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Abstract.  We propose and analyze a new formulation of the Linear Sampling
Method that uses an exact characterization of the targets shape in terms dhe so-called
far eld operator (at a xed frequency). This characterization is based on constructing
nearby solutions of the far eld equation using minimizing sequencs of a least squares
cost functional with an appropriate penalty term. We rst provide a gen eral framework
for the theoretical foundation of the method in the case of noise-free anchoisy
measurements operator. We then explicit applications for the case of imomogeneous
inclusions and indicate possible straightforward generalizations. We nally validate
the method through some numerical tests and compare the performancesitiv classical
LSM and the factorization methods.

AMS classi cation scheme numbers: 35R60, 35R30, 65M32
Keywords Inverse scattering problems, Linear Sampling Method, Factorizaton Method,
Qualitative methods

1. Introduction

This work can be seen as a contribution to the development ob-salled qualitative
methods [8, 13, 4] for solving inverse scattering problemsrfextended targets from
xed frequency multi-static data. More speci cally, we introduce and analyze a new
formulation of the so-called Linear Sampling Method (LSM)7, 6], that we will refer
to as Generalized Linear Sampling Method (GLSM), which is Ise&d on an new exact
characterization of the targets shape in terms of the so-éadl far eld operator (at a
xed frequency). This characterization is based on constaling nearby solutions to
the far eld equation as minimizing sequences of a specialstafunctional and uses
two (complementary) factorizations of the far eld operate. The rst one is the basic
factorization used in the theoretical justi cation behind LSM and the second one is
the one used by the factorization method (FM) [12, 13]. This cobination allows us
for instance to require less restrictive assumptions than FMt also turns out that one
can establish a direct link between our method and FM for a spiet setting of GLSM
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and this also provides a direct link with the analysis in [1, ]Justifying the use of LSM
in some particular con gurations. Although not directly inspired by them, the GLSM
share some similarities with the so-called inf-criterion1B] or the formulation of this
criterion in [14] as well as the probe method [11, 9].

The main idea behind our method is to explicitly construct tle nearby solution
of the LSM by adding to a standard least squares mist functioal a penalty term
proportional to an appropriate norm of the associated Hergip wave. Using the second
factorization of the far eld operator (as used in FM), we expess this term using the
measured far eld operator. The main issues to address arestrhow to cope with the fact
that the penalty term is compact and second how to address tloase of noisy operators.
Here comes the role of the rst factorization generally useaif LSM. For more details
we refer to the third section where the general formulationfahe method is presented
as well as the analysis for di erent con gurations. In ordetto introduce the main ideas
behind GLSM as well as a concrete application we choose to gat the case of scalar
inverse scattering form inhomogeneous inclusions. We shéwv this example how the
method can be applied and we also indicate other possibleaghtforward applications
(which are roughly speaking all cases where FM applies, or reogenerally where the
inf-criterion and LSM apply).

The impact of our method on the numerical side is twofold. Inakct, the analysis
of GLSM for noisy far eld operators suggests a di erent indiator function for LSM
than the one usually used. This new indicator function is siilar to the one proposed
in [1] but contains an additional term that correctly x the behavior of the indicator
function outside the obstacle for noisy operators. The superity of this new indicator
function is demonstrated through some numerical results. He second alternative is to
directly use the minimizing sequence constructed by GLSM,hich is computationally
more expensive but leads to better results for multi-conned objects. In fact the
second numerical method can be used as a post-processinghef tst one since from
numerical experiments, we observed that only few iterati@nare needed to update the
initial guess provided by LSM.

The article is organized as follows. In Section 2 a model piemn is introduced
to motivate GLSM after recalling the basis of the LSM and thedctorization method.
The theoretical foundation of the GLSM is given in Section 3Section 4 provides an
example of application of GLSM by completely treating the madel problem introduced
in Section 2 and indicating other possible applications. Tehlast section (Section 5) is
devoted to the introduction of two numerical algorithms issed from Section 3 along
with validating numerical results and comparison with othealgorithms.

2. A model problem and motivation for GLSM

In order to introduce the ideas and motivations behind the mposed new algorithm
below, namely GLSM, we choose to present as a model problene ttalar inverse time
harmonic scattering problem from inhomogenous targets. Fa wave numberk > 0,
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the total eld solves the Helmholtz equation
u+ k?nu=0in RY

with d = 2 or 3 and with n 2 L! (RY) denoting the refractive index such that the
support ofn 1 is equal toD with D a bounded domain with Lipschitz boundary and
connected complement and such that(n) 0. We are interested in the cases where
the total eld is generated by plane wavesy'( ;x) := € with x 2 R9and 2 ¢ ?
(the unit sphere) and we denote by the scattered eld de ned by

w(;)=u u'(;) inRS

which is assumed to be satisfying the Sommerfeld radiatioormdition,
YA 2
lim @t iku® ds=0:
M e @r
Our data for the inverse problem will be formed by noisy measements of so called
far eld pattern u! (; ®) de ned by

