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Abstract. We propose and analyze a new formulation of the Linear Sampling
Method that uses an exact characterization of the targets shape in terms ofthe so-called
far�eld operator (at a �xed frequency). This characterization is based on constructing
nearby solutions of the far�eld equation using minimizing sequences of a least squares
cost functional with an appropriate penalty term. We �rst provide a gen eral framework
for the theoretical foundation of the method in the case of noise-free andnoisy
measurements operator. We then explicit applications for the case of inhomogeneous
inclusions and indicate possible straightforward generalizations. We �nally validate
the method through some numerical tests and compare the performances with classical
LSM and the factorization methods.
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Qualitative methods

1. Introduction

This work can be seen as a contribution to the development of so-called qualitative
methods [8, 13, 4] for solving inverse scattering problems for extended targets from
�xed frequency multi-static data. More speci�cally, we introduce and analyze a new
formulation of the so-called Linear Sampling Method (LSM) [7, 6], that we will refer
to as Generalized Linear Sampling Method (GLSM), which is based on an new exact
characterization of the targets shape in terms of the so-called far�eld operator (at a
�xed frequency). This characterization is based on constructing nearby solutions to
the far�eld equation as minimizing sequences of a special cost functional and uses
two (complementary) factorizations of the far�eld operator. The �rst one is the basic
factorization used in the theoretical justi�cation behind LSM and the second one is
the one used by the factorization method (FM) [12, 13]. This combination allows us
for instance to require less restrictive assumptions than FM. It also turns out that one
can establish a direct link between our method and FM for a special setting of GLSM
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and this also provides a direct link with the analysis in [1, 2] justifying the use of LSM
in some particular con�gurations. Although not directly inspired by them, the GLSM
share some similarities with the so-called inf-criterion [13] or the formulation of this
criterion in [14] as well as the probe method [11, 9].

The main idea behind our method is to explicitly construct the nearby solution
of the LSM by adding to a standard least squares mis�t functional a penalty term
proportional to an appropriate norm of the associated Herglotz wave. Using the second
factorization of the far�eld operator (as used in FM), we express this term using the
measured far�eld operator. The main issues to address are �rst how to cope with the fact
that the penalty term is compact and second how to address thecase of noisy operators.
Here comes the role of the �rst factorization generally used for LSM. For more details
we refer to the third section where the general formulation of the method is presented
as well as the analysis for di�erent con�gurations. In orderto introduce the main ideas
behind GLSM as well as a concrete application we choose to present the case of scalar
inverse scattering form inhomogeneous inclusions. We showfor this example how the
method can be applied and we also indicate other possible straightforward applications
(which are roughly speaking all cases where FM applies, or more generally where the
inf-criterion and LSM apply).

The impact of our method on the numerical side is twofold. In fact, the analysis
of GLSM for noisy far�eld operators suggests a di�erent indicator function for LSM
than the one usually used. This new indicator function is similar to the one proposed
in [1] but contains an additional term that correctly �x the b ehavior of the indicator
function outside the obstacle for noisy operators. The superiority of this new indicator
function is demonstrated through some numerical results. The second alternative is to
directly use the minimizing sequence constructed by GLSM, which is computationally
more expensive but leads to better results for multi-connected objects. In fact the
second numerical method can be used as a post-processing of the �rst one since from
numerical experiments, we observed that only few iterations are needed to update the
initial guess provided by LSM.

The article is organized as follows. In Section 2 a model problem is introduced
to motivate GLSM after recalling the basis of the LSM and the factorization method.
The theoretical foundation of the GLSM is given in Section 3.Section 4 provides an
example of application of GLSM by completely treating the model problem introduced
in Section 2 and indicating other possible applications. The last section (Section 5) is
devoted to the introduction of two numerical algorithms issued from Section 3 along
with validating numerical results and comparison with other algorithms.

2. A model problem and motivation for GLSM

In order to introduce the ideas and motivations behind the proposed new algorithm
below, namely GLSM, we choose to present as a model problem the scalar inverse time
harmonic scattering problem from inhomogenous targets. For a wave numberk > 0,
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the total �eld solves the Helmholtz equation

� u + k2nu = 0 in Rd

with d = 2 or 3 and with n 2 L1 (Rd) denoting the refractive index such that the
support of n � 1 is equal toD with D a bounded domain with Lipschitz boundary and
connected complement and such that= (n) � 0. We are interested in the cases where
the total �eld is generated by plane waves,ui (�; x ) := eikx �� with x 2 Rd and � 2 Sd� 1

(the unit sphere) and we denote byus the scattered �eld de�ned by

us(�; �) = u � ui (�; �) in Rd;

which is assumed to be satisfying the Sommerfeld radiation condition,

lim
r !1

Z

jx j= r

�
�
�
�
@us

@r
� iku s

�
�
�
�

2

ds = 0:

Our data for the inverse problem will be formed by noisy measurements of so called
far�eld pattern u1 (�; x̂) de�ned by

us(�; x ) =
eik jx j

jxj(d� 1)=2
(u1 (�; x̂) + O(1=jxj))

asjxj ! 1 for all (�; x̂) 2 Sd� 1� Sd� 1. The goal is to be able to reconstructD from these
measurements (without knowingn) using a new sampling algorithm. The foundation of
this algorithm is inspired by the Linear Sampling Method andthe Factorization Method
that we shall brie
y review here in the context of this special scattering problem. These
methods are based on the far�eld operatorF : L2(Sd� 1) ! L2(Sd� 1), de�ned by

Fg(x̂) :=
Z

Sd� 1
u1 (�; x̂)g(� )ds(� ):

Let us de�ne for  2 L2(D), the unique function w 2 H 1
loc(R

d) satisfying
8
><

>:

� w + nk2w = k2(1 � n) in Rd;

lim
r !1

R

jx j= r

�
� @w

@r � ikw
�
�2

ds = 0: (1)

