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Abstract: In this paper, we investigate Partial Observability Norfatms (PONF) of nonlinear dynamical systems. Necessary
and sufficient conditions for the existence of a diffeomdsphbringing the original nonlinear system into a PONF atates
lished. This enables us to estimate a part of state of a rearlidynamical system. A concrete example (SIR epidemic hizde
provided to illustrate the feasibility of the proposed fesu

1 Introduction 2 Z-observability

) o Let us consider the following nonlinear dynamical system:
Since the last four decades, many research activities have

been developed to deal with the problem of state estimation { &= f(x) (1)
of nonlinear dynamical systems. Several nonlinear state es y = h(x)

timation methods have been performed to improve accuracy oo « R” is the state vectoy € R is the outputf :
and performances of the control system design. GenerallyﬁRn _. R" andh : R" — R are analytic. Contrary to the
we distinguish two approaches for nonlinear observer de'classical observability analysis as in [2], where the ftdte
sign. The first one is to design observer directly for the non- '

. . . vector is estimated, this paper considers the observabflit
linear systems which however highly depends on the studs : : pap ke

: 4 . the following variables

ied system and there does not exist a uniform way to study

general nonlinear systems. The second approach is based z=1(x) (2)
on some nonlinear transformations, using Lie algebra, to _ _ o

bring the original system into canonical observability-nor Wherez € RP. This problem was firstly studied in [19], and

mal form, from which the design of state observers is per-iS named as/-observability.
formed by using existing observer techniques in the new copafinition 1 (Z-observability)z = I (z) is said to beZ-

ordinates. The literature is vast about this second approac,pservable with respect to system (1), if for any two trajec-
since the pioneer works of ([1, 2]) for single output systems,iag 2i(t), 1 < i < 2,inU C R" defined on a same
and [3] for the case of multi outputs (see also [4-18]). interval ito 1’51] the eq_ual,ity

All the above-mentioned papers are dedicated to the full
order case (i.e. the observer and the original system have h(x'(t)) = h(z*(t)), a.e. inft, t1]
the same dimension) and few works have been dedicated to
partial observation which makes sense , in practice, whedmplies
only a part or a function of states are required. Among the
papers dedicated to this issue, let us quote the work of [19]

on Z-observability or in [20-22] where the authors proposedi|f for any trajectoryz(t) in U there always exists an open
nonlinear observer based on particular canonical forms.  set{/; ¢ U so thatz is Z-observable ifi/;, thenz is said to
This paper proposes a PONF for partially observable nonje |ocally Z-observable if/.

linear systems. In the new coordinates, a simple Luenberger o o .

observer is used to estimate a part of state of the studied sys | N€ above definition o -observability can be interpreted

tem. Necessary and sufficient conditions are established ti! @n @lgebraic way, which is linked to the classical defomiti

transform the original nonlinear system into the PONF.  ©f algebraical observability in [23]. In this work we will
This paper is organized as follows. SectidnecallsZ- adopt the following definition.

observability. In Sectior3, PONF is presented. Necessary Definition 2 z = I (z) is said to beZ-observable with re-
and sufficient conditions are deduced in Sectloio bring  spect to system (1), if it can be expressed as functions of the
the original nonlinear system into the PONF. An extensionoutput and its derivatives, i.e.

to nonlinear systems with inputs is presented in seciion

Section6 generates the results by applying another diffeo- z=1(x) = [(y, g, y@ )

morphism on the output, in which a concrete example (SIR

epidemic model) is presented in order to highlight our re- In the following, by assuming thatis Z-observable, we
sults. are going to propose a universal approach to estiméte

Z(z'(t)) = Z(22(t)), a.e. in[to, t1]



system (1). This method is based on transforming nonlinead  Nonlinear systems without inputs
system (1) into a so-called partial observability normatfo . - .
from which a reduced order observer can be easily designed. In this paper, it is assumed that there exists: n such

... k DY I
3 Partial observability normal form that ram{dh’ dLgh,--,dLgh, } is 7. Thus system (1)
is not fully observable. For < i < r, setf; = dLZf_lh and

