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Abstract

Copulas are a useful tool to model multivariate distributions. While there
exist various families of bivariate copulas, much less work has been done when
the dimension is higher. We propose a class of multivariate copulas based on
products of transformed bivariate copulas. The analytical forms of the copulas
within this class allow to naturally associate a graphical structure which helps
to visualize the dependencies and to compute the full joint likelihood even in
high dimension. Numerical experiments are conducted both on simulated and
real data thanks to a dedicated R package.

Keywords: maximum-likelihood inference, graphical models, message-passing
algorithm, multivariate, copula.

1 Introduction

The modelling of random multivariate events is a central problem in various scientific
domains and the construction of multivariate distributions able to properly model the
variables at play is challenging. A useful tool to deal with this problem is the concept
of copula. Let (Xi,...,X4) be a random vector with distribution function F. Let F;

be the (continuous) marginal distribution function of X;, i = 1,...,d. From Sklar’s
Theorem [26], there exists a unique function C such that
F(zy,...,1q) = C(Fy(x1),...,Fy(zq), (x1,...,24) € R (1)

This function C' is called the copula of F' and is the d-dimensional distribution func-
tion of the random vector (Fy(X1),...,Fy(Xq4)). For a general account on copulas,
see, e.g. [24]. Copulas are interesting since they permit to impose a dependence
structure on pre-determined marginal distributions. While there exist many copulas
in the bivariate case, it is less clear how to construct copulas in higher dimension. In
the presence of non-Gaussianity and/or tail dependence, various constructions have
been adopted, such as, for instance, Archimedean copulas [13], Vines [1] or elliptical
copulas [5].
Archimedean copulas write

Clu, ... uq) = (¥~ (ur) + - + 97 (ua)),

where 1 is a function from [0, c0) to [0, 1] which has to verify certain properties for
the copula to be well defined, see [23]. The generator i) may be chosen in a given



parametric family of functions. For instance, ¥y(t) = exp(—t'/?), # > 1 yields the
Gumbel family of copulas, see Example 1 in Section 3. Since there is a single pa-
rameter to model a d-dimensional phenomenon, this model is recognised not to be
very flexible. Indeed, Archimedean copulas are exchangeable i.e. C(uq,...,uq) =
C(ur(1ys - -+ Unr(q)) for any permutation 7 of {1,...,d}. In particular, all pairs of
variables share the same statistical distribution. These properties may not be desir-
able in practice.

Vines, on the opposite, achieve greater flexibility but at the price of increased
complexity. As an illustration, we briefly describe a canonical vine copula — one of
the two main types of vine copula models — through a decomposition of its density [1]:

d—1d—j

c(ul, . ,’U,d) = H H Cj,jJrl\l,...,jfl (F(uj|u1, e ,Uj_l),F(Uj+i|U1, . ,Uj_l))
j=11:=1

where ¢; j11)1,... j—1(, ) is the (conditional) bivariate density of the j-th and (j+1)-th
variables and where F(:|-) represents the conditional distribution of the variables at
play. When d = 10, there are more than one million possible decompositions, and, for
each decomposition, there are many choices of parametric families for each conditional
bivariate density in the product.

A third class of copulas to be presented in this introduction is the class of elliptical
copulas. An elliptical copula is the copula of an elliptical distribution, whose density
is given by [5,22]

f@) =122 ((x—p) 'S a—p), zeR%

for some positive definite matrix ¥ and vector pu. The function g is called the density
generator. This model implies, in particular, that if X has density f as above, then
X — p is distributed as g — X. This, in turn, implies that the lower and upper tail
dependence coefficients (defined in Section 3) are equal, which is unrealistic in some
applications, as, for example, extreme-value statistics. Moreover, elliptical copulas
have in general as many as O(d?) parameters and it is thus difficult to carry out
maximum likelihood inference [3] when d is large.

The main contribution of this paper is to propose a new class of multivariate
copulas based on a product of bivariate copulas. The product is performed following
the edges of a graph which permits to visualize the dependencies and to efficiently
compute the likelihood, even in high dimension. The use of bivariate copulas as
building blocks allows to take profit of the numerous parametric families proposed in
the copula literature.

The rest of this paper is organized as follows. The new copula model is introduced
in Section 2. Some links with Liebscher’s construction [19] are stressed. Section 3
discusses some properties of the new copulas. The ability to construct new extreme-
value models is highlighted. The dependence properties of bivariate marginals of
the proposed class are also established. More specifically, some bounds are given
on the most popular dependence coefficients (Spearman’s rho and Kendall’s tau)
and on tail dependence coefficients. Section 4 is dedicated to the numerical aspects.
A simulation procedure is provided and estimation by maximization of the pseudo-
likelihood is discussed. The proposed copula model is applied in Section 5 to simulated
and real datasets. The appendix gathers some proofs and technical details about the
estimation procedure.
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Figure 1: Graphical representation of the set E = {{12},{24},{23},{35}}.
The edges which are neighbors of each node are N(1) = {{12}}, N(2) =
{{12},{23}, {24}}, N(3) = ({23}, {35}}, N(4) = {{24}} and N(5) = {{35}}. The
numbers of neighbors are respectively given by n; =1, no = 3, n3 =2, ny = 1 and
ns = 1.