By linearity of the forward scattering problem,Fg is nothing but the far�eld pattern of
w solution of (1) with  = vg in D, where

vg(x) :=
Z

Sd� 1
eikx �� g(� )ds(� ); g 2 L2(Sd� 1); x 2 Rd:

Now consider the (compact) operatorH : L2(Sd� 1) ! L2(D) de�ned by

Hg := vgjD ; (2)

and the (compact) operatorG : R(H ) � L2(D) ! L2(Sd� 1) de�ned by

G := w1 ;
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where w1 is the far�eld of w 2 H 1
loc(R

d) solution of (1) and whereR(H ) denotes the
closure of the range ofH in L2(D). Then clearly

F = GH:

The basis of the Linear Sampling Method is the following characterization ofD in terms
of the range ofG. This characterization is based on the solvability of so called interior
transmission problem de�ned by (u; v) 2 L2(D) � L2(D) such that u � v 2 H 2(D) and

8
>>><

>>>:

� u + k2nu = 0 in D;
� v + k2v = 0 in D;
(u � v) = f on @D;
@

@�(u � v) = g on @D;

(3)

for given f 2 H
1
2 (@D) and g 2 H � 1

2 (@D). We shall make the following assumption

Hypothesis 1. We assume thatk2 2 R+ and n 2 L1 (D) are such that, = (n) � 0
and such that for allf 2 H

1
2 (@D) and g 2 H � 1

2 (@D) problem (3) has a unique solution
(u; v) 2 L2(D) � L2(D) such thatu � v 2 H 2(D).

It is well known for instance that if in addition, 1=(n � 1) 2 L1 (D) and < (n � 1)
is positive de�nite or negative de�nite in a neighborhood of@D, then Hypothesis 1 is
veri�ed for all k 2 R except a countable set without any �nite accumulation point[18].
De�ning

� z(x̂) := e� ik x̂ �z;

the main ingredient of LSM is the following.

Theorem 1. Under Hypothesis 1,� z 2 R (G) if and only if z 2 D.

The proof of this theorem is rather straightforward using the important result of
Lemma 1 (see [15]) and the fact that� z is the far�eld of �( �; z), the fundamental solution
of the Helmholtz equation satisfying the Sommerfeld radiation condition.

Lemma 1. R(H ) = f v 2 L2(D); � v + k2v = 0 in Dg:

From Theorem 1 one can deduce the following statement, whichis the basic
theoretical justi�cation of the LSM.

Theorem 2. Under Hypothesis 1, the operatorF is injective with dense range.
Moreover, the following holds.

� If z 2 D then there exists g�
z such that kFg�

z � � zkL 2 (Sd� 1 ) � � and
lim sup

� ! 0
kHg�

zkL 2 (D ) < 1 .

� If z =2 D then for all g�
z such thatkFg�

z � � zkL 2 (Sd� 1 ) � � , lim
� ! 0

kHg�
zkL 2 (D ) = 1 .

This theorem thus suggests to use a nearby solution toFg�
z ' � z for di�erent

sampling points z to obtain an indicator of D. Two problematic issues are then
raised: the �rst one is that the indicator function (provided by the theorem) should
be kHg�

zkL 2 (D ) which depends onD and the second one is that the theorem does not
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give explicit construction of g�
z. In practice, a Tikhonov regularization is usually used

to build a nearby solution (as suggested by the �rst statement in Theorem 2) and
kg�

zkL 2 (Sd� 1 ) is used in replacement ofkHg�
zkL 2 (D ) . In [1] it is proved, based on the

Factorization method, that Tikhonov regularization provides the good solution as soon
as = (n) = 0 and in that case one can replacekHg�

zkL 2 (D ) with jHg�
z(z)j. As it will

be seen later, the proposed GLSM gives an alternative solution independent from the
Factorization method (although inspired by this method) and more importantly that
e�ciently treats the case of noisy operator.

The idea behind GLSM is as simple as reconstructing a nearby solution of the LSM
by using a least squares mis�t functional with a penalty termthat controls kHg�

zk2
L 2 (D ) .

This is feasible thanks to the second factorization of the far�eld operator, which is
the starting point of the Factorization method. More precisely, for the case under
consideration, since the far�eld operator ofw has the following expression ([8])

w1 (x̂) = �
Z

D
e� iky: x̂ (1 � n)k2( (y) + w(y))dy;

one simply hasG = H � T  whereH � : L2(D) ! L2(Sd� 1) is the adjoint of H given by

H � ' (x̂) :=
Z

D
e� iky: x̂ ' (y)dy; ' 2 L2(D); x̂ 2 Sd� 1;

and whereT: L2(D) ! L2(D) is de�ned by

T  := � k2(1 � n)( + w); (4)

with w 2 H 1
loc(R

d) being the solution of (1). Finally we get

F = H � TH;

which indicates that (Fg; g)L 2 (Sd� 1 ) = ( T(Hg); Hg)L 2 (D ) . Therefore, if the operator
T satis�es some appropriate coercivity property, the term (Fg; g)L 2 (Sd� 1 ) would be
equivalent to kHg�

zk2
L 2 (D ) . One then can use

�
�(Fg; g)L 2 (Sd� 1 )

�
� as a penalty term and also

as a criterion for building the indicator function. This is the starting point of GLSM.
The detailed formulation and analysis of the method are given in the next section.

3. Theoretical Foundations of GLSM

In this section we shall give the theoretical foundations ofthe Generalized Linear
Sampling Method. The general framework is given by the following assumptions. We
shall denote byX and Y two (complex) re
exive Banach spaces with dualsX � and Y �

respectively and shall denote byh; i a duality product that refers to hX � ; X i or hY � ; Y i
duality. We consider two bounded linear operatorsF : X ! X � and B : X ! X � that
are assumed to be bounded. Moreover we shall assume that the following factorizations
hold

F = GH and B = H � TH (5)

where the operatorsH : X ! Y, T : Y ! Y � and G : R(H ) � Y ! X � are bounded,
whereR(H ) the closure of the range ofH in Y.
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3.1. Formulation of GLSM for noise free measurements

Let � > 0 be a given parameter and� 2 X � . The GLSM (for noisy free measurements)
is based on considering minimizing sequences of the functional J� (� ; �) : X ! R

J� (� ; g) := � jhBg; gij + kFg � � k2 8g 2 X: (6)

Indeed this functional has not a minimizer in general. However, sinceJ� (� ; �) � 0 one
can de�ne

j � (� ) := inf
g2 X

J� (� ; g): (7)

Then the �rst simple observation is the following.

