ ︷︷ ︸
2m+2 times

& τ1∗ .((τ
22m+2

∗ | c〈0〉 | . . . | c〈0〉︸ ︷︷ ︸
2m+1 times

) | (τ2
2m+2

∗ | c〈0〉 | . . . | c〈0〉︸ ︷︷ ︸
2m+1 times

))

= τ1∗ .[F (c,m) | F (c,m)]

Moreover, J[F (a, k)]K = (22k){∗} and F (a, k) ∈ SNτ(∗)(2
2k) and F (a, k) ∈

SNτ(a)(0).

Example 9. As a counter-example consider the process definition:

bip() = bip() | P

for some process P . Clearly there is no assignment [−] such that [bip()] &
τ1∗ .[bip() | P] since [bip()] & τ1∗ .[bip()] does not hold, for any [−], which is rea-
sonable since the process bip() does not terminate (See Theorem 2).

Example 10. Consider the process F (a, b, i, j) wrt the process definition:

F (a, b, n,m) = Case a, b, n,m of a, b, 0, 0→ 0

a, b, 0,m+ 1→ F (a, b,m+ 1,m)

a, b, n+ 1,m→ (a(x).bx | av) + F (a, b, n,m)

13

It admits the following interpretation [F](a, b, n,m) = τ
n+(m+1)2

∗ | (a(x).bx | av)
since:

[F (a, b, 0, 0)] = τ1∗ + (a(x).bx | av) ≥ τ1∗ .0 = τ1∗ .[0]

[F (a, b, 0,m+ 1)] = τ
(m+2)2

∗ | (a(x).bx | av)

& τ1∗ .(τ
m+1+(m+1)2

∗ | (a(x).bx | av))

= τ1∗ .[F (a, b,m+ 1,m)]

[F (a, b, n+ 1,m)] = τ
n+1+(m+1)2

∗ | (a(x).bx | av)

& τ1∗ .((τ
n+(m+1)2

∗ | (a(x).bx | av)) + (a(x).bx | av)

= τ1∗ .[F (a, b, n,m) + a(x).bx | av]

Moreover, J[F (a, b, i, j)]K = (i+ (j + 1)2){∗} + 1{a}. Consequently, F (a, b, i, j) ∈
SNτ(∗)(k + (k + 1)2) and F (a, b, i, j) ∈ SNτ(a)(1).

5 Extension to space upper bounds

In this section, we show that playing on the parameters of the analysis (language,
simulation, semantics,. . .), we may infer several other challenging results about
resource consumption of processes. In particular, interpretations also allow us to
infer upper bounds about the maximal size of the values sent on each channel
during a communication. For that purpose, we put an extra annotation, an upper
bound on the integer value sent, on the rule (Com) of Figure 2 as follows:

P
xw→ P ′ Q

xw→ Q′

(Com)

P | Q τ(x(#w))→ P ′ | Q′
with #w =

{
0, if w ∈ D
w, if w ∈ N

The rule (Close) can be annotated in a similar manner. Moreover, these anno-

tation are extended to resource processes by τn+1
χ(k) .R

τ(χ(k))→ τnχ(k).R and to the

preorder � in a standard way. The aim of these new annotations is to keep record
of the integer value sent on a given channel or 0 by default (if a name has been
sent or if a process definition has been applied).

Define Reachχ(k)(R) = {S | R τ(χ(k))→ S}. We are now ready to introduce a new
semantics L−M, a partial map from R(N) to ND, for space analysis:

LRM = ⊕{k{χ} ⊕ LSM | ∀χ ∈ D, ∀k ∈ N, ∀S ∈ Reachχ(k)(R)} if Reach(R) 6= ∅
LRM = δ0 otherwise

Now we obtain an upper bound on each integer value sent during reaction:

Theorem 3 (Space upper bound). Given a closed process P0 of interpreta-

tion [−], for each sequence of reduction P0
τ(χ1(n1))→ P1 . . .

τ(χk(nk))→ Pk, we have
L[P0]M(χi) ≥ ni.