2 Constructing high dimensional copulas by multi-
plying bivariate ones

In this section, we propose a way to build high-dimensional copulas starting from
bivariate ones. This construction allows one to take advantage of the large number
of bivariate copulas introduced in the statistical literature. It is well known that a
product of copulas is not a copula in general, the margins being no longer uniform.
Roughly speaking, the new copula is thus obtained by multiplying bivariate copulas
after a suitable transformation of the margins. The main feature of the new copula
is that it can be associated with a graph describing the dependencies between the
variables. To be more specific, let Uy, ..., Uy be d standard uniform random variables
and denote by {ij} the index of the pair (U;,U;). Introduce E C {{ij} : i,j =
1,...,d, j > i} a subset of the set of all pair indices. The cardinal of E, denoted by
|E|, is less or equal to d(d—1)/2. The pair index e € F is said to contain the variable
index 17 if there exists k # i such that e = {ik} or e = {ki}. Forall i =1,...,d, let
N (i) be the set of neighbors of i defined as N (i) = {e € E such that e contains i} and
introduce n; := |N(¢)]. It is then natural to associate a graph to the set E as follows:
An element e = {ij} € F is an edge linking U; and Uj; in the graph whose nodes are
the variables Uy,...,Uy. The example E = {{12}, {24}, {23}, {35}} is illustrated in

Figure 1. For u = (uy,...,uq) € [0,1]%, consider the functional
Cluty...,uq) = H éi-(ui/"i,u;/"j>, (2)
{ij}eE

where the C'Z-j’s are arbitrary bivariate copulas for all {ij} € E. Keeping in mind the
graphical representation associated with F, the function C' defined in (2) is a product



over the edges of the graph. For instance, when E = {{12},{24},{23},{35}} as in
Figure 1, function (2) can be written as

C(Ul, U2, U3, Uq, U’S) :él2 (Ul, Ué/?)) C~(24 <Ué/3a U4) C~(23 (u;/37 ué/z) CN’35 <U§/27 u5) .

In the following, (2) is referred to as the Product of Bivariate Copulas (PBC) copula,
or PBC model. The next result establishes that (2) is a copula.

Proposition 1. PBC (2) is a well defined copula.

The proof is postponed to the Appendix. It is based on the remark that (2) can be
interpreted as a particular case of Liebscher’s construction [19]:

Cut,...,uq) = H C, (ger(u1)y ..., gealuaq)) - (3)

ecE’

where E’ is some finite set. In the general case, C. is a d-dimensional copula for all
e € E' and g.; is a univariate function for ¢ = 1,...,d and e¢ € E’ which is either
strictly increasing or identically equal to 1. Moreover, to ensure that (3) is a well
defined copula, the following constraints have to be verified:

ngi(v):vfor allve[0,1]andi=1,...,d. (4)

ecE’

Let us highlight that Liebscher’s construction (3) was originally designed to build
an asymmetric d-dimensional C' starting from a family of symmetric d-dimensional
copulas C., e € E'. In contrast, our re-interpretation of (2) permits to derive d-
dimensional copulas starting from bivariate ones Cyj, {ij} € E and a graph. Another
major difference between Liebscher and PBC copulas lies in the tractability of the
models. Indeed, Liebscher’s model is rather an abstract construction principle and the
applicability to data has not been addressed so far. For instance, taking ge;(v) = v%i
for v € (0,1] and 0 < 0,; < 1, the parameters have to verify ) . 0c; =1 for all i =
1,...,d. How to deal with these constraints in the estimation procedure? As a matter
of fact, the original paper [19] does not provide any such procedure. In contrast, one
can view a PBC copula (2) as a particular case of Liebscher’s construction where the
constraints are met by construction. The remaining parameters would be those of
the C~'ij, but since they are arbitrary, we are left with |E| unconstrained parameter
vectors (one for each C’ij). The use of bivariate copulas as well as the graph structure
in the PBC model open the way to an exact computation of the (pseudo-)likelihood.
If the graph is a tree, an algorithm based on message passing can then be used to
perform the maximum (pseudo-)likelihood estimation of the copula parameters, see
Section 4.

The PBC model is a legitimate copula in the sense that it is the only possible
model derived from (3) when a few natural assumptions are made about the copula:

Proposition 2. Suppose that, in (3):

(i) For alle € F’, C. takes as arguments only two functions non identically equal
to 1,

(i) For alli=1,...,d and e € E’', ge; does not depend on e,

then, the only copula which can be constructed from (3) is the PBC model (2). In
particular, necessarily ge;(v) = v'/™ if e € N(i) and ge;(v) = 1 otherwise.



Finally, from Sklar’s Theorem, the PBC copula (2) is associated with a distribution
function F with continuous marginals F;, i = 1,...,d. By substituting (2) into (1),
it is easily seen that F' writes as a product of bivariate distribution functions:

F(Il,...,llid): H Flj(zla‘r])’ (I17"'azd)€Rd? (5)
{ij}€E

where Fj; is a bivariate distribution function whose first marginal Fj;; only depends
on ¢ and second marginal Fj; o only depends on j for all {ij} € E. It is interesting to
note that the converse is also true as stated in the following proposition.

Proposition 3. The distribution function corresponding to the PBC copula (2) writes
as F in (5). Conversely, the copula corresponding to any distribution function F
in (5) writes as the PBC copula (2).

Outside the copula framework, distribution functions which can write as (5) have been
studied in the context of graphical modeling in [14], where the authors refer to them
as a Cumulative Distribution Networks (CDN). However, the dependence properties
were not investigated. Since the PBC copula is a copula associated with a CDN, the
study of the dependence properties in Section 3 bridges this gap.

3 Dependence properties and max-stability

The first paragraph is dedicated to the construction of extreme-value copulas using
PBC models while the second paragraph presents some dependence properties of the
bivariate margins of PBC models.

