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Abstract: In this paper, we investigate Partial Observability NormalForms (PONF) of nonlinear dynamical systems. Necessary
and sufficient conditions for the existence of a diffeomorphism bringing the original nonlinear system into a PONF are estab-
lished. This enables us to estimate a part of state of a nonlinear dynamical system. A concrete example (SIR epidemic model) is
provided to illustrate the feasibility of the proposed results.

1 Introduction

Since the last four decades, many research activities have
been developed to deal with the problem of state estimation
of nonlinear dynamical systems. Several nonlinear state es-
timation methods have been performed to improve accuracy
and performances of the control system design. Generally,
we distinguish two approaches for nonlinear observer de-
sign. The first one is to design observer directly for the non-
linear systems which however highly depends on the stud-
ied system and there does not exist a uniform way to study
general nonlinear systems. The second approach is based
on some nonlinear transformations, using Lie algebra, to
bring the original system into canonical observability nor-
mal form, from which the design of state observers is per-
formed by using existing observer techniques in the new co-
ordinates. The literature is vast about this second approach
since the pioneer works of ([1, 2]) for single output systems
and [3] for the case of multi outputs (see also [4–18]).

All the above-mentioned papers are dedicated to the full
order case (i.e. the observer and the original system have
the same dimension) and few works have been dedicated to
partial observation which makes sense , in practice, when
only a part or a function of states are required. Among the
papers dedicated to this issue, let us quote the work of [19]
onZ-observability or in [20–22] where the authors proposed
nonlinear observer based on particular canonical forms.

This paper proposes a PONF for partially observable non-
linear systems. In the new coordinates, a simple Luenberger
observer is used to estimate a part of state of the studied sys-
tem. Necessary and sufficient conditions are established to
transform the original nonlinear system into the PONF.

This paper is organized as follows. Section2 recallsZ-
observability. In Section3, PONF is presented. Necessary
and sufficient conditions are deduced in Section4 to bring
the original nonlinear system into the PONF. An extension
to nonlinear systems with inputs is presented in section5.
Section6 generates the results by applying another diffeo-
morphism on the output, in which a concrete example (SIR
epidemic model) is presented in order to highlight our re-
sults.

2 Z-observability

Let us consider the following nonlinear dynamical system:
{

ẋ = f(x)
y = h(x)

(1)

wherex ∈ R
n is the state vector,y ∈ R is the output,f :

R
n → R

n andh : R
n → R are analytic. Contrary to the

classical observability analysis as in [2], where the full state
vector is estimated, this paper considers the observability of
the following variables

z = l (x) (2)

wherez ∈ R
p. This problem was firstly studied in [19], and

is named asZ-observability.

Definition 1 (Z-observability)z = l (x) is said to beZ-
observable with respect to system (1), if for any two trajec-
tories, xi(t), 1 ≤ i ≤ 2, in U ⊂ R

n defined on a same
interval [t0, t1], the equality

h(x1(t)) = h(x2(t)), a.e. in[t0, t1]

implies

Z(x1(t)) = Z(x2(t)), a.e. in[t0, t1]

If for any trajectoryx(t) in U there always exists an open
setU1 ⊂ U so thatz isZ-observable inU1, thenz is said to
be locallyZ-observable inU .

The above definition ofZ-observability can be interpreted
in an algebraic way, which is linked to the classical definition
of algebraical observability in [23]. In this work we will
adopt the following definition.

Definition 2 z = l (x) is said to beZ-observable with re-
spect to system (1), if it can be expressed as functions of the
output and its derivatives, i.e.

z = l (x) = l̃
(

y, ẏ, · · · , y(i), · · ·
)

In the following, by assuming thatz is Z-observable, we
are going to propose a universal approach to estimatez for



system (1). This method is based on transforming nonlinear
system (1) into a so-called partial observability normal form,
from which a reduced order observer can be easily designed.

3 Partial observability normal form

This paper considers only the non trivial case ofZ-
observability, i.e. it is assumed that for dynamical system

(1) we have rank
{

dh, dLfh, · · · , dL
k
fh, · · ·

}

= r < n.