Thi i ly th ivial
is paper considers only the non trivial case of A —spar{6y. .- - .0,}. DenoteA —ker A the distribu-

observability, i.e. it is assumed that for dynamical system?;
y y y tion kernel ofA.

k —
(1) we have ranlEdh,deh, o dLgh, - } =r<n Let 7, be a vector field moduld\* which satisfies the
Let consider the following partial observability normal following conditions:

form i
§ = A+ B(y) dLkh(r) =0for0 <k <r—2
¢=n(&¢) 3 AL} h(m) =1
y=0C¢
- et . and by induction define the following family of vector fields
Wh?r_e.g ER" CERY™, y R, Aisther x r Brunovsky — ~_ [ti_1, f] modulo A+ for 2 < i < r, which implies
matrix. 7 — [ri—1, f] € AL, where],] denotes the conventional Lie
o o0 - 0 bracket. Thus, one can choose a complementary family of
r 0 - 0 e vector fields{7,11,...,7,} such thatr = [r, 72, -+, 7]
A= 0 . e € R forms a basis an@,(7;) =0for1 <k <r,r+1<j<n.
0 -« 1 0 Note
C = (0,---,0,1) € R™", 3 : R — R" andp : R" x 01 0 - 01
R " — R» ", . . Ay = 0 (1,72, 7)) = 1 =
For the form (3), one can easily design a reduced order : Ve o r 0 % x
observer to estimate only the partial state 0, 1 % x
Lemma 1 The following dynamical system: ,
. With the chosen{r. 1,742, -+ ,7»}, one can freely
E=AE+B(y) + K(§—v) choos€e{0; 11,042, ,0,} such that
y=0C¢ 9
[ b for the proposed partial observability nokma TH
is an observer for .
Ay = . r+1,""" s in
form (3). 2 g (Tr11 o)
Proof 1 Sete = ¢ — &, we have: = (A — KC)e. !
SinceA € R™" is in the Brunovsky form and’ = is of rankn — 7.

(0,---,0,1) € RY*", thus the pair(4, C) is observable.
One can arbitrarily choosé< such that(A — KC) is Hur-
witz, and this implies the exponential convergencgtofe.

Property 1 By giving the vector fieldér, 72, -+ ,7.) and

the codistribution(6, 62, - - - ,6,), the chosen complemen-

tary 7; and@; for r + 1 < ¢ < n should satisfy the following
It is shown that once system (1) can be transformed via gproperties

diffeomorphism(¢”, ¢*)" = ¢(x) into the partial observ- 1) 7 = [r, 75, --- ,7,,] forms a basis;

ability normal form (3), then one can design the above sim- 2) Op(tj) =0for1 <k <randr+1<j<n.

ple observer to estimate Moreover, ifz is a function such 3) rankh\y =n — 1

that:
0z Sincer is a basis, then it can be viewed as an invertible
¢ =0 matrix. Therefore, in this basjgcan be decomposed as fol-
then is Z-observable for (1), and we can uséo estimate  1OWS: . 5
z. f(z) = filz =F + F 4)
Therefore, the rest of paper deals with the deduction (=) ; ( >8$i ! 2

of necessary and sufficient conditions which guarantee a , .
diffeomorphism to transform system (1) into the proposedwith Fy = >° Fy ;(z)r; andFo = > Fh j(2)7;.
=1 ]

partial observability normal form (3). ) j=r+1
One can state the following theorem.

Remark 1 The partial observability normal form consid- Theorem 1 Given a family of vector fields aanGTsatisfied
ered in this work is quite different from the normal form in- Property 1, there exists a diffeomorphiged’, ¢*)" = ¢(x)

troduced in the work of 8benack and Lynch [20]. which is which transforms the dynamical system (1) into the partial
observability normal form (3) if and only if

written as: )
§= AL+ By, Q) o [1,7]=0forall1 <i<mnandl <j<n;
¢ =n(£,0) o [1i, F1] =0forall r + 1 <i < n, whereF; is defined
y=0C¢ in (4).

whereg depends also on the second variable Proof 2 Necessity:



If there existes a diffeomorphisiig”, (7)T = ¢(x)
which transforms (1) into the form (3), then one
has ¢.(r;) = a% for 1 < i < n, which implies
[04(7i), (1))] = u([7i,7]) = O for1 < i < n. Since
13 (x) is a diffeomorphism, one hgs;, ;] = 0 for
1

<i<nandl <j<n.