14

Proof. There are two cases to consider:

– If χi+1 ∈ N then, by Lemma 33, we have [Pi]
τ(χi+1(ni+1))→ [Pi+1] and

[Pi+1] ∈ Reachχ(ni+1)([Pi]) 6= ∅. By definition of L−M, we obtain that L[Pi]M �
ni+1{χi+1} ⊕ L[Pi+1]M and, consequently, L[P0]M(χi+1) ≥ L[Pi]M(χi+1) ≥ ni+1,
by transitivity and by definition of ⊕.

– If χi+1 = ∗ then trivially ni+1 = 0 (by definition of the # operator) and the
result holds. ut

Example 11. For the process fac of Example 5, the assignment: [fac](k, a) =
(νr′)τ2r′(1) | τ

1
r′(2) | . . . | τ

1
r′((k−1)!) | τ

k+1
∗(0) | a〈k!〉 is an interpretation and, conse-

quently, we have L[fac(k, a)]M = (k−1)!{r′} which means that (k−1)! is an upper
bound on the values sent on the internal names r′ whereas 0 is an upper bound
on the values sent on all the other names (indeed, the value on a has not been
sent yet).

Remark 1. Note that the preorder & might be seen as too restrictive for space
control. Indeed it requires the simulating resource process to output exactly the
same integers as the simulated process. Since we are only interested in an upper
bound, & can be replaced by a finer relation ' defined as follows: Given two
labels α and β, β ' α holds if either β = α or β = ν̃xn, α = ν̃xm, n,m ∈ N,
x ∈ N and n ≥ m. The partial preorder ' on resource processes is a simulation

defined by R ' R′ if ∀S′ ∈ R(N) s.t. R′
α→ S′, ∃S ∈ R(N) s.t. R

β→ S, S '
S′ and β ' α. We claim that Theorem 3 holds if we substitute ' for & in the
definition of interpretations. Turning back to Example 11, the interpretation of
fac can be set to [fac](k, a) = (νr′)τkr′((k−1)!) | τ

k+1
∗(0) | a〈k!〉.

6 Some words on inference.

An important issue related to the presented analysis is interpretation inference
which consists in finding an assignment that is an interpretation of a given
process P . Interpretation inference is clearly undecidable in general since finding
an interpretation is as difficult as the halting problem (see Theorem 2). The
undecidability of such a problem lies in the fact that one needs to guess functions

f from N to N as annotations of the resource processes (for example, τ
f(n)
∗) and to

check the simulation preorder for each process definition. Note that the difficulty
of this latter check lies in the parametric definition and not in the simulation
itself since resource processes are strongly normalizing (they have neither the
ability to recurse, nor the ability to replicate). This result is not surprising if we
compare our notion of interpretation to the notion of polynomial interpretation
for term rewrite systems, also known to be an undecidable tool. As for polynomial
interpretations, the inference problem will become decidable if we restrict the
class of functions under consideration (max-plus, bounded polynomials, ...).

3 This Lemma trivially remains valid for the new annotations.

15

For a given process P such that D(P) = {F1, · · · , Fn}, the inferred assign-
ments [Fi](

−→n ,−→a) have the shape:

ν−→r (τ
fir1

(−→n)
r1 | . . . |τ

firl
(−→n)

rl)|τ
fia1

(−→n)
a1 | . . . |τ

fiak
(−→n)

ak |τf
i
∗(
−→n)

∗ |f ia1(a1,
−→n)| . . . |f iak(ak,

−→n)

where−→r = r1, · · · , rl corresponds to the names of P under a restriction, fv(P) =
{−→n } and {−→a } = {a1, · · · , ak} = fn(P). Consequently, the interpretation infer-
ence consists in finding all the functions f iχ : Nk → N and checking inequalities.
As demonstrated for polynomial interpretation, this problem becomes decidable
for small classes of functions (it is NP-difficult for some max-plus algebra [1]).

7 Conclusion.

The work presented in this paper is the most intuitive and simplest version in the
set of all possible applications. Indeed we claim that playing on the parameters
of the analysis (language, simulation, semantics,. . .), we may infer several other
challenging results about resource consumption of processes:

– the analysis may be extended in a simple way to other inductive data struc-
tures such as lists, trees...

– the framework can be extended in order to capture processes that do not
terminate but still have bounded reactions on some channels.

– Finally, we can capture complexity classes, such as FPtime, in a classical
way by restricting the considered processes to processes computing functions.