3.1 Extreme-value copulas

The statistical analysis of extreme values should theoretically be carried out with the
help of extreme-value copulas. Recall that a copula Cy is an extreme-value copula if
there exists a copula C such that

Coplun, - ua) = I C™ (", ™), (6)
for all (uy,...,uq) € [0,1]%. In such a case, C is said to be in the maximum domain

of attraction of Cx. A copula Cy is said to be max-stable if for all integer n > 1 and
(u1,...,uq) € [0,1]4

Ch(uy/™, o ulf™) = Cylu, . . ug).

Extreme-value copulas exactly correspond to max-stable copulas [11]. It can be seen
that the domain of attraction condition (6) is equivalent to

. 1-CA —txy,...,1 —txy)
lim
t—0 t

= é(ml, . ...’)Sd)

where £ is the tail dependence function given by £(z1,...,x4) = —logCu(e™™, ..., e %)
for all (z1,...,24) € [0,00)% It can be shown that the tail dependence function is
convex and homogeneous of order one [11]. Extreme-value copulas belonging to the
PBC class (2) can easily be constructed thanks to the next result. Its proof is a direct
consequence of [4].



Proposition 4. If, in the PBC copula (2), C;i; is an extreme-value copula for all
{ij} € E, then C is also an extreme-value copula. The associated tail dependence
function is given by

€($17'~~,xd) = Z Z'L] (xll/nl,l']l/nj)

{ij}€E

for all (z1,...,24) € [0,00)%, and where Zij is the stable tail dependence function of
C.

It thus appears that the PBC model inherits the max-stability from the pairwise cop-
ulas used in its construction. The associated tail dependence function has moreover a
simple additive and yet flexible form. This is illustrated on the Gumbel copula case,
which has been shown to be the only max-stable Archimedean copula [10].

Example 1. Let Cy; in (2) be a (maz-stable) Gumbel copula with parameter 0;; > 1,
that is,

Cij(u;, uj) = exp {— [(— logui)e” + (—log uj)e“} 1/0”} .

Then, the associated PBC model is an extreme-value copula with tail dependence

function
s i\ 1055
Uxy, ..., 2q) = Z (:r?”/"'l + :c?”/n’) . (7)
{ijteE
As a comparison, the tail dependence function associated with a d-dimensional Gum-
bel copula with parameter 6 > 1 is

J 1/6
Uxy,...,xq) = (fo) . (8)

It is clear that (7) offers much more flexibility than (8). The choice of E tunes the
weights assigned to each variable through the number of neighbors. Besides, the
dependence parameter 6,; may be different for each pair {ij}. Other examples are
provided in the next paragraph.

3.2 Bivariate margins properties

In this paragraph, the dependence properties of the bivariate margins of a PBC copula
C defined by (2) are established. To this end, for all (k,f) € {1,...,d}?, let Cy be
the copula associated with the random pair (Uy,Uy) and given by Cre(ug,ue) =
Cc,...,ug,1,..., L, up,1,...,1). Our first result shows that Cy, is closely related
to the bivariate copula Cj, involved in the construction (2).

Proposition 5. The bivariate marginal Cye of the PBC copula (2) is given by

u,(ﬁn’“fl)/nkuénrl)/méktz(ui/nk,uz/m) if {kl} € E,

upue  otherwise,

Cre(ur,w) = { 9)

for all (k,0) € {1,...,d}>.



It thus appears that random pairs (U, Uy) which are not connected by an edge i.e.
{kt} ¢ E are independent. The dependence between connected random variables is
mainly driven by Cj, through the equation

Cre(ug,ue) =y "uy = Cro(uf,uy), (10)

where kK = 1/nj and A = 1/ny. Let us highlight that (10) is sometimes referred
to as Khoudraji’s device; see [7], Proposition 2. As an immediate consequence of
Proposition 5, a PBC copula is not exchangeable in the general case. Recall that in
the PBC construction (2), the choice for the Cy is quite arbitrary. Thus, since the
dependence structure of Cyy is determined by that of Chre, one can get any desired
dependence structure for the pairs of variables that are connected by an edge in the
PBC model. Some examples are provided below.

Example 2. Let Cyy in (10) be a Marshall-Olkin copula MO(c, B) with parameters

(e, B) € [0, 1] i
Cro(ug,up) = min(u,lcfo‘ug,u;_ﬂuk),

see for instance [24], p. 53. Then, Cyy is MO(ak, BX). If, moreoever, o = [ then Che
is a Cuadras-Augé copula and Cy is MO(ak,a)). If « = 8 = 0 then both Che and
Che are the independence copula. If o = B = 1 then Cyy is the Fréchet upper bound
copula and Cyg is MO(k, ).

The Marshall-Olkin class of copulas is thus stable with respect to the transforma-
tion (9). Besides, from Proposition 4, and since the Marshall-Olkin copula is max-
stable, it follows that all the PBC models associated with Example 2 are max-stable
copulas.

Let us now investigate the dependence properties associated with the bivariate
margins of the PBC model. Recall that the dependence between Uy and Uy is positive
if, roughly speaking, U and U, tend to be large or small together. Below are recalled
a few definitions of statistical concepts about positive dependence. The copula Cj,
associated with (U, Up) has the TP2 (totally positive of order 2) property if and only
if

Cre(u1, u2)Cre(vy,v2) > Cre(ug, v2)Cre(vy,us), for all u; < vy and ug < vs.

Also, Cyy is said to be PQD (positive quadrant dependent) if Cie(u,v) > uv for all
(u,v) € [0,1]%. The random variable Uy is said to be LTD (left tail decreasing) in Uy
if for all v € [0,1], the function u — P(U, < v|Uy < u) is decreasing in u. See [24]
and [16] for further details about these concepts. Since the PBC copula (2) is a
particular form of the Liebscher copula (3) (as shown in Section 2), one can apply the
results of [19] to obtain properties for the bivariate margins of the PBC copula.