Proof 3 For any two vector fieldX(, Y one has
dw(X,Y) = Lx (w(Y)) = Ly (w(X)) = w([X,Y])
By settingX = 7; andY = 7;, one obtains

dw(7i, 7j) = Ly,w(7j) — Lyw(m) — w([7, 75])

Moreover, it is easy to see that for the dynamical system Asw(r;) andw(r;) are constant, then one has

(3) we haveA+ :spar{a%, r+ 1 < i < n}, therefore
du(15) = 6% moduloA~. Thus it is easy to check that

[0« (7i) , x (F1)] = b ([13, F1]) = 0

forr +1 < i < n. Finally one obtaingr;, F1] = 0 and then

we have
AL+ B(y) )

(&, <)
A&+ B(y)
(&)

.1 = (

which implies that

Gw (F1) + bs (F2) = (

Sufficiency.

Since[r;, ;] = 0forl < i <nandl < j < n, then
according to Poinca’s lemma there exists locally a diffeo-
morphism

(€7,¢N)T = ¢(x)
such thatdg = ¢, with ¢, (7;) a% for1 < i < rand
bx (1) = %forrJrl < j <mn.Thus,forl <i<r—1,
one has

0.
S~ 0[5 1) = 6.1 modulo)
0
= modulo spafi— r+1 <k <
T p 1{1% r+1<k<n}
Moreover, forr +1 < j < n, since[r;, F1] = 0, hence
99 (F1)
= * B F =
Se = o Fa) =0 ©)
By integration one has
E= o)=Y a2+ o)
= O&in
and this proved the sufficiency.
Note § = (6,---,6,)", one can define the following

matrix:
Ay

*

_ _ 07'>< (n—r)
A=0r= < Ay )
Itis clear thatA is invertible, thus one can define the follow-
ing multi 1-forms:

w=A"10 (6)
Theorem 2 Suppose that Theorem 1 is fulfilled, then the dif-
feomorphism¢”, ¢T)T = ¢(z) which transforms (1) into
the form (3) is determined by

6@)= [w+o(0)

dw(7i, ) = —w([mi, 74])

which implies the equivalence betwedn 0 and
[Ti, Tj] = 0.

Since Theorem 1 is fulfilled, thus one always Has=
0. According to Poince&’s lemma, this implies that there
exists a diffeomorphisih (z) such thatv = d¢. Finally the
diffeomorphism can be determined just by integratiorw of

defined in (6).

Example 1 Let us consider the following dynamical system:

. 1

T = fxg + Z3xox1 — §x§

S 1,.2

Tog = T1 — 5%3

S 1,2

I3 = —x3 + T271 — 573 (7

Yy =x2
_ 2
z = T2 + 2x1T2 — T2x3

A simple calculation gives rar{ldh, dLh, dL?h} =2,
thusr = 2. One has

01 = dxo and92 =dr1 — r3dr3

Let A =span{6;,6-}, and

0 0
ker A = span{ll = IEga—xl + 8—553}
The framer is given by
9
! o 8$1
T, = i+x T i+x imodulol —i
2 8:172 2 38:171 28:173 te 83:2

In order to form a basis which satisfiés (73) = 62 (13) =
0, the third complementary vector field can be chosen as fol-

lows
09
3 8x3 38:171

which makes the following equality be satisfied
[T1,72) = [11, 73] = [12, 73] =0
According to 4), one has

f=F+F = Fim+ Fams

F = (acl —x§/2) T
= (—a3 + z122 — 23/2) 73. It can be checked that

[Tg,Fl] =0



Then the second item of Theorem 1 is satisfied. Theorem 3 Suppose that Theorem 1 is satisfied. There ex-
In order to have rank\, =rank {63 (r3)} = 1, one can ists a diffeomorphisig”, ¢”)” = ¢(x) which transforms
choose (8) into the form (9) if and only if
93 = dil?g — wgdmg