Let consider the following partial observability normal
form







ξ̇ = Aξ + β(y)

ζ̇ = η(ξ, ζ)
y = Cξ

(3)

whereξ ∈ R
r, ζ ∈ R

n−r, y ∈ R, A is ther × r Brunovsky
matrix:

A =











0 0 · · · 0
1 0 · · · 0

0
. . .

. . .
...

0 · · · 1 0











∈ Rr×r

C = (0, · · · , 0, 1) ∈ R
1×r, β : R → R

n andη : R
r ×

R
n−r → R

n−r.
For the form (3), one can easily design a reduced order

observer to estimate only the partial stateξ.

Lemma 1 The following dynamical system:
{

˙̂
ξ = Aξ̂ + β(y) +K(ŷ − y)

ŷ = Cξ̂

is an observer for the proposed partial observability normal
form (3).

Proof 1 Sete = ξ − ξ̂, we havėe = (A−KC) e.
SinceA ∈ R

r×r is in the Brunovsky form andC =
(0, · · · , 0, 1) ∈ R

1×r, thus the pair(A,C) is observable.
One can arbitrarily chooseK such that(A−KC) is Hur-
witz, and this implies the exponential convergence ofξ̂ to ξ.

It is shown that once system (1) can be transformed via a
diffeomorphism(ξT , ζT )T = φ(x) into the partial observ-
ability normal form (3), then one can design the above sim-
ple observer to estimateξ. Moreover, ifz is a function such
that:

∂z

∂ζ
= 0

thenz is Z-observable for (1), and we can useξ to estimate
z.

Therefore, the rest of paper deals with the deduction
of necessary and sufficient conditions which guarantee a
diffeomorphism to transform system (1) into the proposed
partial observability normal form (3).

Remark 1 The partial observability normal form consid-
ered in this work is quite different from the normal form in-
troduced in the work of R̈obenack and Lynch [20]. which is
written as:







ξ̇ = Aξ + β(y, ζ)

ζ̇ = η(ξ, ζ)
y = Cξ

whereβ depends also on the second variableζ.

4 Nonlinear systems without inputs

In this paper, it is assumed that there existsr < n such

that rank
{

dh, dLfh, · · · , dL
k
fh, · · ·

}

is r. Thus system (1)

is not fully observable. For1 ≤ i ≤ r, setθi = dLi−1
f h and

∆ =span{θ1, θ2, · · · , θr}. Denote∆⊥ =ker∆ the distribu-
tion kernel of∆.

Let τ1 be a vector field modulo∆⊥ which satisfies the
following conditions:

{

dLk
fh(τ1) = 0 for 0 ≤ k ≤ r − 2

dLr−1
f h(τ1) = 1

and by induction define the following family of vector fields
τi = [τi−1, f ] modulo∆⊥ for 2 ≤ i ≤ r, which implies
τi − [τi−1, f ] ∈ ∆⊥, where[, ] denotes the conventional Lie
bracket. Thus, one can choose a complementary family of
vector fields{τr+1, ..., τn} such thatτ = [τ1, τ2, · · · , τn]
forms a basis andθk(τj) = 0 for 1 ≤ k ≤ r, r+ 1 ≤ j ≤ n.

Note

Λ1 =











θ1
θ2
...
θr











(τ1, τ2, · · · , τr) =











0 · · · 0 1
... · · · 1 ∗
0 · · · ∗ ∗
1 · · · ∗ ∗











With the chosen{τr+1, τr+2, · · · , τn}, one can freely
choose{θr+1, θr+2, · · · , θn} such that

Λ2 =







θr+1

...
θn






(τr+1, · · · , τn)

is of rankn− r.