Proposition 6. If in (9) Cho is TP2, LTD or PQD then Cyy is also TP2, LTD or
PQ@D respectively.

The dependence between Uy and Uy can be quantified through dependence measures
such as the Kendall’s tau or the Spearman’s rho respectively given by
Tre =4 Ckg(u,v) dChe(u,v) — 1, (11)

[0,1]2

Pre =12 Cre(u,v) dudv — 3. (12)
[0,1)2



The dependence in the upper and lower tails can be respectively measured with

—2
ut Crelw) g gy AL = iy Teel)
1—-u ul0 U

A — lim ! 0,1]. (13)
utl

Liebscher’s erratum [20] provides conditions on copulas Cy, under which Kendall’s

tau or Spearman’s rho are increased or decreased by the transformation (9). Here,

we give explicit bounds in terms of the number of neighbors for these dependence

coefficients. The behavior of (9) when the number of neighbors tends to infinity is

also investigated.
Proposition 7. We have /\,(i) =0 and )\,(JZ) < min(1/ng, 1/ng). The lower and upper

bounds for pre and Ty are respectively given by

ap(ni, ) < pre < bp(ng, ne),

ar(ni,ne) < Tre < br(ng, ny),

with

a (TL n ) - 6,@(2nk—1,2ng—l)nkn5 _ 3

PR T T ng 4 20 — D(ng +ne— 1) (20 — 1)(2ng — 1)
3

b -

Pk ) = o e =1

a(n n):ﬂ(Qngfl,anfl)i 2

T T ng+mng—1 (2n; —1)(2ne — 1)’
1

br(mumg) = —————.

(n me) ng+ng—1

where 3 denotes the Beta-function defined by 8(z,y) = fol =11 — )y~ Ldt for x >0
and y > 0. Furthermore, Cie(u,v) — uv as max(ny, ng) — 0o, for all (u,v) € [0,1]?.

To illustrate Proposition 7, numerical values of the bounds are computed in Table 1
for different numbers of neighbors (ny, ne).

coefficient Pkl The )
(nkv nf)
(1,2) [-0.60,0.60] [—0.50,0.50] [0.00,0.50]
(2,2) [-0.30,0.43] [-0.21,0.33] [0.00,0.50]
(1,3) [—0.43,0.43] [-0.33,0.33] [0.00,0.33]
(2,3) [-0.19,0.33] [-0.13,0.25] [0.00,0.33]
(3,3) [-0.12,0.27] [-0.08,0.20] [0.00,0.33]

Table 1: Lower and upper bounds [lower, upper| for Spearman’rho pgs, Kendall’s tau
Tk and upper tail dependence coefficient A\gy depending on the number of neighbors
(ng, ng).

The above results show that we are facing a tradeoff when linking the variables in
the graph: on the one hand, the larger the cardinal of E (that is, the more connected
the graph, or the more the number of neighbors), the closer to independence the
bivariate margins belonging to E are. On the other hand, the smaller the cardinal
of F/, the more there are independent bivariate margins. These findings suggest also
that, unfortunately, while the PBC model may well be adequate to model weakly
dependent data, it might not be able to model strongly dependent data.



4 Simulation and estimation

The first subsection gives an algorithm that allows to easily simulate from a PBC
copula. The second subsection deals with inference for PBC copulas.

4.1 Simulation

One can use the probabilistic interpretation provided in [19] to simulate from a PBC.
The generation procedure is given below.

e For all {ij} € E, generate (Ui(ij), U;ij)) ~ Cij.
e Foralli=1,...,d, compute U; = max {(U;ki)) }
ke{l,...,d}:{ki}eE
The resulting vector (Uy,...,Uy) has distribution (2).

4.2 Estimation

Here, we assume that the copulas C‘ij involved in the construction (2) of the PBC cop-
ula C' depend on parameters 6;;. The parameter vector is denoted by 6 = (6;)ij}cE-
The sample of i.i.d. multivariate observations from which 6 is to be estimated is
(XM XY for mo= 1,0 n, with (X, X)) ~ F, where F s the cu-
mulative distribution function associated with C. The margins of F' are denoted by
by, ... Fy.

In order to model data with a PBC model, one has to assume that there exists
a graphical structure underpinning the variables of interest. Some pairs of variables
are linked with edges, some are not. In this section, the graph underpinning C' is
supposed to be known. In other words, we suppose that the set of edges linking the
variables of interest is given. Needless to say, this is not the case in practice. While
choosing the most appropriate graphical structure is still an open problem in this
context, some hints are given in Section 6.

The first estimation procedure considered is a version of the pairwise maximum-
likelihood method [21]. This approach consists of maximizing the sum of the pseudo-
likelihoods corresponding to all the pairs of variables:

n
arg max > loger (Fk(l‘im)), Fy(z{™); 9ke> : (14)
m=1 {kt}

where ¢y is the bivariate density associated with Cy, and given by

A 1/n 1/n 1-1/np 1-1/n
0?Co(up, ug; Ope) ? {Ckl(uk/ kaue/ uy, / Fu, / Z:|

. 9 — =
cre(ug, we; Oxe) OupOuy OurOuy )

see Proposition 5. The pseudo-likelihood term refers to the plugging in (14) of an
estimator ﬁk of the unknown margin distribution Fj. Note that this estimator can be
either parametric as in [16], Section 10 or nonparametric as in [6]. In the PBC context,
the pairwise approach reduces to maximizing |E| univariate functions independently.
Thus, this method has the advantage to be easily implementable. Moreover, it allows
to fit different parametric families for different pairs.