. g g
us(;x) = jxj(d—1)=2(u (5 R) + O(15x)))

asjxj!1  forall(;®) 2! s* 1 Thegoalisto be able to reconstrucd from these
measurements (without knowingn) using a new sampling algorithm. The foundation of
this algorithm is inspired by the Linear Sampling Method andhe Factorization Method
that we shall brie y review here in the context of this specibscattering problem. These
methods are based on the far eld operatoF : L2(S* 1) I L2(S" 1), de ned by

Z

Fo(%) := o u' (5 R)g( )ds( ):

Let us de ne fé)r 2 L%(D), the unique functionw 2 H}_(RY) satisfying
2 w+nk®w=k*1 n) inRY%

R
> lim @ jkw ? ds=0: (L)
ool r
xj=r
By linearity of the forward scattering problem,F g is nothing but the far eld pattern of
w solution of (1) with = vg4 in D, where
Z

Vg(X) = ; €9 g()ds(); g2 LA(S" 1), x 2 RY:

Now consider the (compact) operatoH : L2(S* 1) ! L?(D) de ned by
Hg = Vgip; (2)

and the (compact) operatorG : R(H) L?(D)! L?(S" 1) de ned by

G =w;
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wherew! is the far eld of w 2 H}_(RY) solution of (1) and whereR (H) denotes the

closure of the range oH in L2(D). Then clearly
F = GH:

The basis of the Linear Sampling Method is the following chacterization of D in terms
of the range ofG. This characterization is based on the solvability of so dald interior
transmission groblem dened by (;v) 2 L?(D) L?%D)suchthatu v2 H?D) and

% u+ k?nu=0 in D;
v+ k=0 in D;

3 (u vy=f on@D;
Su v)=g on@D;

for givenf 2 H %(@D andg2 H %(@ D. We shall make the following assumption

3)

Hypothesis 1. We assume thatk? 2 R, andn 2 L! (D) are such that,=(n) 0
and such that for allf 2 H %(@D andg2 H %(@D problem (3) has a unique solution
(u;v) 2 L3(D) L2%D) such thatu v 2 H?(D).

It is well known for instance that if in addition, 1=(n 1) 2 L (D) and <(n 1)
is positive de nite or negative de nite in a neighborhood of@D then Hypothesis 1 is
veri ed for all k 2 R except a countable set without any nite accumulation point[18].
De ning

Z(k) = e ikkz;
the main ingredient of LSM is the following.
Theorem 1. Under Hypothesis 1, , 2 R(G) if and only if z2 D.

The proof of this theorem is rather straightforward using tle important result of
Lemma 1 (see [15]) and the fact that, is the far eld of ( ;Zz), the fundamental solution
of the Helmholtz equation satisfying the Sommerfeld radiain condition.

Lemma 1. R(H)=fv2L?%D); v+ k®=0inDg:

From Theorem 1 one can deduce the following statement, whids the basic

theoretical justi cation of the LSM.

Theorem 2. Under Hypothesis 1, the operator- is injective with dense range.
Moreover, the following holds.

If z 2 D then there existsg, such that kFg, Kz 1 and
limsupkHg,K 2py < 1 .

10
If z2D then for all g, such thatkFg, Kz 1 , |I'IT(1) kHg, K z2py = 1.
This theorem thus suggests to use a nearby solution g, * . for dierent

sampling points z to obtain an indicator of D. Two problematic issues are then
raised: the rst one is that the indicator function (provided by the theorem) should
be kHg, k. 2(py which depends orD and the second one is that the theorem does not
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give explicit construction ofg,. In practice, a Tikhonov regularization is usually used
to build a nearby solution (as suggested by the rst statemdnin Theorem 2) and
kg,K 2(s« 1y is used in replacement okHg,k 2>py. In [1] it is proved, based on the
Factorization method, that Tikhonov regularization provides the good solution as soon
as=(n) = 0 and in that case one can replac&Hg,k >p) with jHg,(z)j. As it will
be seen later, the proposed GLSM gives an alternative solui independent from the
Factorization method (although inspired by this method) ad more importantly that

e ciently treats the case of noisy operator.