Lemma 2. Assume thatF has dense range. Then for all� 2 X � , j � (� ) ! 0 as � ! 0.

Proof. SinceF has dense range, for a given� > 0 there existsg� such that kFg� � � k < �
2 .

Then one can choose� 0(� ) such for all � � � 0(� ), � jhBg� ; g� ij < �
2 so that j � (� ) < � ,

which proves the claim.

The central theorem for noisy free GLSM is the following characterization of the
range ofG in terms of F and B.

Theorem 3. We assume in addition that

� G is compact andF = GH has dense range.

� T satis�es the coercivity property

jhT '; ' ij > � k' k2 8 ' 2 R (H ); (8)

where� > 0 is a constant independent of' . Let C > 0 be a given constant (independent
of � ) and consider for � > 0 and � 2 X � , g� 2 X such that

J� (� ; g� ) � j � (� ) + C �: (9)

Then � 2 R (G) if and only if lim sup
� ! 0

jhBg� ; g� ij < 1 which is true if and only if

lim inf
� ! 0

jhBg� ; g� ij < 1 :

Proof. � Assume that � 2 R (G). Then, by de�nition one can �nd ' 2 R(H ) such
that G' = � . for � > 0, 9g0 2 X such that kHg0 � ' k2 < � . Then by continuity
of G, kFg0 � � k2 < kGk2� . On the other hand the continuity of T implies

jhBg0; g0ij = jhTHg0; Hg0ij � k Tk kHg0k2 < 2kTk (� + k' k2)

From the de�nitions of j � (� ) and g� we have

� jhBg0; g0ij + kFg0 � � k2 > j � (� ) > J � (�; g � ) � C�:

We then deduce from the de�nition ofJ� and previous inequalities

� jhBg� ; g� ij � J� (�; g � ) � C� + 2� kTk (� + k' k2) + � kGk2:

Therefore lim sup
� ! 0

jhBg� ; g� ij < 1 : This also implies lim inf
� ! 0

jhBg� ; g� ij < 1 :
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� Assume that � =2 R (G) and assume (by a contradiction argument) that
lim inf

� ! 0
jhBg� ; g� ij < 1 : Then, (for some extracted subsequenceg� ) jhBg� ; g� ij < A

for some constantA independent of� ! 0. The coercivity ofT implies that kHg� k
is also bounded. SinceY is re
exive, then one can assume that, up to an extracted
subsequence,Hg� weakly converges to some' in Y. In fact ' 2 R(H ) since the
latter is a convex set. SinceG is compact, we obtain thatGHg� strongly converges
to G' as � ! 0. On the other hand, Lemma 2 and the de�nitionJ� (�; g � ) imply
that kFg� � � k � J� (�; g � ) � j � (� ) + C� ! 0 as� ! 0. SinceFg� = GHg� we
obtain that G' = � which is a contradiction. We then conclude that if� =2 R (G)
then lim inf

� ! 0
jhBg� ; g� ij = 1 . The latter also implies lim sup

� ! 0
jhBg� ; g� ij = 1 .

As indicated in the previous section, the range of the operator G characterizes the
inclusionD. Therefore this theorem would lead to a characterization ofD in terms of the
operatorsF and B. It also stipulates that an indicator function is given byjhBg� ; g� ij
for small values of� . Let us note that the parameter � does not play the role of a
regularization parameter, since for foreseen applications, the operatorB is in general
compact. However, constructing a sequence (g� ) satisfying (9) for �xed � > 0 may be
viewed as a regularization of the minimization ofJ� (� ; �) that can be used for numerics.
A di�erent regularization procedure that would be more suited for noisy operators is
introduced in the following subsection.

Let us �nally remark that in most of the applications that we have in mind,
taking B = F would be su�cient. In this particular case one can state the following
straightforward corollary.

Corollary 1. Assume thatG(' ) = H � T(' ) for all ' 2 R (H ) and assume in addition
that

� H is compact andF has dense range,

� T satis�es the coercivity property (8).

Let C > 0 be a given constant (independent of� ) and consider for � > 0 and � 2 X � ,
g� 2 X such that

J� (� ; g� ) � j � (� ) + C �: (10)

Then � 2 R (G) if and only if lim sup
� ! 0

jhFg� ; g� ij < 1 which is true if and only if

lim inf
� ! 0

jhFg� ; g� ij < 1 :

The assumptions required in this corollary are weaker than the ones required by the
Factorization method but are similar to those of so-called inf-criterion (See [13]). Indeed
the main advantage of GLSM with respect to the inf-criterion(as it will explained in the
numerical section) is that it leads to a more tractable numerical inversion algorithms. In
some special con�gurations there is a direct link between GLSM and the factorization
method as explained below.
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We also remark that according to Lemma 2 the sequence (g� ) provides a nearby
solution to Fg ' � satisfying

kFg� � � k � j � (� ) + C �:

The reader then easily observe from the proof that one obtainthe same conclusion
in Corollary 1 if we replace the indicator functionjhFg� ; g� ij by jh�; g � ij . The latter
criterion coincides with the one proposed in [1] and has beenanalyzed in [1] and [2]
based on the (F � F )

1
4 method.