However, an estimator based on such a pairwise strategy is not as efficient as an es-
timator based on the maximization of the full joint maximum (pseudo-)likelihood [21].
It is therefore natural to consider the full optimization problem:

arg max Z log ¢ {Fl(xgm)), e Fd(xgm)); 9} ,

m=1
where c is the density associated with C' and given by
A 1/n; 1/n;
~02C(uq, ... ug;0) 0 {H{ij}eE Cij (ui ' Uy )]

olu, - ua; 0) = Ouy ...0uy - Ouy -+ - Ouy ’ (15)

Let us note that, when ﬁk is a parametric estimator of Fj, this method is referred
to as Inference Function for Margins (IFM, [16], Section 10). When F}, is a nonpara-
metric estimator, this amounts to the pseudo-likelihood method [6]. The asymptotic
properties in each case are discussed in the aforementioned references. Here, however,
the difficulty rather lies in the fact that (15) is hard to compute by standard differ-
entiation procedures because of the product form of the PBC copula. Nonetheless,
when the underlying graph is a tree, a recent message-passing algorithm [15] can be
adapted to calculate the derivatives (15) in an efficient way. We have provided an
implementation of this algorithm in the context of PBC copulas in the R package
PBC [27]. The main ideas of this algorithm are briefly described in Appendix B. Once
the density is computed thanks to the algorithm, one can feed any optimization rou-
tine to maximize the likelihood. An example using optim in R (www.r-project.org)
is provided in the PBC package.

5 Applications to simulated and real datasets

This section is driven by two goals. First, in Paragraph 5.1, we compare the gain in
efficiency when the maximization of the full joint likelihood is preferred to the pairwise
likelihood for estimating the parameters of PBC copulas. Second, Paragraph 5.2 shows
how PBC copulas can be applied to a real data set and illustrates their key properties
compared to other copula models.

The considered families for the bivariate copulas Cy; in (2) are the following: the
Ali-Mikhail-Haq (AMH), Farlie-Gumbel-Morgenstern (FGM), Frank, Gumbel, and
Joe families. See [24] or [16] for details about these families. The corresponding PBC
copula models (2) are therefore referred to as PBC AMH, PBC FGM, PBC Frank,
PBC Gumbel and PBC Joe respectively. The methods used to simulate and infer the
copulas can be found in Section 4.

5.1 A simulation experiment to compare pairwise likelihood
and full joint likelihood estimation in PBC copulas

In Paragraph 4.2, two methods were presented to estimate the parameters of a PBC
copula model: the (pseudo-) pairwise and (pseudo-) full likelihood methods. While
the full likelihood approach is more efficient asymptotically than the pairwise strategy,
the efficiency gain needs to be quantified, and, moreover, may not be the same for
different choices of parametric families. In the following, a simulation experiment is
undertaken to address these issues.
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We generated 500 datasets of dimension d = 9 and size n = 100 according to a PBC
copula whose tree graph is depicted on Figure 2. Since the data are generated exactly
according to the copulas, the margins need not to be estimated, and we thus focus on
the comparison of the true pairwise and true full likelihood methods. The amount of
time required to maximize the true full likelihood for five dataset replications was 36,
21, 18, 21 and 21 seconds for PBC AMH, PBC FGM, PBC Frank, PBC Gumbel and
PBC Joe respectively with a 8 GiB memory and 3.20 GHz processor computer. The
d — 1 = 8 coordinates of the parameter vectors were chosen to be regularly spaced
within the intervals [—0.9,0.9],[—0.9,0.9], [-9, 11], [2, 20] and [1, 20] respectively.

>/
« o
/\

Figure 2: Tree graph associated with the simulated PBC copulas.

The following criteria were calculated in order to assess the results of the experi-
ment. The variance ratio (VR) is defined as

_ = AFULL /d_l/\ HPW
VR ;Var (96 ) ;Var (96 ) ,

where OFULL GPW g the eth coordinate of # estimated by maximization of the full

likelihood, pairwise likelihood, respectively, and where Var is the empirical variance
computed on the 500 replications. For each dataset replication, the mean absolute
error associated with the estimated Spearman’s rho p (MAE,) and Kendall’s tau 7
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(MAE,) are defined as

U

-1 d—1
1 A 1 A
MAE, = q_1 p(8e) — p(0FUEF)|, MAE, = -1 E |7(6.) — T(OFVEL)).
1 e=1

)
Il

The MAEs were averaged over the 500 replications to get a single value per model.

Copula VR MAE, MAE,
PBC AMH | 1.01 0.06 0.04
PBC FGM 1.01 0.06 0.04
PBC Frank | 0.77 0.04 0.03

PBC Gumbel | 0.56 0.00 0.00
PBC Joe 0.63 0.01 0.00

Table 2: Variance ratio (VR) and mean absolute errors (MAEs) for each of the tested
PBC models. The MAEs were averaged over the dataset replications.

The results are reported in Table 2. It appears that for PBC AMH and PBC FGM,
the precision was not improved by maximizing the full joint likelihood relative to the
pairwise approach: the variance ratio for those models are close to 1. For the Frank,
Gumbel and Joe families, however, the variance decreases by at least 23% in average.
These families, in contrast to the AMH and FGM families, are comprehensive, mean-
ing that they include the lower and upper bounds for copulas. Hence, interestingly
enough, we observed a gain of efficiency for the most flexible families, and, moreover,
this gain has at least a value of 23%. The MAEs are quite low for all the models,
indicating that the maximization of the full joint likelihood with the message-passing
algorithm of Appendix B performs well.