The idea behind GLSM is as simple as reconstructing a nearhylstion of the LSM
by using a least squares mis t functional with a penalty ternthat controls kH gzkfz(D).
This is feasible thanks to the second factorization of the rf&ld operator, which is
the starting point of the Factorization method. More precisly, for the case under
consideration, since the ffr eld operator ofv has the following expression ([8])

w' (%) = e WAL mK3( (y)+ w(y)dy;

D
one simply hasG=H T whereH :L%D)! LS 1) is the adjoint of H given by
Z

H' () := e kiR (y)ydy; ' 2 L¥(D); 2 S Y

and whereT: L?(D)! L2%(D) is de ned by

T = K@ n)( +w); (4)
with w 2 H}_ (RY) being the solution of (1). Finally we get
F=H TH;

which indicates that (Fg;0Q) 2w 1y = (T(HQ);HQ)L2py. Therefore, if the operator
T satises some appropriate coercivity property, the term Kg;g) 2« 1y would be

equivalent to ngZkEZ(D). One then can use(Fg;9) 2 1) as a penalty term and also
as a criterion for building the indicator function. This is the starting point of GLSM.

The detailed formulation and analysis of the method are givein the next section.

3. Theoretical Foundations of GLSM

In this section we shall give the theoretical foundations ofhe Generalized Linear
Sampling Method. The general framework is given by the follang assumptions. We
shall denote byX and Y two (complex) re exive Banach spaces with dualX andY
respectively and shall denote byx i a duality product that refers tohX ; Xi orhY ; Yi
duality. We consider two bounded linear operatorg : X ! X andB : X ! X that
are assumed to be bounded. Moreover we shall assume that thkoiving factorizations
hold

F=GH and B=H TH (5)

where the operatoraH : X ! Y, T:Y! Y andG:R(H) Y ! X are bounded,
whereR (H) the closure of the range oH in Y.




Generalized Linear Sampling Method 6

3.1. Formulation of GLSM for noise free measurements

Let > O be a given parameter and 2 X . The GLSM (for noisy free measurements)
is based on considering minimizing sequences of the funoabJ ( ; ): X ! R

J(:9):= jBg;gj+kfFg Kk 8g2X: (6)

Indeed this functional has not a minimizer in general. Howewesinced ( ;) 0 one
can de ne

j ()=inf J(;0: (7)
g2Xx
Then the rst simple observation is the following.

Lemma 2. Assume thatF has dense range. Thenforall2 X ,j ()! Oas ! O.

Proof. SinceF has dense range, for a giverr 0 there existsgy such thatkFg k< 5.

Then one can choose( ) such for all o( ), jhBg;gij < ssothatj ()< ,
which proves the claim. O

The central theorem for noisy free GLSM is the following chacterization of the
range ofG in terms of F and B.

Theorem 3. We assume in addition that

G is compact andF = GH has dense range.
T satis es the coercivity property

T ij> Kk k® 8 2R(H); (8)
where > 0is a constant independent of . Let C > 0 be a given constant (independent
of ) and consider for > Oand 2 X , g 2 X such that

J(i9) j()+C: (9)
Then 2 R(G) if and only if limsupjhBg ;g ij < 1 which is true if and only if
10
Iirqigfthg ;g <1:

Proof. Assume that 2 R (G). Then, by de nition one can nd ' 2 R(H) such
that G' = . for > 0,9 2 X such thatkHgo, ' k*< . Then by continuity
of G, kFgo k? < kGk2 . On the other hand the continuity of T implies

iBdo; wij = jhTHgo; Haoij k TkkHgok? < 2kTk( + k' k?)
From the de nitions of j ( ) and g we have
jhBgo; wij + kFge  K*>j ()>J (;g ) C:
We then deduce from the de nition ofJ and previous inequalities
jBg ;gij J(;g) C +2 KkTk( +Kk k®)+ kGK?

Therefore limsuphBg ; g ij < 1 : This also implies Iim;)nfthg ;g <1:
10 !
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Assume that 2 R(G) and assume (by a contradiction argument) that
Iirqigf jhBg ; g ij < 1 :Then, (for some extracted subsequenge) jhBg ; g ij <A
for some constantA independent of ! 0. The coercivity of T implies that kHg k
is also bounded. Sinc¥ is re exive, then one can assume that, up to an extracted
subsequenceHg weakly converges to some in Y. In fact' 2 R(H) since the
latter is a convex set. Sinc&s is compact, we obtain thatGHg strongly converges
to G' as ! 0. On the other hand, Lemma 2 and the de nitiond (;g ) imply
that kFg k J(;g) j()+C ! Oas ! 0. SinceFg = GHg we
obtain that G' = which is a contradiction. We then conclude that if 2 R (G)
then Iirr|1 i(r)lfthg ;g i = 1 . The latter also implies Iirr|1 soug'th ;gip=1.

]

As indicated in the previous section, the range of the operat@ characterizes the
inclusionD. Therefore this theorem would lead to a characterization & in terms of the
operatorsF and B. It also stipulates that an indicator function is given byjhBg ; g ij
for small values of . Let us note that the parameter does not play the role of a
regularization parameter, since for foreseen applicatisnthe operatorB is in general
compact. However, constructing a sequencg () satisfying (9) for xed > 0 may be
viewed as a regularization of the minimization od ( ; ) that can be used for numerics.
A di erent regularization procedure that would be more suied for noisy operators is
introduced in the following subsection.