3.2. Link with the (F � F )
1
4 method

We found it useful to indicate a link between the GLSM and the �rst version of the
factorization method, namely the so-called (F � F )

1
4 -method [12]. This method applies

whenX is a Hilbert space with a scalar product denoted (; ), and F : X ! X is compact,
normal, injective and with dense range. Then it is shown thatF can be factorized as

F = ( F � F )
1
4 J (F � F )

1
4

with J : X ! X a coercive operator. Among others, two possibilities are of interest:

� A �rst possibility is to apply the GLSM with B = F , H = ( F � F )
1
4 and G =

(F � F )
1
4 J . We then obtain that � 2 R ((F � F )

1
4 ) if and only if lim sup

� ! 0
jhFg� ; g� ij <

1 whereg� satis�es (9). Therefore, whenever one can use the range of (F � F )
1
4 to

characterize the shape of the scattering object, one can also use GLSM withB = F
to obtain a di�erent characterization.

� Another (more informative) possibility is to apply GLSM with B = ( F � F )
1
2 . In

this case, using the system (� i ;  i ) i � 1 of eigenvalues and eigenvectors of the normal
operator F , we observe that

J� (� ; g) = � j((F � F )
1
2 g; g)j + kFg � � k2

= �
X

i

j� i jj (g;  i )j2 +
X

i

(� i (g;  i ) � (�;  i ))2:

Hence,J� (� ; �) has a minimizer given by

g� =
X

i

�� i (�;  i )
� j� i j + j� i j2

 i :

It is clear that this g� satis�es (9). Let us now de�ne

gFM
� =

X

i

j� i j
1
2

j� i j + �
(�;  i ) i ;

which is the minimizer of the Tikhonov functional� kgk2 +





 (F � F )

1
4 g � �








2
. Then

one observes that the GLSM indicator is nothing but

j((F � F )
1
2 g� ; g� )j =

X

i

j� i j(�;  i )2

(� + j� i j)2
=




 gFM

�




 2

:
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We �nally remark that one obtains similar link with the so called F# method (when it
applies) and GLSM by takingB = F# and replacingF by F# in the GLSM setting.
But when the F# method applies one can also apply GLSM with onlyB = F .

3.3. Regularized formulation of GLSM

As it will be clearer later, the previous formulation of GLSM has to be adapted to the
case of noisy operators since in general a noisy operatorB does not satisfy a factorization
of the form (5) (with a middle operator satisfying a coercivity property similar to (8)).
In order to cope with this issue we introduce a regularized version of J� which allows
similar range characterization and where one both controlsthe noisy criteria and the
noisy mis�t term. Among several other options, it turned out that a convenient way to
introduce this regularization is to consider for� > 0 and � > 0 (that will later be linked
with the noise level) and for� 2 X � , the functional J "

� (� ; �) : X ! R de�ned by

J "
� (� ; g) = � (jhBg; gij + " kgk2) + kFg � � k2 : (11)

Lemma 3. Assume thatB is compact. Then for all � > 0, � > 0 and � 2 X � the
functional J "

� (� ; �) has a minimizerg"
� 2 X . If we assume in addition thatF has dense

range, then
lim
� ! 0

lim
" ! 0

J "
� (� ; g"

� ) = lim
" ! 0

lim sup
� ! 0

J "
� (� ; g"

� ) = 0 :

Proof. The existence of minimizer is clear: for �xed� > 0, � > 0 and � 2 X � , any
minimizing sequence (gn ) of J "

� (� ; �) is bounded and therefore one can assume that it is
weakly convergent inX to someg"

� 2 X . The lower semi-continuity of the norm with
respect to weak convergence and the compactness property ofB then imply

J "
� (� ; g"

� ) � lim inf
n!1

J "
� (� ; gn ) � inf

g2 X
J "

� (� ; g);

which proves that g"
� is a minimizer ofJ "

� (� ; �) on X .
Now assume in addition thatF has dense range. By Lemma 2,j � (� ) ! 0 as � ! 0.
Showing that lim

" ! 0
J "

� (� ; g"
� ) = j � (� ) will then prove that lim

� ! 0
lim
" ! 0

J "
� (� ; g"

� ) = 0. We

observe that

J "
� (� ; g) = J� (� ; g) + �" kgk2 (12)

and therefore jJ "
� (� ; g) � J� (� ; g)j ! 0 as " ! 0. For � > 0 one can chooseg

such that jJ� (� ; g) � j � (� )j � �=2. For this g one then has for" su�ciently small
jJ "

� (� ; g) � J� (� ; g)j < �= 2. We obtain by triangular inequality that for " su�ciently
small J "

� (� ; g) � j � (� ) + � . We now observe from the de�nitions ofg"
� and j � and from

(12),
j � (� ) � J� (� ; g"

� ) � J "
� (� ; g"

� ) � J "
� (� ; g);

which proves the claim.
We now prove lim

" ! 0
lim sup

� ! 0
J "

� (� ; g"
� ) = 0. First consider g" a minimizer on X of

the Tikhonov functional "2 kgk2 + kFg � � k2 and set j " = "2 kg" k
2 + kFg" � � k2
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which goes to zero as" goes to zero (classical result for Tikhonov regularization, see
also Lemma 2 which is valid for any bounded operatorB). We have that � � ";
J "

� (g) � "2 kgk2 + kFg � � k2 + � (j(Bg; g)j. For by taking the upper limit

lim sup
� ! 0

J "
� (g"

� ) � lim sup
� ! 0

J "
� (g" ) = j " ;

which concludes the proof.

Theorem 4. Under the assumptions of Theorem 3 and the additional assumption thatB
is compact the following holds. Ifg"

� denotes the minimizer ofJ "
� (� ; �) (de�ned by (11))

for � > 0, " > 0 and � 2 X � , then � 2 R (G) if and only if lim sup
� ! 0

lim sup
" ! 0

jhBg"
� ; g"

� ij <

1 which is true if and only if lim inf
� ! 0

lim inf
" ! 0

jhBg"
� ; g"

� ij < 1 :

Proof. The proof is similar to the proof of Theorem 3.