Property 1 By giving the vector fields(τ1, τ2, · · · , τr) and
the codistribution(θ1, θ2, · · · , θr), the chosen complemen-
tary τi andθi for r + 1 ≤ i ≤ n should satisfy the following
properties

1) τ = [τ1, τ2, · · · , τn] forms a basis;
2) θk(τj) = 0 for 1 ≤ k ≤ r andr + 1 ≤ j ≤ n.
3) rankΛ2 = n− r

Sinceτ is a basis, then it can be viewed as an invertible
matrix. Therefore, in this basisf can be decomposed as fol-
lows:

f(x) =
n

∑

i=1

fi(x)
∂

∂xi

= F1 + F2 (4)

with F1 =
r
∑

i=1

F1,i(x)τi andF2 =
n
∑

j=r+1

F2,j(x)τj .

One can state the following theorem.

Theorem 1 Given a family of vector fieldsτ andθ satisfied
Property 1, there exists a diffeomorphism(ξT , ζT )T = φ(x)
which transforms the dynamical system (1) into the partial
observability normal form (3) if and only if

• [τi, τj ] = 0 for all 1 ≤ i ≤ n and1 ≤ j ≤ n;
• [τi, F1] = 0 for all r + 1 ≤ i ≤ n, whereF1 is defined

in (4).

Proof 2 Necessity:



If there existes a diffeomorphism(ξT , ζT )T = φ(x)
which transforms (1) into the form (3), then one
has φ∗(τi) = ∂

∂ξi
for 1 ≤ i ≤ n, which implies

[φ∗(τi), φ∗(τj)] = φ∗([τi, τj ]) = 0 for 1 ≤ i ≤ n. Since
ξ = φ(x) is a diffeomorphism, one has[τi, τj ] = 0 for
1 ≤ i ≤ n and1 ≤ j ≤ n.

Moreover, it is easy to see that for the dynamical system
(3) we have∆⊥ =span{ ∂

∂ζi
, r + 1 ≤ i ≤ n}, therefore

φ∗(τi) = ∂
∂ξi

modulo∆⊥. Thus it is easy to check that

[φ∗ (τi) , φ∗ (F1)] = φ∗ ([τi, F1]) = 0

for r+ 1 ≤ i ≤ n. Finally one obtains[τi, F1] = 0 and then
we have

φ∗(f) =

(

Aξ + β(y)
η(ξ, ζ)

)

which implies that

φ∗ (F1) + φ∗ (F2) =

(

Aξ + β(y)
η(ξ, ζ)

)

Sufficiency:
Since[τi, τj ] = 0 for 1 ≤ i ≤ n and 1 ≤ j ≤ n, then

according to Poincaŕe’s lemma there exists locally a diffeo-
morphism

(ξT , ζT )T = φ(x)

such thatdφ = φ∗ with φ∗ (τi) = ∂
∂ξi

for 1 ≤ i ≤ r and

φ∗ (τj) = ∂
∂ζj

for r + 1 ≤ j ≤ n. Thus, for1 ≤ i ≤ r − 1,
one has

∂φ∗(f)

∂ξi
= φ∗([τi, f ]) = φ∗(τi+1 modulo∆⊥)

=
∂

∂ξi+1
modulo span{

∂

∂ζk
r + 1 ≤ k ≤ n}

Moreover, forr + 1 ≤ j ≤ n, since[τj , F1] = 0, hence

∂φ∗(F1)

∂ζj
= φ∗([τj , F1]) = 0 (5)

By integration one has

ξ̇ = φ∗(F1) =

r
∑

i=1

ξi
∂

∂ξi+1
+ β(y)

and this proved the sufficiency.

Note θ = (θ1, · · · , θn)
T , one can define the following

matrix:

Λ = θτ =

(

Λ1 0r×(n−r)

∗ Λ2

)

It is clear thatΛ is invertible, thus one can define the follow-
ing multi 1-forms:

ω = Λ−1θ (6)

Theorem 2 Suppose that Theorem 1 is fulfilled, then the dif-
feomorphism(ξT , ζT )T = φ(x) which transforms (1) into
the form (3) is determined by

φ (x) =

∫

ω + φ (0)

Proof 3 For any two vector fieldsX,Y one has

dω(X,Y ) = LX (ω(Y )) − LY (ω(X)) − ω([X,Y ])

By settingX = τi andY = τj , one obtains

dω(τi, τj) = Lτi
ω(τj) − Lτj

ω(τi) − ω([τi, τj ])

Asω(τj) andω(τi) are constant, then one has

dω(τi, τj) = −ω([τi, τj ])

which implies the equivalence betweendω = 0 and
[τi, τj ] = 0.