Let us nally remark that in most of the applications that we have in mind,
taking B = F would be su cient. In this particular case one can state the dllowing
straightforward corollary.

Corollary 1. Assume thatG(" )= H T(") forall* 2 R(H) and assume in addition
that

H is compact andF has dense range,

T satis es the coercivity property (8).

Let C > 0 be a given constant (independent of) and consider for > Oand 2 X ,
g 2 X such that
J(59) j()+C: (10)
Then 2 R(G) if and only if limsupjhFg ;g ij < 1 which is true if and only if
10
Iirqigfthg ;g <1:

The assumptions required in this corollary are weaker tharhé ones required by the
Factorization method but are similar to those of so-calledi-criterion (See [13]). Indeed
the main advantage of GLSM with respect to the inf-criterior(as it will explained in the
numerical section) is that it leads to a more tractable numecal inversion algorithms. In

some special con gurations there is a direct link between &M and the factorization
method as explained below.
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We also remark that according to Lemma 2 the sequencg | provides a nearby
solutionto Fg'  satisfying

kFg k j()+C:

The reader then easily observe from the proof that one obtaithe same conclusion
in Corollary 1 if we replace the indicator functionjnFg ; g ij by jh; g ij. The latter
criterion coincides with the one proposed in [1] and has beamalyzed in [1] and [2]
based on the E F)# method.

3.2. Link with the (F F)# method

We found it useful to indicate a link between the GLSM and the rst version of the
factorization method, namely the so-calledK F)%-method [12]. This method applies
whenX is a Hilbert space with a scalar product denoted |, andF : X ! X is compact,
normal, injective and with dense range. Then it is shown thaf can be factorized as

F=(F F)iJ(F F)a
with J : X I X a coercive operator. Among others, two possibilities are afterest:
A rst possibility is to apply the GLSM with B = F, H = (F F)« and G =
(F F)%J. We then obtain that 2 R ((F F)#) if and only if limsupjhFg ; g ij <
10

1 whereg satis es (9). Therefore, whenever one can use the range &f F)+ to
characterize the shape of the scattering object, one can@lsse GLSM withB = F

to obtain a di erent characterization.

Another (more informative) possibility is to apply GLSM with B = (F F)%. In
this case, using the system (; ;); 1 of eigenvalues and eigenvectors of the normal
operator F, we observe that

ICi9 = I¢F F)zg;9j + kg k?
jali(g; )PP+ | Cilg; ) G )*

i
Hence,J ( ; ) has a minimizer given by
X i(; i) .
. - . . |-
Codirgar
It is clear that this g satis es (9). Let us now de ne

oo LR oy

j i+

g:

1 2
which is the minimizer of the Tikhonov functional kgk2+ (F F)ag . Then

one observes that the GLSM indicator is nothing but
jij(; i)z_ FM 2.

i(F F)zg ; =
i(( )29 ;9 ) = | W— g
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We nally remark that one obtains similar link with the so caled F; method (when it
applies) and GLSM by takingB = F; and replacingF by F; in the GLSM setting.
But when the F; method applies one can also apply GLSM with onlg = F.

3.3. Regularized formulation of GLSM

As it will be clearer later, the previous formulation of GLSM las to be adapted to the
case of noisy operators since in general a noisy operaBodoes not satisfy a factorization
of the form (5) (with a middle operator satisfying a coercity property similar to (8)).
In order to cope with this issue we introduce a regularized rson of J which allows
similar range characterization and where one both controthe noisy criteria and the
noisy mis t term. Among several other options, it turned out that a convenient way to
introduce this regularization is to consider for > 0 and > 0 (that will later be linked
with the noise level) and for 2 X , the functional J'( ; ): X ! R de ned by

J'(;9)= (jhBg; gij + "kgk) + kKFg  K*: (11)
Lemma 3. Assume thatB is compact. Then forall > 0, > Oand 2 X the
functional J"( ; ) has a minimizerg 2 X. If we assume in addition that- has dense

range, then
lim limJ"( ;g’) =lim limsupJ"( ;g')=0:
1 0"l 0 "0 10

Proof. The existence of minimizer is clear: for xed > 0, > Oand 2 X , any
minimizing sequenced") of J°( ; ) is bounded and therefore one can assume that it is
weakly convergent inX to someg 2 X. The lower semi-continuity of the norm with
respect to weak convergence and the compactness propertyBothen imply

J(ig) liminfJ (g% infJ(:g);

which proves thatg' is a minimizer ofJ"( ; ) on X.