Tis Gl = 0
thus [ k]
010 forl<i<n,i#randl<k<m.
A=0r=[ 1 0 0 .
00 1 Proof 4 From Theorem 1, one can state that there exists a
diffeomorphism such that
which yields

. ¢« (F1) = A(y)z + B(y)
01 d§1 €Ty — §$§
w=A""[ 6, | = d&s | =4 T Now, forr +1 <7 <mnandl < k < m, one has

93 dCl 1
96, (G o
9. (Gy) _ [ b (G,{J)} — . [7.GL] =0

Finally, one obtains the following diffeomorphism ¢ ¢
x1 — a3 It is the same forl < i < r such thate, [r;,G}] = 0
¢(x) = T2 Thereforep..(G}) = ai(y), and finally we proved Theorem
I3 3.

which transforms the studied system into the following form®  Diffeomorphism on the output
By giving a family of vector fields- andé satisfied Prop-

5.1 =0 erty 1, if the conditions of Theorem 1 cannot be fulfilled, i.e.

=48 the Lie brackets of vector fields do not commute, then one
G =n(&,6.¢) can modify those vector fields to construct a new family of
y==& commutative vector fields, by applying another diffeomor-

phism on the output (see [3, 11]).
For this, letr; be the vector field modula* defined in
Z =y + 2011y — Toxh = o + 26160 Section 4. Denots(y) # 0 a function_of the output of (1),
and one can construct a new vector fieldaccording to the
and g—é = 0 which implies that is Z-observable, and one following equation:
can use the estimatgdto recoverz in (7).

Moreover, one has

. L o1 =s(y)m
5 Extension to systems with inputs

and by induction define the following new family of vector
In this section, we extend our results to systems with in- fields

puts in the following form:
ok = [ok_1, f] moduloA* for2 <k <r

&= flo)+ kglgk () (2) (8) Thus, one can choose a complementary family of vector

y = h(x) fields{c,11,...,0n,} suchthat = [o1, 09, - ,0,] forms a

. . i )=0for1 <k< 1<j<n.
wherexr € R” is the statey = (uy, ..., un)? € R™ is the baﬁllgt:nwk(%) Oforisksrr+l<jsn
inputs,y € R is the output,f : R — R”, g : R" —
R"andh : R™ — R are sufficiently smooth. For system (8), 61 0 -~ 0 s
the partial observability normal form is as follows: ~ 02 :

A1: (0—150—27"'707“): i § *
. m : 0 x %
= AL+ B(y) +kza( 0, S x %
=1
C=n¢) + S a2 (& Quy ®  with the chosen{o,1,0742,--- ,0n}, ONe can freely
k=1 choose{0,.11,0;,42,- -+ ,0,} such that

y=0C¢
where A, C, § andn are the same as those defined in the Or11
form (3). A, = Or+2 (Oras. Orame - 10)

Following the same procedure, let define the projection of : T S
gr on7 as follows: 0,
Gr=Gi +G? is of rankn — r.
with Property 2 By giving the vector field&, o2, - - -, 0,) and
ol — G1 J - andG2 = sz _ the codistribution(6,, 62, - - - ,6,.), the chqsen complemen-
k Z (z) 7 kT z,:ﬂ (@) tary o; andd; for r +1 < i < n should satisfy the following

Then we have the following theorem. properties



1) o = |01, 79, - ,0,) forms a basis;

2) Oi(oj) =0forl <k <randr+1<j<n.

3) rankAy =n —r

Then, based on the new basisf can be decomposed as
follows:

f = ZFLZ'(IL')JZ' + Z FQJ'(:E)O—]' (10)
=1 Jj=r+1
with F = ZFl,i(x)Ui andF2 = Z FQJ(,CE)UJ And
=1 j=r+1

one can state the following theorem.

Theorem 4 Given an output functior(y) # 0 which con-
struct a new family of vector fields and 6 satisfied Prop-
erty 2, there exists a diffeomorphisfe’, ()T = ¢(z)

which transforms the dynamical system (1) into the partial

observability normal form (3) witl§, = § = ¥ (y) where
V(y) = [ ey de. if and only if

[0i,0;] =0foralll <i<mnandl <j<n;

[o:, F1i] = 0forall r + 1 < ¢ < n, whereF is defined
in (10).