References

1. R. Amadio. Synthesis of max-plus quasi-interpretations. Fundamenta Informaticae,
65(1–2), 2005.

2. P. Baillot and V. Mogbil. Soft lambda-calculus: a language for polynomial time
computation. In FOSSACS 2004, vol. 2987 of LNCS, pages 27–41. Springer, 2004.

3. S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the poly-
time functions. Computational Complexity, 2:97–110, 1992.

4. G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. Quasi-interpretations a way to control
resources. Theoretical Computer Science, 412(25):2776–2796, 2011.

5. M. Collinson, B. Monahan, and D. J. Pym. A logical and computational theory of
located resource. J. Log. Comput., 19(6):1207–1244, 2009.

6. R. Demangeon, D. Hirschkoff, and D. Sangiorgi. Termination in higher-order con-
current calculi. J. Log. Algebr. Program., 79(7):550–577, 2010.

7. Y. Deng and D. Sangiorgi. Ensuring termination by typability. Information and
Computation, 204(7):1045–1082, 2006.

8. J. Feret. Occurrence counting analysis for the pi-calculus. Electronic Notes in
Theoretical Computer Science, 39(2):1–18, 2001.

9. M. Gaboardi, S.R. Della Rocca, and J.Y. Marion. A Logical Account of PSPACE.
ACM SIGPLAN-IGACT POPL, 2008.

10. M. Gaboardi and S. Ronchi Della Rocca. A soft type assignment system for λ-
calculus. vol. 4646 of LNCS, pages 253–267. Springer, 2007.

16

11. J.-Y. Girard. Light linear logic. I.&C., 143(2):175–204, 1998.
12. R.R. Hansen, J.G. Jensen, F. Nielson, and H.R. Nielson. Abstract interpretation

of mobile ambients. In SAS, vol. 1664 of LNCS, pages 134–148. Springer, 1999.
13. M. Hennessy. A calculus for costed computations. Logical Methods in Computer

Science, 7(1), 2011.
14. A. Igarashi and N. Kobayashi. Type reconstruction for linear -calculus with i/o

subtyping. Inf. Comput., 161(1):1–44, 2000.
15. N.D. Jones and Lars Kristiansen. A flow calculus of mwp-bounds for complexity

analysis. ACM Trans. Comput. Log., 10(4), 2009.
16. N. Kobayashi, M. Nakade, and A. Yonezawa. Static analysis of communication

for asynchronous concurrent programming languages. In SAS, vol. 983 of LNCS,
pages 225–242. Springer, 1995.

17. N. Kobayashi, K. Suenaga, and L. Wischik. Resource usage analysis for the π-
calculus. In VMCAI, vol. 3855 of LNCS, pages 298–312. Springer, 2006.

18. B. König. Analysing input/output-capabilities of mobile processes with a generic
type system. Automata, Languages and Programming, pages 403–414, 2000.

19. U. Dal Lago, S. Martini, and D. Sangiorgi. Light logics and higher-order processes.
In EXPRESS’10, vol. 41 of EPTCS, pages 46–60, 2010.

20. D.S. Lankford. On proving term rewriting systems are noetherian. Technical
report, 1979.

21. D. Leivant. A foundational delineation of poly-time. I.&C., 110(2):391–420, 1994.
22. D. Leivant and J.-Y. Marion. Lambda calculus characterizations of poly-time.

Fundamenta Informaticae, 19(1,2):167,184, September 1993.
23. Z. Manna and S. Ness. On the termination of Markov algorithms. In Third hawaii

international conference on system science, pages 789–792, 1970.
24. R. Milner. Communicating and mobile systems: the π-calculus. Cambridge, 1999.
25. J.-Y. Moyen. Resource control graphs. ACM Trans. Comput. Log., 10(4), 2009.
26. H.R. Nielson and F. Nielson. Shape analysis for mobile ambients. In Proceedings

of the 27th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 142–154. ACM, 2000.

27. D. Sangiorgi. Termination of processes. Mathematical Structures in Computer
Science, 16(1):1–39, 2006.

28. T. Terauchi and A. Megacz. Inferring channel buffer bounds via linear program-
ming. In ESOP, vol. 4960 of LNCS, pages 284–298, 2008.

29. N. Yoshida, M. Berger, and K. Honda. Strong normalisation in the pi-calculus.
Inf. Comput., 191(2):145–202, 2004.