5.2 Application to an hydrological dataset

In this section, PBC copula models are applied to an hydrological dataset consisting
of d = 3 stations and n = 445 observations, (X:Em)7 Xém), Xg()m)), m=1,...,n, of flow
rate monthly maxima The sites are located on three French rivers at the following
places: La Celle-en-Morvan on the Selle river (S), Rigny-sur-Arroux on the Arroux
river (A), and Isclades-et-Rieutord on the Loire river (L). The dependence in the
data was confirmed by a statistical test of independence [9], which gave a p-value of
5.10~%. Tt is implemented in the function indepTest of the R package copula [12].
More surprisingly, the test of max-stability proposed in [17] yields a p-value of 5.10~%
suggesting that extreme-value copulas can be ill-adapted to this situation. This test
was performed with the function evTestC of the R package copula. For the sake of
completeness, we also carried out a test of exchangeability [8,18] for the three pairs
(S,A), (S,L) and (A,L): we found p-values of 0.27, 0.68 and 0.23 respectively. The
tests were performed with the function exchTest of the R package copula and suggest
exchangeability for all pairs.

Figure 3 displays the pairwise scatterplots of the data after their transformation to
uniform margins. It clearly appears that the monthly rates from the Selle and Arroux
rivers are strongly positively correlated. To confirm this, quantitative dependence
measures, namely empirical Spearman’s rho and Kendall’s tau coefficients have been
computed for all pairs and shown in Table 3 (first line). It follows that the two graph
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structures that would be reasonable for our PBC models reduceto S — A — L and
A — S— L. The third possible one being discarded as it would imply independence
between the S and A variables.

(a) (S,A) (b) (S,L) (c) (AL)

Figure 3: Pairwise scatterplots for the hydrological dataset.

The three rivers are embedded in the sense that Selle flows into Arroux which flows
into Loire. Thus, the graph S — A — L may be easier to interpret but the results
are shown for both graphs. The same models as in Section 5.1 were tested, that is,
PBC AMH, PBC FGM, PBC Frank, PBC Gumbel, and PBC Joe. The Gumbel copula
was also considered, since it is standard in hydrology, see e.g. [28] for an analysis of
dependence between rainfall intensity, duration, and depth. Two elliptical copulas
were fitted as well: the Gaussian and the Student copulas (see, e.g. [22]). For PBC
models, Gumbel and Student copulas, the estimation of the parameters was performed
by maximization of the full pseudo-likelihood, as explained in Section 4. The codes
that implement these estimation procedures are available in the R packages copula [12]
and PBC [27]. In order to assess the fit of the models, the empirical Spearman’s
rho and Kendall’s tau coefficients were compared to their estimated counterparts
under the different models. The results are presented in Table 3. As regards these
central dependence measures, Gaussian and Student copulas perform clearly better in
terms of Spearman’s rho and Kendall’s tau coefficients, while the PBC models have
difficulty to capture such high correlations especially for the AMH and FGM families
which are not comprehensive, meaning that they do not allow much dependence
(see, e.g., [24]). The standard Gumbel copula that depends on a single parameter
cannot model different pairs with different distributions. In particular, the estimated
dependence coefficients of the different pairs are equal to each other. The PBC copulas
with comprehensive families, i.e. PBC Frank, PBC Gumbel, and PBC Joe, present a
better fit. Regarding the choice of the graph structure, we observe that the estimated
values were rather consistent from one structure to another except of course for the
ones that are zero by construction.

We then assessed the tail behavior of the different copulas. Table 4 shows the
estimated upper tail dependence coefficients of all the tested models. Under the
assumption of the Gaussian copula, tail dependence is null for every pair of variables,
meaning that high levels of flow rates tend to be independent. This is to be put
in contrast to the Student, Gumbel, PBC Gumbel or PBC Joe copulas: under the
assumption of these, now high levels of certain flow rates tend to be dependent.
Since potential dangerous events happen with the co-occurence of extreme flow rates,
properly modeling tail dependence is of critical importance. For comparison, the
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empirical upper tail coeflicients for all pairs were computed by inspecting the empirical
version of the function u — A(Y)(u) (13) for high values of u, as in [2]. This obtained
empirical values are partly in accordance with the PBC Gumbel and PBC Joe models,
i.e. the estimations are close for pairs SA and AL in the S — A — L graph and
for pairs SA and SL in the A — S— L graph. The Gaussian copula cannot provide
satisfying values due to tail independence while the Student copula seems to capture
only the stronger tail dependance (pair SA). As for the Gumbel copula, it suffers
again from treating all pairs symmetrically. In this context of tail dependence, the
PBC Joe and Gumbel models seem to be more appropriate than the other tested
copulas keeping in mind that the choice of the graph structure may impose undesired
independence. Finally, although compared to more standard elliptic copulas, the
central modelling capability of PBC models may be limited by theoretical bounds as
shown in Table 1, they may still be useful to model tail dependence more accurately.
Their further advantage is that one can select the most appropriate family of bivariate
copulas to allow for more possibilites to model the dependence structure. If estimation
is to be performed pair-wise, one may even think of choosing different parametric
families for the three pairs of variables.

6 Discussion

In this paper, we have constructed a class of multivariate copulas, called PBC copulas,
based on a product of arbitrary bivariate copulas. Therefore, this novel class benefits
from the many bivariate families existing in the literature. A natural graph structure
helps to visualize the dependencies between the variables and to design an efficient
inference algorithm. Full joint multivariate inference can be performed, and shown
to perform well, with a message-passing algorithm. An R package was developped to
promote the use of PBC copulas.