Since Theorem 1 is fulfilled, thus one always hasdω =
0. According to Poincaŕe’s lemma, this implies that there
exists a diffeomorphismφ (x) such thatω = dφ. Finally the
diffeomorphism can be determined just by integration ofω
defined in (6).

Example 1 Let us consider the following dynamical system:






















ẋ1 = −x2
3 + x3x2x1 −

1
2x

3
3

ẋ2 = x1 −
1
2x

2
3

ẋ3 = −x3 + x2x1 −
1
2x

2
3

y = x2

z = x2 + 2x1x2 − x2x
2
3

(7)

A simple calculation gives rank
{

dh, dLfh, dL
2
fh

}

= 2,

thusr = 2. One has

θ1 = dx2 andθ2 = dx1 − x3dx3

Let∆ =span{θ1, θ2}, and

ker∆ = span

{

l1 = x3
∂

∂x1
+

∂

∂x3

}

The frameτ is given by

τ1 =
∂

∂x1

τ2 =
∂

∂x2
+ x2x3

∂

∂x1
+ x2

∂

∂x3
modulol1 =

∂

∂x2

In order to form a basis which satisfiesθ1 (τ3) = θ2 (τ3) =
0, the third complementary vector field can be chosen as fol-
lows

τ3 =
∂

∂x3
+ x3

∂

∂x1

which makes the following equality be satisfied

[τ1, τ2] = [τ1, τ3] = [τ2, τ3] = 0

According to 4), one has

f = F1 + F2 = F12τ2 + F23τ3

where
F1 =

(

x1 − x2
3/2

)

τ2

andF2 =
(

−x3 + x1x2 − x2
3/2

)

τ3. It can be checked that

[τ3, F1] = 0



Then the second item of Theorem 1 is satisfied.
In order to have rankΛ2 =rank {θ3 (τ3)} = 1, one can

choose
θ3 = dx3 − x2dx2

thus

Λ = θτ =





0 1 0
1 0 0
0 0 1





which yields

ω = Λ−1





θ1
θ2
θ3



 =





dξ1
dξ2
dζ1



 = d





x1 −
1
2x

2
3

x2

x3





Finally, one obtains the following diffeomorphism

φ (x) =





x1 −
1
2x

2
3

x2

x3





which transforms the studied system into the following form














ξ̇1 = 0

ξ̇2 = ξ1
ζ̇1 = η(ξ1, ξ2, ζ)
y = ξ2

Moreover, one has

z = x2 + 2x1x2 − x2x
2
3 = ξ2 + 2ξ1ξ2

and ∂z
∂ζ1

= 0 which implies thatz is Z-observable, and one
can use the estimatedξ to recoverz in (7).

5 Extension to systems with inputs

In this section, we extend our results to systems with in-
puts in the following form:







ẋ = f(x) +
m
∑

k=1

gk (x)uk

y = h(x)
(2) (8)

wherex ∈ R
n is the state,u = (u1, ..., um)T ∈ R

m is the
inputs,y ∈ R is the output,f : R

n → R
n, gk : R

n →
R

nandh : R
n → R are sufficiently smooth. For system (8),

the partial observability normal form is as follows:






















ξ̇ = Aξ + β(y) +
m
∑

k=1

α1
k(y)uk

ζ̇ = η(ξ, ζ) +
m
∑

k=1

α2
k(ξ, ζ)uk

y = Cξ

(9)

whereA, C, β andη are the same as those defined in the
form (3).

Following the same procedure, let define the projection of
gk on τ as follows:

Gk = G1
k +G2

k

with

G1
k =

r
∑

i=1

G1,i
k (x) τi andG2

k =
n
∑

j=r+1

G2,j
k (x) τj .