Now assume in addition thatF has dense range. By Lemma 2,( )! Oas ! O.
Showing that "I!irrgJ"( :g) = j () will then prove that Ii!rno‘lli!rrg)\]"( 'g) = 0. We
observe that

J(:0) =3 (;9+ " kgk? (12)
and thereforejd"( ;) J (;9)j! Oas" ! 0. For > 0 one can choose
such that jJ ( ;9) j ()] =2. For this g one then has for" su ciently small

iJ°( ;9 J ( ;9)j) < =2. We obtain by triangular inequality that for " su ciently
smallJ"( ;g9) j ( )+ . We now observe from the de nitions oy’ andj and from
(12),

() J(C:g) J(:9) JI(:0;
which proves the claim.
We now prove "!inowlimls(lJJpJ"( ;g ) = 0. First consider g a minimizer on X of

the Tikhonov functional "2kgk? + kFg  k* and setj" = "2kgk® + kFg K
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which goes to zero a$ goes to zero (classical result for Tikhonov regularizatiorsee
also Lemma 2 which is valid for any bounded operatoB). We have that "
J'(g) "?kgk’+ kFg  k*+ (j(Bg;g)j. For by taking the upper limit
limsupJd'(g) limsupd'(g)=j ;
1o 1o
which concludes the proof. ]
Theorem 4. Under the assumptions of Theorem 3 and the additional assumption tliat

is compact the following holds. 1§ denotes the minimizer of)"( ; ) (de ned by (11))
for > 0,"> 0and 2 X ,then 2R (G) if and only if limsuplimsupjhBg"; g'ij <
10 "0

1 which is true if and only ifIimIiQf lim igf jBg'; gij <1:
Proof. The proof is similar to the proof of Theorem 3.

Assume that = G(' ) for some' 2 R(H). We consider the sameay, as in the
rst part of the proof of Theorem 3 (that depends on but is independent from
"). Then we choose' such that "kgok? 1. Then

J(59) I(ig) I (gt (13)
Consequently
iBg:gij J'(:9) +2 KTk( +k' K+ KGK
which proves lim sudimsupjhBg"; g'ij < 1 :
10 "I'0
Assume =2 R (G) and assume that Iirp(i)nflimigfthg"; gij is nite. The
coercivity of T implies that Iimligf Iim igf kHg' k? is also nite. This means the

existence of a subsequenceY"( 9) suchthat °! Oand"( 9! Oas °! 0and

N 2
Hg'$ % " is bounded independently from ° On the other hand, the second part
of Lemma 3 (namely the rst limit), indicates that one can chmse this subsequence

such that 3§ 2(g$ ?)1 0as °1 0 and therefore Fg'§” I Oas °! 0.

The compactness ofs implies that a subsequence cIBHg"(o ) converges for some

G' in X . The uniqueness of the limit implies thalG' = which is a contradiction.
0

In this theorem™ should be viewed as the regularization parameter (and notwhich
is rather used to construct an indicator function with a limting process). As indicated by
(13), this regularization parameter serves in the constrtion of the minimizing sequence
of Theorem 3.

This theorem with regularization stipulates that a criteron to localize the target is
given by jhBg"; g ij for small values of and . The reader can easily see from the rst
part of the proof that the result holds true if we replace thisy (jhBg"; g'ij + "kg k?).
This latter criterion is more suited to the case of noisy measements as indicated in
the section below.
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3.4. The GLSM for noisy data

In this section we will consider the case where there may beis® in the data. More
precisely, we shall assume that one has access to two noisgraporsB and F such
that

F F kFk and B B kB k

for some > 0. We also assume in this section the operatoB, B F and F are

compact. We then consider for> 0and 2 X ,the functionalJ ( ; ): X ! R,
J(;9:= (Bggj+ kBkkg)+ Fg ° 892X  (14)

which coincides with a regularized noisy functional* with a regularization parameter
= kBk. According to Lemma 3 one can considegr a minimizer ofJ ( ;g). We rst
observe (similarly to in the second part of the proof of Lemma)

Lemma 4. Assume in addition thatF has dense range. Then for all 2 X
lim limsupJd ( ;9 )=0:
Y0 1o

Proof. We observe that for allg 2 X,
J(:;9 J(:;9+@2 kBk+ 2kFk? kgk®: (15)

Since (2 kBk+ 2kFk?®)! 0Oas ! 0, then as inthe proof of Lemma 3, for any> 0
( xed), one can chooseag 2 X such that for su ciently small

J(:9 jO)+

Consequently, from the de nition ofg ,

J@:) JO)+

This proves the claim, sincg ( )! Oas ! 0 (by Lemma 2).
O

Theorem 5. Assume that the assumptions of Theorem 3 and the additional assumptions
of this subsection hold true. Letg be the minimizer of J ( ;) (dened by

(22)) for > 0, > 0 and 2 X . Then 2 R(G) if and only
if limsuplimsup B g;g + kBk g ? < 1 which is true if and only if
! 0

0 !

liminf liminf B g:g + kBk g 2 <1,

Proof. The proof of this theorem follows the lines of the proof of Tloeem 4.