� Assume that � = G(' ) for some ' 2 R(H ). We consider the sameg0 as in the
�rst part of the proof of Theorem 3 (that depends on� but is independent from
"). Then we choose" such that "kg0k2 � 1. Then

J "
� (� ; g"

� ) � J "
� (� ; g0) � J� (� ; g0) + � (13)

Consequently

� jhBg"
� ; g"

� ij � J "
� (� ; g"

� ) � � + 2� kTk (� + k' k2) + � kGk2

which proves lim sup
� ! 0

lim sup
" ! 0

jhBg"
� ; g"

� ij < 1 :

� Assume � =2 R (G) and assume that lim inf
� ! 0

lim inf
" ! 0

jhBg"
� ; g"

� ij is �nite. The

coercivity of T implies that lim inf
� ! 0

lim inf
" ! 0

kHg"
� k2 is also �nite. This means the

existence of a subsequence (� 0; "(� 0)) such that � 0 ! 0 and"(� 0) ! 0 as� 0 ! 0 and




 Hg" (� 0)

� 0








2
is bounded independently from� 0. On the other hand, the second part

of Lemma 3 (namely the �rst limit), indicates that one can choose this subsequence

such that J " (� 0)
� 0 (g" (� 0)

� 0 ) ! 0 as� 0 ! 0 and therefore





 Fg" (� 0)

� 0 � �





 ! 0 as� 0 ! 0.

The compactness ofG implies that a subsequence ofGHg" (� 0)
� 0 converges for some

G' in X � . The uniqueness of the limit implies thatG' = � which is a contradiction.

In this theorem" should be viewed as the regularization parameter (and not� which
is rather used to construct an indicator function with a limiting process). As indicated by
(13), this regularization parameter serves in the construction of the minimizing sequence
of Theorem 3.

This theorem with regularization stipulates that a criterion to localize the target is
given by jhBg"

� ; g"
� ij for small values of� and � . The reader can easily see from the �rst

part of the proof that the result holds true if we replace thisby (jhBg"
� ; g"

� ij + "kg"
� k2).

This latter criterion is more suited to the case of noisy measurements as indicated in
the section below.
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3.4. The GLSM for noisy data

In this section we will consider the case where there may be noise in the data. More
precisely, we shall assume that one has access to two noisy operators B � and F � such
that 



 F � � F



 � � kF k and




 B � � B




 � � kBk

for some� > 0. We also assume in this section the operator,B , B � F � and F are
compact. We then consider for� > 0 and � 2 X � , the functional J �

� (� ; �) : X ! R,

J �
� (� ; g) := � (j



B � g; g

�
j + � kBk kgk2) +




 F � g � �




 2

8 g 2 X; (14)

which coincides with a regularized noisy functionalJ "
� with a regularization parameter

� = � kBk. According to Lemma 3 one can considerg�
� a minimizer of J �

� (� ; g). We �rst
observe (similarly to in the second part of the proof of Lemma3)

Lemma 4. Assume in addition thatF has dense range. Then for all� 2 X � ,

lim
� ! 0

lim sup
� ! 0

J �
� (� ; g�

� ) = 0 :

Proof. We observe that for allg 2 X ,

J �
� (� ; g) � J� (� ; g) + (2 �� kBk + � 2kF k2) kgk2 : (15)

Since (2�� kBk + � 2kF k2) ! 0 as� ! 0, then as in the proof of Lemma 3, for any� > 0
(� �xed), one can chooseg 2 X such that for su�ciently small � ,

J �
� (� ; g) � j � (� ) + �

Consequently, from the de�nition of g�
� ,

J �
� (g�

� ; � ) � j � (� ) + �

This proves the claim, sincej � (� ) ! 0 as� ! 0 (by Lemma 2).

Theorem 5. Assume that the assumptions of Theorem 3 and the additional assumptions
of this subsection hold true. Letg�

� be the minimizer of J �
� (� ; �) (de�ned by

(21)) for � > 0, � > 0 and � 2 X � . Then � 2 R (G) if and only

if lim sup
� ! 0

lim sup
� ! 0

� �
� 
 B � g�

� ; g�
�

� �
� + � kBk




 g�

�




 2

�
< 1 which is true if and only if

lim inf
� ! 0

lim inf
� ! 0

� �
� 
 B � g�

� ; g�
�

� �
� + � kBk




 g�

�




 2

�
< 1 .

Proof. The proof of this theorem follows the lines of the proof of Theorem 4.

� Assume that � = G(' ) for some ' 2 R(H ). We consider the sameg0 as in the
�rst part of the proof of Theorem 3 (that depends on� but is independent from
� ). Choosing� su�ciently small such that

(2�� kBk + � 2kF k2) kg0k2 � �
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we get

J �
� (� ; g�

� ) � J �
� (� ; g0) � J� (� ; g0) + �: (16)

Consequently

�
�

j


Bg�

� ; g�
�

�
j + � kBk




 g�

�




 2

�
� J �

� (� ; g�
� ) � � + 2� kTk (� + k' k2) + � kGk2;

which proves lim sup
� ! 0

lim sup
� ! 0

� �
� 
 B � g�

� ; g�
�

� �
� + � kBk




 g�

�




 2

�
< 1 .