Then we have the following theorem.

Theorem 3 Suppose that Theorem 1 is satisfied. There ex-
ists a diffeomorphism(ξT , ζT )T = φ(x) which transforms
(8) into the form (9) if and only if

[

τi, G
1
k

]

= 0

for 1 ≤ i ≤ n, i 6= r and1 ≤ k ≤ m.

Proof 4 From Theorem 1, one can state that there exists a
diffeomorphism such that

φ∗(F1) = A(y)z + β(y)

Now, forr + 1 ≤ i ≤ n and1 ≤ k ≤ m, one has

∂φ∗
(

G1
k

)

∂ζi
=

[

∂

∂ζi
, φ∗

(

G1
k

)

]

= φ∗
[

τi, G
1
k

]

= 0

It is the same for1 ≤ i < r such thatφ∗
[

τi, G
1
k

]

= 0
Thereforeφ∗(G1

k) = α1
k(y), and finally we proved Theorem

3.

6 Diffeomorphism on the output

By giving a family of vector fieldsτ andθ satisfied Prop-
erty1, if the conditions of Theorem 1 cannot be fulfilled, i.e.
the Lie brackets of vector fields do not commute, then one
can modify those vector fields to construct a new family of
commutative vector fields, by applying another diffeomor-
phism on the output (see [3, 11]).

For this, letτ1 be the vector field modulo∆⊥ defined in
Section 4. Denotes(y) 6= 0 a function of the output of (1),
and one can construct a new vector fieldσ1 according to the
following equation:

σ1 = s(y)τ1

and by induction define the following new family of vector
fields

σk = [σk−1, f ] modulo∆⊥ for 2 ≤ k ≤ r

Thus, one can choose a complementary family of vector
fields{σr+1, ..., σn} such thatσ = [σ1, σ2, · · · , σn] forms a
basis andθk(σj) = 0 for 1 ≤ k ≤ r, r + 1 ≤ j ≤ n.

Note

Λ̃1 =











θ1
θ2
...
θr











(σ1, σ2, · · · , σr) =











0 · · · 0 s
... · · · s ∗
0 · · · ∗ ∗
s · · · ∗ ∗











With the chosen{σr+1, σr+2, · · · , σn}, one can freely
choose{θr+1, θr+2, · · · , θn} such that

Λ̃2 =











θr+1

θr+2

...
θn











(σr+1, σr+2, · · · , σn)

is of rankn− r.

Property 2 By giving the vector fields(σ1, σ2, · · · , σr) and
the codistribution(θ1, θ2, · · · , θr), the chosen complemen-
tary σi andθi for r+ 1 ≤ i ≤ n should satisfy the following
properties



1) σ = [σ1, τ2, · · · , σn] forms a basis;
2) θk(σj) = 0 for 1 ≤ k ≤ r andr + 1 ≤ j ≤ n.
3) rankΛ̃2 = n− r

Then, based on the new basisσ, f can be decomposed as
follows:

f =

r
∑

i=1

F1,i(x)σi +

n
∑

j=r+1

F2,j(x)σj (10)

with F1 =
r

∑

i=1

F1,i(x)σi andF2 =
n
∑

j=r+1

F2,j(x)σj . And

one can state the following theorem.

Theorem 4 Given an output functions(y) 6= 0 which con-
struct a new family of vector fieldsσ and θ satisfied Prop-
erty 2, there exists a diffeomorphism(ξT , ζT )T = φ(x)
which transforms the dynamical system (1) into the partial
observability normal form (3) withξr = ȳ = ψ(y) where
ψ(y) =

∫ y

0
1

s(c)dc. if and only if

• [σi, σj ] = 0 for all 1 ≤ i ≤ n and1 ≤ j ≤ n;
• [σi, F1] = 0 for all r + 1 ≤ i ≤ n, whereF1 is defined

in (10).

Proof 5 The proof of this theorem is similar with that of The-
orem 1, thus is omitted.

Remark 2 The deduction of such an output functions(y) 6=
0 in Theorem 4 is exhaustively investigated in [11].