Assume that = G(') for some' 2 R(H). We consider the sameay, as in the
rst part of the proof of Theorem 3 (that depends on but is independent from
). Choosing su ciently small such that

(2 kBk+ 2KFk?) kgok®
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we get

J(:9) J(i%) J(i%+: (16)
Consequently

iBg:g j+ kBk g °  J(:;g) +2 KTk( +K k)+ kGKZ

which proves limsudimsup B g;g + kBk g <1,
{I0] 10

Assume 2 R (G) and assume that Iirlnci)nflim ig\f Bg;g + kBk g > s

nite. The coercivity of T implies that
2 . .. .
Hg(y J Bg;9 jj Bg;g j+ kBk g
Therefore Iirp ionflirr|1i51f Hg ? is also nite. This means the existence of a

2
subsequence @ ( 9) suchthat °! Oand ( ! Oas ° 0Oand Hg}"

is bounded independently from © One can also choose 9 suchthat ( 9 ©
On the other hand Lemma 4 indicates that one can choose thisb®equence such

that 3 § %(g¢?) 1 0as °' 0 and therefore F g§” I Oas °! 0 and
0 9kg$ k21 0as °! 0. By a triangular inequality and ( 9 Owe then

deduce that Fg ¢ ) I 0as °! 0. The compactness o6 implies that a

subsequence dBHg ¢ ) converges for som&' in X . The uniqueness of the limit

implies that G' = which is a contradiction.
O

It is clear from the proof of the theorem that any strategy of egularization"( )
satisfying () kBkand ()! Oas ! 0O would be convenient to obtain a similar
result. From the numerical perspective this theorem indidas that a criterion to localize
the object would be
iBg;g j+ kBk g °
for small values of . Indeed the theorem only says that this criterion would be ecient
for su ciently small noise. Building explicit link between the value of and the noise
level (in the fashion of a posteriori regularization strategiesyvould be of valuable
theoretical interest but this seems to be challenging (dueotthe compactness of the
operator B). One can see from the proof that adding the termkBk g %is important
to conclude when is not in the range of G. This means that this term is important
for correcting the behavior of the indicator function outgde the inclusion, which is
corroborated by the numerical experiments below.
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4. Some applications of GLSM

We turn back to our model problem and consider the notation ahassumptions of
Section 2. We shall apply GLSM withB = F. The central additional theorem needed
for this case is the following coercivity property of the ogator T. This theorem holds
true under the following assumptions on the refractive inde

Hypothesis 2. We assume thain 2 L! (RY), supp(n 1) = D, =(n) 0 and there
exists a constantng > 0 such thatl < (n(x)) + =(n(x)) no for a.e. x 2 D or
<(n(x)) 1+=(n(x)) ngfora.e. x2D.

We recall that the values ofk? 2 R, for which Hypothesis 1 does not hold form a
discrete set without nite accumulation point. The valuesk? 2 R, for which Hypothesis
1 does not hold will be referred in the sequel as transmissieigenvalues.

Theorem 6. Assume that Hypothesis 2 holds and th&a? 2 R, is not a transmission
eigenvalue. Then the operatol de ned by (4) satis es the coercivity property (8) with
X = X = L?D) and the operatorH de ned by (2).

Proof. For the reader convenience we start by proving a useful (ctasal) identity related
to the imaginary part of T. With ( ;) denoting L?(D) scalar product, for 2 L?(D)
andw 2 H! (RY) solution ofél),

loc

(T: )= k¥ @ n)( +w) dx (17)

We remark that by elliptic regularity, w 2 H2_(RY%). Multiplying (1) with w and

loc

integrating by part over Br: a ball of radiusR containing D,

Z Z Z aw
k» (1 n)( +wwdx= ir wiz  k2njwj?dx + —wds:
D Br ixi=r @Tr
The Sommerfeld Radiation condition indicates that
Z aw Z
lim = ——wds= Kk jw? j2ds;
RI1 ijzR I’ Sd 1
Therefore, taking the imaginary part then lettingR ! 1 yields
Z Z Z
k= (1 n)( +wwdx=  k?=(n)jwj%dx + k jw? j2ds:
D D SIS

Consequently, decomposing (+ w) =j + wj?> ( + w)W, we obtain the important

identity,
R4 Z Z

=(T; )= k=) + wj®+ jwj?)dx+ k jw! j2ds: (18)
D o 1

We are now in position to prove the coercivity property using contradiction argument.
Assume for instance the existence of a sequence2 R (H) such that

k ‘kLZ(D) =1 and J(T *y )] I Oas' !1
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We denote byw 2 HZ2_ (RY) solution of (1) with = .. Elliptic regularity implies
that kw-Ky2(p) is bounded uniformly with respect to'. Then up to changing the initial
sequence, one can assume that weakly converges to some in L?(D) and w- converges
weakly in H2 (RY) and strongly in L%(D) to somew 2 H2.(RY). It is then easily seen

