Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Border collision bifurcations of stroboscopic maps in periodically driven spiking models

Abstract : In this work we consider a general non-autonomous hybrid system based on the integrate-and-fire model, widely used as simplified version of neuronal models and other types of excitable systems. Our unique assumption is that the system is monotonic, possesses an attracting subthreshold equilibrium point and is forced by means of periodic pulsatile (square wave) function. In contrast to classical methods, in our approach we use the stroboscopic map (time-$T$ return map) instead of the so-called firing-map. It becomes a discontinuous map potentially defined in an infinite number of partitions. By applying theory for piecewise-smooth systems, we avoid relying on particular computations and we develop a novel approach that can be easily extended to systems with other topologies (expansive dynamics) and higher dimensions. More precisely, we rigorously study the bifurcation structure in the two-dimensional parameter space formed by the amplitude and the duty cycle of the pulse. We show that it is covered by regions of existence of periodic orbits given by period adding structures. They do not only completely describe all the possible spiking asymptotic dynamics but also the behavior of the firing rate, which is a devil's staircase as a function of the parameters.
Document type :
Preprints, Working Papers, ...
Complete list of metadata
Contributor : Frederique Clement Connect in order to contact the contributor
Submitted on : Wednesday, November 27, 2013 - 4:57:46 PM
Last modification on : Friday, January 21, 2022 - 3:20:50 AM

Links full text


  • HAL Id : hal-00910277, version 1
  • ARXIV : 1310.1054



Albert Granados, Martin Krupa, Frédérique Clément. Border collision bifurcations of stroboscopic maps in periodically driven spiking models. 2013. ⟨hal-00910277⟩



Record views