Remark 3 Following the same arguments in Section 4, the
diffeomorphismφ(x) can be calculated by usingφ(x) =
∫

ω̃ + φ(0) whereω̃ = Λ̃−1θ with Λ̃ = θσ.

The following example highlights the proposed result.

Example 2 Let consider the well-known SIR epidemic
model that undergoes the spread of a contagious disease as
follows:























Ṡ = −βSI

İ = βSI − γI

Ṙ = γI
y = I
z = l(S, I) = N − I − S

whereS denotes the suspected population,I denotes the in-
fected,R denotes the removed population and the total pop-
ulationN is assumed to be known. The objective is to ap-
ply the proposed result of this paper to estimate the function
l(S, I) = N − I − S.

By using the same notations as in Section 4, a simple cal-
culation gives:

θ1 = dI andθ2 = βIdS + (βS − γ) dI

which yield the following vector fields:

τ1 =
1

βI

∂

∂S
andτ2 =

∂

∂I
+ (βS − γ − βI) τ1

Unfortunately, these two vector fields do not commute, since
[τ1, τ2] = 2

I
τ1. In order to construct a new family of

commutative vector fields by introducing a diffeomorphism
on the output, let follow the method proposed in [11] to
deduce a non-zero output functions(y). For this, set

σ1 = s(y)τ1 and σ2 := [σ1, f ] modulo∆⊥ = s(y)τ2 −
s′(y) (βSI − γI) τ1. Now, a straightforward calculation

gives:[σ1, σ2] = (2s2(y)
I

− 2s(y)s
′

(y))τ1, thus[σ1, σ2] = 0
if and only if functions(y) fulfils the following differential
equation:

s(y)

y
−
ds(y)

dy
= 0

Thus one can chooses(y) = y = I which yields

σ1 =
1

β

∂

∂S
and σ2 = −I

∂

∂S
+ I

∂

∂I

In order to constructσ and θ satisfying Property 2, one
choosesσ3 = ∂

∂R
andθ3 = dR which makes

[σ1, σ2] = [σ1, σ3] = [σ2, σ3] = 0

Based on the new basisσ, according to (10), one obtains

f = −βγIτ1 + (βS − γ) τ2 + γIτ3

thenF1 = −βγIτ1 + (βS − γ) τ1. It can be checked that

[τ3, F1] = 0

and the second item of Theorem 4 is satisfied.
Since

Λ̃ = θσ =





0 I 0
I −βI2 + (−γ + Sβ) I 0
0 0 1





which yields

ω̃ = Λ̃−1





θ1
θ2
θ3



 =





dξ1
dξ2
dζ1



 = d





β(S + I)
ln I
R





Therefore, the diffeomorphism is given as follows:

φ (x) =





β(S + I)
ln I
R





which transforms the studied system into the following form















ξ̇1 = −βγeȳ

ξ̇2 = ξ1 − βeȳ − γ

ζ̇1 = γeȳ

ȳ = ξ2 = ln I

In the transformed form, theZ-function becomes

z = l(S, I) = l̃ (ξ) = N −
ξ1
β

which is independent ofζ1, thus it isZ-observable, and one
can use the estimatedξ1 to recoverl(S, I).

By settingβ = 0.001, γ = 0.1, the simulation results
are depicted in Fig. 1-2 for the estimation of suspected and
infected population.
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Fig. 1: Estimation of suspected population (S)
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Fig. 2: Estimation of infected population (I)

7 Conclusion

This paper deals with partial observability problem, which
is useful sometimes when for example only partial states are
need to be estimated, or only functions of certain states are
required to be estimated. For this, a partial observabilitynor-
mal form is presented, for which a simple Luenberger ob-
server can be applied directly to estimate the partial states.
Necessary and sufficient conditions are deduced which guar-
antee the existence of a diffeomorphism transforming non-
linear systems into the proposed partial observability normal
form. The results are extended to nonlinear systems with
inputs and the transformation on the output as well. A con-
crete example was provided to illustrate the feasibility ofthe
proposed results.
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