� Assume� =2 R (G) and assume that lim inf
� ! 0

lim inf
" ! 0

� �
� 
 B � g�

� ; g�
�

� �
� + � kBk




 g�

�




 2

�
is

�nite. The coercivity of T implies that

�



 Hg�

� (� )




 2

� j


Bg�

� ; g�
�

�
j � j



B � g�

� ; g�
�

�
j + � kBk




 g�

�




 2

:

Therefore lim inf
� ! 0

lim inf
� ! 0




 Hg�

�




 2

is also �nite. This means the existence of a

subsequence (� 0; � (� 0)) such that � 0 ! 0 and � (� 0) ! 0 as� 0 ! 0 and





 Hg� (� 0)

� 0








2

is bounded independently from� 0. One can also choose� (� 0) such that � (� 0) � � 0.
On the other hand Lemma 4 indicates that one can choose this subsequence such
that J � (� 0)

� 0 (g� (� 0)
� 0 ) ! 0 as� 0 ! 0 and therefore






 F � g� (� 0)

� 0 � �





 ! 0 as� 0 ! 0 and

� 0� (� 0)kg� (� 0)
� 0 k2 ! 0 as� 0 ! 0. By a triangular inequality and � (� 0) � � 0 we then

deduce that





 Fg� (� 0)

� 0 � �





 ! 0 as � 0 ! 0. The compactness ofG implies that a

subsequence ofGHg� (� 0)
� 0 converges for someG' in X � . The uniqueness of the limit

implies that G' = � which is a contradiction.

It is clear from the proof of the theorem that any strategy of regularization "(� )
satisfying � (� ) � � kBk and � (� ) ! 0 as� ! 0 would be convenient to obtain a similar
result. From the numerical perspective this theorem indicates that a criterion to localize
the object would be

j


B � g�

� ; g�
�

�
j + � kBk




 g�

�




 2

for small values of� . Indeed the theorem only says that this criterion would be e�cient
for su�ciently small noise. Building explicit link between the value of � and the noise
level � (in the fashion of a posteriori regularization strategies)would be of valuable
theoretical interest but this seems to be challenging (due to the compactness of the
operator B). One can see from the proof that adding the term� kBk




 g�

�




 2

is important
to conclude when� is not in the range ofG. This means that this term is important
for correcting the behavior of the indicator function outside the inclusion, which is
corroborated by the numerical experiments below.
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4. Some applications of GLSM

We turn back to our model problem and consider the notation and assumptions of
Section 2. We shall apply GLSM withB = F . The central additional theorem needed
for this case is the following coercivity property of the operator T. This theorem holds
true under the following assumptions on the refractive index.

Hypothesis 2. We assume thatn 2 L1 (Rd), supp(n � 1) = D, = (n) � 0 and there
exists a constantn0 > 0 such that 1 � < (n(x)) + = (n(x)) � n0 for a.e. x 2 D or
< (n(x)) � 1 + = (n(x)) � n0 for a.e. x 2 D.

We recall that the values ofk2 2 R+ for which Hypothesis 1 does not hold form a
discrete set without �nite accumulation point. The valuesk2 2 R+ for which Hypothesis
1 does not hold will be referred in the sequel as transmissioneigenvalues.

Theorem 6. Assume that Hypothesis 2 holds and thatk2 2 R+ is not a transmission
eigenvalue. Then the operatorT de�ned by (4) satis�es the coercivity property (8) with
X = X � = L2(D) and the operatorH de�ned by (2).

Proof. For the reader convenience we start by proving a useful (classical) identity related
to the imaginary part of T. With ( ; ) denoting L2(D) scalar product, for  2 L2(D)
and w 2 H 1

loc(R
d) solution of (1),

(T  ;  ) = � k2
Z

D
(1 � n)( + w) dx: (17)

We remark that by elliptic regularity, w 2 H 2
loc(R

d). Multiplying (1) with w and
integrating by part over BR : a ball of radiusR containing D,

k2
Z

D
(1 � n)( + w)w dx = �

Z

B R

jr wj2 � k2njwj2dx +
Z

jx j= R

@w
@r

w ds:

The Sommerfeld Radiation condition indicates that

lim
R!1

=
Z

jx j= R

@w
@r

w ds = k
Z

Sd� 1
jw1 j2ds;

Therefore, taking the imaginary part then lettingR ! 1 yields

k2=
Z

D
(1 � n)( + w)w dx =

Z

D
k2= (n)jwj2dx + k

Z

Sd� 1
jw1 j2ds:

Consequently, decomposing ( + w) = j + wj2 � ( + w)w, we obtain the important
identity,

= (T  ;  ) =
Z

D
k2= (n)( j + wj2 + jwj2)dx + k

Z

Sd� 1
jw1 j2ds: (18)

We are now in position to prove the coercivity property usinga contradiction argument.
Assume for instance the existence of a sequence ` 2 R (H ) such that

k `kL 2 (D ) = 1 and j(T  ` ;  ` )j ! 0 as` ! 1 :
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We denote byw` 2 H 2
loc(R

d) solution of (1) with  =  ` . Elliptic regularity implies
that kw`kH 2 (D ) is bounded uniformly with respect to`. Then up to changing the initial
sequence, one can assume that ` weakly converges to some in L2(D) and w` converges
weakly in H 2

loc(R
d) and strongly in L2(D) to somew 2 H 2

loc(R
d). It is then easily seen

(using distributional limit) that w and  satis�es (1), and since ` 2 R (H )

�  + k2 = 0 in D: (19)

Identity (18) and j(T  ` ;  ` )j ! 0 implies that w1
` ! 0 in L2(Sd� 1) and therefore

w1 = 0. The Rellich theorem and unique continuation principle implies w = 0
outside D and consequentlyw 2 H 2

0 (D). With the help of equation (19) we get that
u = w +  2 L2(D) and v =  2 L2(D) are such that u � v 2 H 2(D) and are solution
of the interior transmission problem (3) withf = g = 0. We then infer that w =  = 0.
Identity (17) applied to  ` and w` implies

j(T  ` ;  ` )j � k2

�
�
�
�

Z

D
(1 � n)j ` j2dx

�
�
�
� � k2

�
�
�
�

Z

D
(1 � n)w`  ` dx

�
�
�
� :

Therefore, since
R

D (1 � n)w`  `dx !
R

D (1 � n)w dx = 0, and using the assumptions
on n,

lim
` ! 0

j(T  ` ;  ` )j � k2n0=2 > 0;

which is a contradiction.