However, PBC copula models still suffer from weaknesses: The more there are
edges in the graph, the more the bounds on the dependence coefficients are restrictive.
The above point suggests that, perhaps, the use of PBC copulas in practice should
stick to weakly dependent data or combined with other models with complementary
properties for instance by considering mixture of distributions.

To perform the estimation procedures given in Section 4, the knowledge of the
graphical structure underpinning the data has to be assumed. In practice, however,
one has to choose which pairs of variables should be linked. A simple method would
consist of considering all possible graphical structures and either combine them or
select the best ones based on the resulting (pseudo-) likelihoods. Obviously, this
approach is unfeasible in practice for high dimensions. Thus, an alternative would be
to link the most dependent variables under the constraint that the degree of the graph
is below a certain threshold. If one wants to maximize the full (pseudo-)likelihood,
the constraint would be that the resulting graph is a tree. In this case, one can run a
minimum spanning tree algorithm [25] (implemented in the R package igraph, see the
function minimum. spanning.tree) where the weights associated with the edges would
decrease as Spearman’s rhos (or any other dependence coefficient) increase. This
strategy embeds the construction of a tree based on the geographic proximity between
the variables at play (the weights would be related to the geographical distances
between the sites). Finally, another possible approach would be to rely on application
specific expert knowledge.
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PS,A  PAL PSL  TSA TAL TSL
Empirical estimates | 0.95 0.48 045 0.80 0.33 0.31
Gumbel 0.55 0.55 0.55 0.39 0.39 0.39
Gaussian 093 049 045 0.76 034 0.31
Student 093 049 045 0.78 0.34 0.31
S - A - Lgraph
PBC AMH 0.25 0.24 0 0.17 0.16 0
PBC FGM 0.20 0.20 0 0.13 0.13 0
PBC Frank 0.56 0.35 0 0.38 0.24 0
PBC Gumbel 0.51 0.32 0 0.37 0.22 0
PBC Joe 049 0.26 0 0.35 0.17 0
A - S - Lgraph
PBC AMH 0.25 0 0.24 0.17 0 0.16
PBC FGM 0.20 0 0.20 0.13 0 0.13
PBC Frank 0.52 0 0.31 0.37 0 0.21
PBC Gumbel 0.51 0 0.24 0.36 0 0.16
PBC Joe 0.50 0 0.13 0.35 0 0.08

Table 3: Empirical pairwise dependence coefficients and their estimations under the
tested copulas. The symbols p and 7 stand for the Spearman’s rho and Kendall’s
tau respectively. For instance, pg a is the Spearman’s rho coefficient between the
variables S and A. The PBC models are estimated using two graph structures.

Asa MY
Empirical estimates | 0.43 0.20 0.20
Gumbel 0.48 0.48 048
Gaussian 0 0 0
Student 0.45 0.02 0.02
S - A - L graph
PBC AMH 0.01 0.01 0
PBC FGM 0.01 0.01 0
PBC Frank 0.06 0.03 0
PBC Gumbel 0.45 0.29 0
PBC Joe 0.47  0.30 0
A - S - Lgraph
PBC AMH 0.01 0 0.01
PBC FGM 0.01 0 0.01
PBC Frank 0.05 0 0.02
PBC Gumbel 0.45 0 0.17
PBC Joe 0.47 0 0.22

Table 4: Pairwise empirical and estimated upper tail dependence coefficients for the

tested copulas.
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Appendix
A Proofs

Proof of Proposition 1 In the copula (3), put £’ = E, and, for v € (0, 1],

(v) = vl/mif e € N(i),
Geill) = 1 otherwise.

It can be checked that (4) is true and that (3) leads to (2). Therefore, (2) is a
well-defined copula.

Proof of Proposition 2 Let us now prove that (2) is the only copula arising
from (3). Condition (i) implies that if e ¢ N (i) then go; = 1,4 = 1,...,d. Hence,
the constraint over the functions reduces to [ ¢y ;) gei(v) = v, v € [0,1]. In view of
condition (ii), one has g; = g; for e € N(i), hence (g;(v))™ = v. Therefore

() = vl/mif e € N(i),
GeilV) = 1 otherwise.

To conclude, it suffices to rewrite the product in (3) as
[Tca... .t/ 1. a1 )= [ Cuu/™ u)/™)
ecE {ij}eE

which corresponds to (2).

Proof of Proposition 3 Let us first prove that (5) is the distribution function
associated with the copula (2). From (1) we have

F(l‘l, sy .rd) ZO(F1(1‘1), sy Fd(a:d)) = H C’ij(Fi(.Ti)l/ni,Fj(xj)l/nj)
{ij}eE
= H q)ij(.lii,.ﬁj).
{ij}eE
The first margin of ®;; is given by ®;;1(z) = ®;;(x,00) = F;(x;)'/™ which depends
only on 7. A similar result holds for the second margin ®;;,. Conversely, let us prove

that (2) is the copula associated with (5). Let ®;; %, k = 1,2 be the k-th univariate
marginal of ®,;,{ij} € E. The copula associated with F is given by

Cr(ur,...,ug) = F (Fy Y(w), ..., Fy H(ug)) = H O (F7H(wi), Fy ' (wy) -
{ij}eE

For all {ij} € E, let C;; be the copula associated with ®;;. Tt follows that

(i, 25) = Cij (Pij1 (i), Pij2(z)))
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SO that CI)Z'j (F[l(ui), F{l(uj)) = éij ((I)ij,l o F[l(ui), q)ij,2 (¢] F;l(uj)) and

C’F(ul, e ,ud) = H éij (‘I)ij,l e} Fi_l(ui), (I:’ij72 o} FJ-_I(Uj)) . (16)
{ij}eE
Moreover, since Crisa copula, one has for all k =1,...,d:

’U,k:Cp(l,...,l,’uk,l,...,l)
= I Cu(@maoF w) 1) JI G (1 @uzoFt(ur)

j>k:{kjteE j<k:{jk}eE
= H <I)kj,1 o Fk_l(uk).
j{kjleE
Now by assumption @1 = ®;52 = ®, only depends on k and therefore ullc/"" =
@y, o Fy ' (uy) which implies ®4(2) = Fj(z)Y/™ for all z € R and k = 1,...,d. The
result is obtained by by pluging @4, into (16).