(using distributional limit) that w and satis es (1), and since - 2 R (H)
+k?* =0 inD: (19)

Identity (18) and j(T -; -)j ! O implies that w! ! 0 in L?(S" 1) and therefore
w! = 0. The Rellich theorem and unique continuation principle mpliesw = 0
outside D and consequentlyw 2 HZ(D). With the help of equation (19) we get that
u=w+ 2L%D)andv= 2 L?%D)aresuchthatu v2 H?D) and are solution
of the interior transmission problem (3) withf = g=0. We then infer that w= =0.
Identity (17) applied to - and w- implies
z Z
(T ) kB @ n)jjkdx k2 (1 nmw dx:
D D
R — R — : :
Therefore, since ;(1 nw- .dx! (1 n)wdx =0, and using the assumptions
onn,
imj(T 5 ) k*no=2>0;
which is a contradiction. [

Let C > 0 be a given constant (independent of ) and consider for > 0 and
z2 RY, ¢ 2 L%S" 1) such that
(Fo;g)i+ kFg®  k* | (,)+C; (20)
where
' = inf i(Fg;9j + kF k2 :
i (2) L i(Fg; 9] 9
Combining the results of Theorems 6 and 1 and the rst claim ofheorem 2, we obtain
the following as a straightforward application of Corollay 1.

Theorem 7. Assume that Hypothesis 2 holds and th&? 2 R, is not a transmission
eigenvalue. Therz 2 D if and only if imsupj(Fg*;g?)j < 1 which is true if and only
10

if Iimligfj(FgZ;gZ)j <1:
For applications, it is important to rather use the criterion provided in Theorem 5.
ConsiderF :L?(S* 1)1 L2(S* 1) a compact operator such that

FF ;

then consider for > 0and 2 L?(S* %), the functional J ( ; ):L%(S* Y ! R,
J(;9:= ((Fgodj+ kk’)+ Fg ©eg2L¥ ) (1)

Then as a direct consequence of Theorem 5, we have the follmyvcharacterization ofD.
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Theorem 8. Assume that Hypothesis 2 holds and th&? 2 R, is not a transmission
eigenvalue. Forz 2 RY denote byg? the minimizer of J ( .; ) over L2(S* ). Then

z 2 D if and only if limsuplimsup (F ¢% ;g% ) + @ > < 1 which is true if
10 10

2

and only if Iirq ir(‘)lf Iirqicr)lf (Fg9.)+ & <1.

The numerical algorithm associated with this theorem is gan in next section.
Let us note again as conclusion of this section that the ressilof Theorems 7 and 8
in fact apply whenever the so calledc; method apply. For instance the result hold
true for obstacle scattering with Dirichlet boundary condions, Neumann boundary
conditions or impedance boundary conditions [13, 5]. Onedpust to remove assumption
2 and instead of excluding transmission eigenvalues, oneshia exclude the resonant
eigenfrequencies associated with the interior problem. @rcan also apply GLSM to
cracks as a consequence of the work in [3]. For Maxwell's etjoas one can in principle
also treat the inverse medium problem but the GLSM method dseallow to treat (in
its current form) the case of inverse obstacle scattering.€l for instance perfectly or
imperfectly conducting obstacles).

5. Numerical algorithms issued from GLSM and validation

Minimizing J (de ned in equation 21) with B = F may be computationally expensive
and not straightforward (see Section 5.2). Thus we rst propse to use the indicator
function of the GLSM with the solution of the LSM, which can beseen as a generalisation
of [2] in the case of noisy measurement. Then we introduce aaed algorithm which
is a post processing in the sense that it uses the solution ¢fetLSM both to initialise
the optimisation algorithm that minimize J and to initialise the parameter .

In order to x the ideas, we shall restric ourselves to the twalimensional case
and will introduce the algorithms for the discrete version foGLSM. We identify St
with the interval [0;2 [. In order to collect the data of the inverse problem we solve
numerically (1) for N incident elds ui(%; ); ] 21 0:::N 1g using the surface integral
equation forward solver available in [10]. The discret vamn of F is then the matrix
Fn = (Ut %;%))0 ik N 1. We add some noise to the data to build a noisy far
eld matrix Fy where Fy)ix = (Fn)jk(1+ Nj) for > 0 and Nj an uniform
complex random variable in [ 1;1F. We denote . 2 CN, the vector de ned by

wnG)= (B)foro jON L

5.1. The use of GLSM as a new indicator function for the LSM
We introduce the Tikhonov regularized solution of the far éd equation