Let C > 0 be a given constant (independent of� ) and consider for� > 0 and
z 2 Rd, gz

� 2 L2(Sd� 1) such that

� j(Fgz
� ; gz

� )j + kFgz
� � � zk2 � j � (� z) + C �; (20)

where
j � (� z) = inf

g2 L 2 (Sd� 1 )

�
� j(Fg; g)j + kFg � � zk2

�
:

Combining the results of Theorems 6 and 1 and the �rst claim ofTheorem 2, we obtain
the following as a straightforward application of Corollary 1.

Theorem 7. Assume that Hypothesis 2 holds and thatk2 2 R+ is not a transmission
eigenvalue. Thenz 2 D if and only if lim sup

� ! 0
j(Fgz

� ; gz
� )j < 1 which is true if and only

if lim inf
� ! 0

j(Fgz
� ; gz

� )j < 1 :

For applications, it is important to rather use the criterion provided in Theorem 5.
ConsiderF � : L2(Sd� 1) ! L2(Sd� 1) a compact operator such that




 F � � F




 � �;

then consider for� > 0 and � 2 L2(Sd� 1), the functional J �
� (� ; �) : L2(Sd� 1) ! R,

J �
� (� ; g) := � (j(F � g; g)j + � kgk2) +




 F � g � �




 2

8 g 2 L2(Sd� 1): (21)

Then as a direct consequence of Theorem 5, we have the following characterization ofD.
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Theorem 8. Assume that Hypothesis 2 holds and thatk2 2 R+ is not a transmission
eigenvalue. Forz 2 Rd denote bygz

�;� the minimizer of J �
� (� z; �) over L2(Sd� 1). Then

z 2 D if and only if lim sup
� ! 0

lim sup
� ! 0

� �
�(F � gz

�;� ; gz
�;� )

�
� + �




 gz

�;�




 2

�
< 1 which is true if

and only if lim inf
� ! 0

lim inf
� ! 0

� �
�(F � gz

�;� ; g�
�;� )

�
� + �




 gz

�;�




 2

�
< 1 .

The numerical algorithm associated with this theorem is given in next section.
Let us note again as conclusion of this section that the results of Theorems 7 and 8
in fact apply whenever the so calledF# method apply. For instance the result hold
true for obstacle scattering with Dirichlet boundary conditions, Neumann boundary
conditions or impedance boundary conditions [13, 5]. One has just to remove assumption
2 and instead of excluding transmission eigenvalues, one has to exclude the resonant
eigenfrequencies associated with the interior problem. One can also apply GLSM to
cracks as a consequence of the work in [3]. For Maxwell's equations one can in principle
also treat the inverse medium problem but the GLSM method does allow to treat (in
its current form) the case of inverse obstacle scattering (i.e. for instance perfectly or
imperfectly conducting obstacles).

5. Numerical algorithms issued from GLSM and validation

Minimizing J �
� (de�ned in equation 21) with B = F may be computationally expensive

and not straightforward (see Section 5.2). Thus we �rst propose to use the indicator
function of the GLSM with the solution of the LSM, which can beseen as a generalisation
of [2] in the case of noisy measurement. Then we introduce a second algorithm which
is a post processing in the sense that it uses the solution of the LSM both to initialise
the optimisation algorithm that minimize J �

� and to initialise the parameter� .
In order to �x the ideas, we shall restric ourselves to the twodimensional case

and will introduce the algorithms for the discrete version of GLSM. We identify S1

with the interval [0; 2� [. In order to collect the data of the inverse problem we solve
numerically (1) for N incident �elds ui ( 2�j

N ; �); j 2 f 0:::N � 1g using the surface integral
equation forward solver available in [10]. The discret version of F is then the matrix
FN := ( u1 ( 2�j

N ; 2�k
N ))0� j;k � N� 1. We add some noise to the data to build a noisy far

�eld matrix F �
N where (F �

N) j;k = ( FN) j;k (1 + �N ij ) for � > 0 and N ij an uniform
complex random variable in [� 1; 1]2. We denote � z;N 2 CN , the vector de�ned by
� z;N(j ) = � z( 2�j

N ) for 0 � j � N � 1.

5.1. The use of GLSM as a new indicator function for the LSM

We introduce the Tikhonov regularized solution of the far �eld equation

g�; LSM
z;N := argmin gN � kgNk2

L 2 (S1 ) +



 F �

NgN � � z;N




 2

L 2 (S1 )
;
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where the regularization parameter� is chosen using the Morozov discrepancy principle,
i.e. � is de�ned as the unique solution of






 F �

Ng�; LSM
z;N � � z;N








L 2 (S1 )
= �






 g�; LSM

z;N








L 2 (S1 )
:

Solving the same two equations withF
1
2

# or (F � F )
1
4 , depending of the nature of the

scatter, instead ofF will give the solution of the factorization methodg�; FM
z;N . To solve

both the LSM and the FM equations we rely on the singular value decomposition ofF �
N ,

which gives an explicit solution like in 3.2.
As proposed in [2],[12] and [7], from these two problems threeindicator functions

can be computed:

I LSM (z) =
1





 g�; LSM

z;N








L 2 (S1 )

I HLSM (z) =
1

q
jHg�; LSM

z;N (z)j
=

1
q

j(� z;N ; g�; LSM
z;N )L 2 (S1 ) j

I FM (z) =
1





 g�; FM

z;N








L 2 (S1 )

As shown in the previous sections, a fourth indicator function is relevant, namely

I GLSM (z) =
1

r �
�
�(F �

Ng�; LSM
z;N ; g�; LSM

z;N )
�
�
�
L 2 (S1 )

+ �





 g�; LSM

z;N








2

L 2 (S1 )

This indicator is indeed motivated by GLSM. However let us note that sinceg�; LSM
z;N is

not the minimizer of J �
� (� ; �) (de�ned in equation (21)) the theory developed here does

not apply for this indicator function (a last indicator function covered by the theory will
be build in section 5.2 using a more computationally complexmethod). The numerical
experiments presented below indicate in the same time that this indicator function
provide results comparable to the Factorization method.