Proof 5 The proof of this theorem is similar with that of The-
orem 1, thus is omitted.

Remark 2 The deduction of such an output functigy) #
0 in Theorem 4 is exhaustively investigated in [11].

Remark 3 Following the same arguments in Section 4, the

diffeomorphismy(x) can be calculated by using(z) =
J @+ ¢(0) wherew = A~10 with A = 0.

The following example highlights the proposed result.

Example 2 Let consider the well-known SIR epidemic

model that undergoes the spread of a contagious disease as

follows:
S =—BSI
I=pB8I—~I
R= ~I
y=1

2=1(S,I)=N-1-8

whereS denotes the suspected populatidbrienotes the in-

fected,R denotes the removed population and the total pop-

o1 = s(y)m and o [o1, f] moduloAt = s(y)m2 —
s'(y) (BSI —~I)7. Now, a straightforward calculation

gives:[o1, 0] = (252 —25(y)s' (), thus[oy, 2] = 0
if and only if functions(y) fulfils the following differential

equation:

s(y) _dsly) _
y dy

Thus one can choos¢y) = y = I which yields

_19
~Bas

9
05

0

and =] I—
o2 tia1

01

In order to constructr and 6 satisfying Property 2, one
chooses; = % andf3; = dR which makes

[01,09] = [01,03] = [02,03] =0
Based on the new basis according to (10), one obtains
f==ByIr + (BS —7) 72 + 773
thenFy, = —p~yIn + (8S — ) 1. It can be checked that
[3,F1] =0

and the second item of Theorem 4 is satisfied.
Since

) 0 I 0
A=Oo=| 1 -BIP+(—y+SB8)I 0
0 0 1

|

which yields

- 61 d&1 B(S+1)
w = A_l 92 = dfg =d InTl
03 d¢y R

Therefore, the diffeomorphism is given as follows:
B(S+1)
InTl
R

¢ (x)

ulation IV is assumed to be known. The objective is to ap-yich transforms the studied system into the following form

ply the proposed result of this paper to estimate the functio
I(S,I)=N—-1-5.

By using the same notations as in Section 4, a simple cal-

culation gives:
61 =dI andfy = SIdS + (8S —~)dI
which yield the following vector fields:

1

:Eﬁ andm:gJr

(35— =BT

T1

5:1 = —ﬁ'ye@ )
§o =& —Pe¥ =y
G =~e¥
g=&=1InI
In the transformed form, th&-function becomes
B ey &1
zfl(S,I)fl(g)fN—E

Unfortunately, these two vector fields do not commute, sincévhich is independent @f;, thus it isZ-observable, and one

[11,72] = %71. In order to construct a new family of

can use the estimated to recover(S, I).

commutative vector fields by introducing a diffeomorphism By settings = 0.001, v = 0.1, the simulation results

on the output, let follow the method proposed in [11] to
deduce a non-zero output functioify). For this, set

are depicted in Fig. 1-2 for the estimation of suspected and
infected population.



measured
= = estimated

Suspected
N
i<}
o
oo ===

—-100
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Time (s)

Fig. 1. Estimation of suspected population (S)

measured
= = estimated

200+

150

Infected

100

50t

o 10 20 30 40 50 60
Time (s)

Fig. 2: Estimation of infected population (1)

7 Conclusion

This paper deals with partial observability problem, which

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

is useful sometimes when for example only partial states are
need to be estimated, or only functions of certain states ar§l8] H. N. Jo and H. J. Seo, “Observer design for non-linear sy

required to be estimated. For this, a partial observahitity

mal form is presented, for which a simple Luenberger ob-

server can be applied directly to estimate the partial state [19]
Necessary and sufficient conditions are deduced which guar-

antee the existence of a diffeomorphism transforming non

linear systems into the proposed partial observabilitynmedr

(20]

form. The results are extended to nonlinear systems with

inputs and the transformation on the output as well. A con-

crete example was provided to illustrate the feasibilityhef
proposed results.
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