Proof of Proposition 5 Let C be a PBC copula. For all (k,¢) € {1,...,d}?, the
copula associated with the random pair (Uy, Uy) is defined by

Cre(up,ug) = C(1,..., Lug, 1,..., 1,up, 1,...,1).
Two cases arise: If {kl} € E, then

Chor (g, ug) = H ée(ujlc/nk7 1) H ée(u;/ne’ 1) éké(’u;lc/nk ull/m)
eeN(k)\{k(} eeN(O)\{kt}
:u’(fnk—l)/”kugw—l)/mCﬂke(ullc/nk,u;/ne)

otherwise
Cra(ur,ue) = | [[ Colwy/™ 1) I Cetuy™ 1)
e€N (k) e€N(£)
= UrUyp.

Proof of Proposition 7 The Fréchet-Hoeffding bounds for copulas (see e.g. [24],
p. 11) applied to Ce in (9) yield

Wie(ug, ue) < Cro(up, we) < Mye(ug, ue), (17)
where
Wie(ug, ug) := u,lc_l/"’“ué_l/w Inax(u,lc/n’c + ull/"e —1,0),
Mye(ug, ug) == ui_l/nkué_l/w min(ui/nk,ull/m).

Clearly, Mys(u,u)/u — 0 as u ] 0. It is easily seen that Wie(u,u)/u — 0 as u J 0
which implies C¢(u, u)/u — 0 and thus )\,(i) = 0. It is straightforward that (1 —2u+
Mye(u,u))/(1 —u) — 1/ max(ng,ne) as u T 1 which entails )\,(JZJ) < min(1/ng, 1/n).
To compute the lower and upper bounds for pxs and 7y, it suffices to substitute
Wie and My, into (12) and (11). Lengthy but elementary computations lead to the
results. Finally, letting ny or n, going to infinity in (17) yields that Cie tends to
independence.
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B Main principle of the message-passing algorithm

Let us denote the parameter vector as 6 = (0;;)(;j;cp. Recall that the graph is
assumed to be a tree, that is, there is no cycles in the graph (then |E| = d —1). Let
V ={1,...,d} and u = (uy,...,uq) a vector in [0,1]%. For a subset A C V, the
notation 9, , C(u;0) stands for the derivative of C' with respect to all the variables in
A. For instance the density writes

24C (u; 0)

m = 8uv C(u; 9) = C(u; 9)’

and the gradient with respect to the parameter vector is

(ac(u; 6))
0ij {ijeE}

To keep the notation simple, the dependence on the parameter vector 6 is dropped
in the remaining of this section. The purpose here is not to give the algorithm, but
rather to provide an intuitive idea of it. Let us write

C’(ul, ce ,ud) = H C‘ij(u;/ni,u}/w) = H q)ij(ui,uj).

{ij}eE {ij}eFE

and let an arbitrary variable index i (the root) be given. Let 7% denote the subtree
rooted at the variable indexed by i and containing the edge indexed by e (see Figure 4).
The idea is to note that, since the graph is a tree, the copula C can be decomposed
over the subtrees rooted at i:

Cu) = H D, (u) =: H Tri(u), w=(u,...,uaq),

eceE e€EN(7)

where T (u) corresponds to the product of all edges located in the subtree 7¢. Since
the T7.:(u)’s do not share any variables (except the root), the derivative and the
product operations commute, more precisely,

O0uy C(w) = Ousuys | ] Tri)| =0u | 1] 0u, Tri(w)

e€N(7) e€N(7)
= 61” H He—si (u) . (18)
e€N (i)

The quantity pe—i(u) := 3u,i\iTT; (u) is called a message from the edge indexed by e
to the variable indexed by i. Now consider Tri(u) and let j be the neighbor variable
index of e. One can go deeper into the tree, that is, we have

T,

i
e

(u) = e (1t 1) s ()

where 77 is the subtree rooted at the edge indexed by e and containing the variable
indexed by j (see Figure 4). Hence,

auTé\iTTé (’LL) = a“j [¢€(ui’ uj)auT;\jTT_f (u)} = an [d)e(uzﬁ uj)/‘j%e(u)] .
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A second type of message has been defined: pj_.(u) := 0, Tre(u) is called a

ey ;LTS
Tj\] j

message from the variable index j to the edge index e. Again,

T = [ 7

e’eN(G)\e

hence,

Oue T = [ 0w, To= T[ #ei)
e’eN(j5)\e ¢ e’eN(j)\e
where the message pe/—j(u) has been already defined in (18). To summarize, the
calculation of pe_;(u) requires the calculation of pj_.(u), which, in turn, requires
the calculation of e/ ;(u), where e = {ij} and €’ is an edge index attached to j. The
algorithm presented above allows to compute recursively all the messages from the
leaves to the root. Once all the messages have been computed, the density is given
by the derivative with respect to the root of the product of all the messages (18).

Figure 4: Examples of subtrees. This figure is partly drawn from [14].
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