We will present two simulations: one where two ellipses haveDirichlet boundary
conditions and one wheren = 2 + 0 :5i in one ellipse and 2 + 0:1i in the other. In both

examples N = 100 and we will considerk
F �

N � FN k
kFN k = 0; 1 and 5%.

Figures 1 and 2 show the results of the four indicator functions. First we see that
I HLSM is not robust to noise, the area outside the obstacle shows artefact where the
indicator function is greater than inside the obstacle. This is an expected result since
as stated at the end of 3.1 one can easily replacejhFg� ; g� ij by jh�; g � ij , which is not a
valid indicator function in the presence of noise. FinallyI LSM recover with less precision
the border of the shape thanI FM and I GLSM which exhibit comparable results.
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Figure 1. I HLSM (�rst line), I LSM (second line), I FM (third line) and I GLSM (forth
line) applied to the Dirichlet scatters for 0, 1 and 5% of noise (from left to right)

5.2. minimizing J �
� : a post-processing

In order to apply Theorem 8, we should �nd the minimizer ofJ �
� (� ; �) (de�ned in

equation (21)). There are two main di�culties in this theorem. First, we do not have
an analytic solution of the minimizer thus we will rely on an optimisation algorithm
and as already mentioned in 3.4 and second we do not have an a priori method to link
� to the noise level. Because of the good performance of the Morozov discrepancy
principle we look for an heuristic that stay close to this principle. Since we have
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Figure 2. I HLSM (�rst line), I LSM (second line), I FM (third line) and I GLSM (forth
line) applied to penetrable scatters for 0, 1 and 5% of noise (from left toright))

� (j(F � g; g)j + � kgk2) � � (



 F �




 + � ) kgk2, we choose:

� =
� LSM

kF � k + �

where� LSM is the parameter found when one applies the Morozov discrepancy principle
to the Tikhonov formulation of the LSM.

Remark. The inequality j(F � g; g)j �



 F �




 kgk2, we use to �nd the previous heuristic

will reduce the strength of the penalty term compared to the Tikhonov-LSM. Moreover
the fact that this inequality is coarser for eigenvector corresponding to small eigenvalue,
means that the penality term will be smaller for points outside the obstacle. This is
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shown by �gure 3, where we see that after the optimisation process the solution deviates
from the Morozov discrepancy principles mainly outside the obstacle.

Figure 3.



 F �

N gN � � z;N



 � � kgN k after minimisation on the Dirichlet scatters with

5% of noise.

Minimizing J �
� (� ; �) in CN is not an easy task since it is a not di�erentiable nor a

convex cost functionnal. However we can hope thatg�; LSM
z;N will be close to a minimum

which makes it worth to try a gradient method. As explained in [16] gradient method
extended well for complex variable if one look atJ �

� (� ; gN) as a function of two variables,
gN and �gN , knowing that one can compute the gradient ofJ �

� with respect to gN :

r �gN J �
� (� ; gN ; �gN) := � (

F �
NgN � �gN

jF �
NgN � �gN j

F �
NgN + �gN) + F � �

N (F �
NgN � � N)

where� is the standard scalar product between vector. We did not change the absolute
value with a di�erentiable surrogate because with the initial guess we used it was
not necessary, this is supported by the fact that for the unperturbed operator F the
coercivity implies that j(Fg; g)j is never zero wheng is not zero.

Finally to do the optimisation we use the non-linear conjugate gradient implemented
in [17] with a modi�ed Hestenes-Stiefel heuristic to update the direction descent, which
is described in algorithm 1. We choose drastic stopping rules in order to ensure the
convergence of the algorithm however we observe that convergence occurs before those
stopping rules are satis�ed. The design of a tailored methodand set of parameters to
minimize J �

� would be an interesting perspective for this work.
The result of this optimisation performed for eachz, gives us a new set:g�; GLSM

z;N

which ultimately creates a new indicator function:

I GLSMoptim =
1

r �
�
�(F �

Ng�; GLSM
z;N ; g�; GLSM

z;N )
�
�
� + �






 g�; GLSM

z;N








2

Figures 4 and 5 show that this post processing increases the quality of the reconstruction
especially in the space in-between the two scatters. Moreover �gure 6 shows that the
improvement on an isolated scattered, a kite of contrastn = 2 + 0 :5i , is less impressive
(i.e. we do not improve the reconstruction of the non-convexpart of the kite).
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Algorithm 1 Minimizing J �
�

for all z do
g0 = g�; LSM

z;N and � = � LSM (z)

kF �
N k+ �

while kgt+1 � gtk � 10� 10 kgtk or J �
� (gt+1 ) � J �

� (gt ) � 10� 10J �
� (g0) or t < 200do

� gt = �r gJ �
� (gt ; �gt )

� t
HS = max(0; �

< (� gt> (� gt � � gt � 1))
< (st � 1> (� gt � � gt � 1))

)

st = � gt + � t
HS st � 1

� t = arg min � 2 R J �
� (gt + �s t )

gt+1 = gt + � tst

t  t + 1
end while
g�; GLSM

z;N = gt

end for

Remark. In the (less general) case where theF# method is valid, one could choose
B � = F �

# = j< (F � )j + j= (F � )j in equation (21). We know thatF �
# is a positive and

self-adjoint operator then one can drop the absolute value in the de�nition ofJ �
� :

J �
� (� ; g) := � (






 (F �

# )
1
2 g








2
+ � # kgk2) +




 F � g � �




 2

and �nd g�; GLSM
z;N easily by solving the following (iteration-free) problem:

� ((F �
# )

1
2 � (F �

# )
1
2 gN + � # gN ) + F � � (F � gN � � N ) = 0 :
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Figure 5. I GLSM (�rst line) and I GLSMoptim (second line) applied to the penetrable
scatters for 1 and 5% of noise (from left to right)

Figure 6. I GLSM and I GLSMoptim (from left to right) with 1% of noise