;LSM . _ ; 2 2 .
9N = argming, KonKizgy + FnOn ZN L2(s1)
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where the regularization parameter is chosen using the Morozov discrepancy principle,
i.e. is de ned as the unique solution of

= ;.LSM _ — ;_LSM :
Ngz,N Z;N L2(s) gz,N L2(sh)

1
Solving the same two equations witl+,? or (F F)%, depending of the nature of the
scatter, instead ofF will give the solution of the factorization methodgz;;EM. To solve
both the LSM and the FM equations we rely on the singular valueetomposition ofF,
which gives an explicit solution like in 3.2.
As proposed in [2],[12] and [7], from these two problems threwdicator functions

can be computed:

o=
ng;N L2(S!)
1 1
|HLSM(Z)ZQWZQ. LM :
iHO, " (2)] JC 29N eyl
1
I FM (Z) - —
gz;N L2(Sh)

As shown in the previous sections, a fourth indicator functiois relevant, namely
1
2
F ;_LSM; ;_LSM + ;_LSM
(PG G ) L2t 9,/N

I GLSM (Z) =r

L2(sh)

This indicator is indeed motivated by GLSM. However let us na that sinceg,.,> is

not the minimizer of J ( ; ) (de ned in equation (21)) the theory developed here does
not apply for this indicator function (a last indicator function covered by the theory will
be build in section 5.2 using a more computationally complexethod). The numerical
experiments presented below indicate in the same time thahis indicator function
provide results comparable to the Factorization method.

We will present two simulations: one where two ellipses hawirichlet boundary

conditions and one wherean =2 + 0 :5i in one ellipse and 2 + OLi in the other. In both

examples N = 100 and we will considew =0; 1 and 5%.

Figures 1 and 2 show the results ofktpﬁg four indicator functian First we see that
| H-SM is not robust to noise, the area outside the obstacle showstefact where the
indicator function is greater than inside the obstacle. Thi is an expected result since
as stated at the end of 3.1 one can easily replag&g ; g ij by jh; g ij, which is not a
valid indicator function in the presence of noise. Finally “>M recover with less precision

the border of the shape tharl ™ and | ¢-SM which exhibit comparable results.
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Figure 1. | "SM (st line), |1SM (second line),I ™™ (third line) and | ®-SM (forth
line) applied to the Dirichlet scatters for 0, 1 and 5% of noise (from lef to right)

5.2. minimizing J : a post-processing

In order to apply Theorem 8, we should nd the minimizer ofJ ( ;) (dened in
equation (21)). There are two main di culties in this theorem. First, we do not have
an analytic solution of the minimizer thus we will rely on an ptimisation algorithm
and as already mentioned in 3.4 and second we do not have an @prmethod to link
to the noise level. Because of the good performance of the Moov discrepancy
principle we look for an heuristic that stay close to this pnciple. Since we have
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Figure 2. 1 HSM (st line), |SM (second line),I ™ (third line) and | -SM (forth
line) applied to penetrable scatters for 0, 1 and 5% of noise (from left taight))

(G(F g:9j+ kgk’) ( F + )kgk? we choose:
— LSM
KF k+
where gy is the parameter found when one applies the Morozov discregy principle
to the Tikhonov formulation of the LSM.

Remark. The inequality j(F g;9)j F kgkz, we use to nd the previous heuristic

will reduce the strength of the penalty term compared to the Tikhonov-LSM. Moreover
the fact that this inequality is coarser for eigenvector corresponding to small eigenvalue,
means that the penality term will be smaller for points outside the obstacle. This is
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shown by gure 3, where we see that after the optimisation process the solution deviates
from the Morozov discrepancy principles mainly outside the obstacle.

Figure 3.  Fyon ZN kgn k after minimisation on the Dirichlet scatters with
5% of noise.

Minimizing J ( ;) in CN is not an easy task since it is a not di erentiable nor a
convex cost functionnal. However we can hope thag.;>" will be close to a minimum
which makes it worth to try a gradient method. As explained in16] gradient method
extended well for complex variable if one look at ( ;gy) as a function of two variables,
on and gy, knowing that one can compute the gradient of with respect to gy :

j:i:gz—g:jFNgN + gn)*t By (Faow n)

where is the standard scalar product between vector. We did not chge the absolute
value with a dierentiable surrogate because with the inital guess we used it was
not necessary, this is supported by the fact that for the unpturbed operator F the
coercivity implies that j(Fg; g)j is never zero wherg is not zero.

Finally to do the optimisation we use the non-linear conjuga gradient implemented
in [17] with a modi ed Hestenes-Stiefel heuristic to updatehte direction descent, which
is described in algorithm 1. We choose drastic stopping rslen order to ensure the
convergence of the algorithm however we observe that conyence occurs before those
stopping rules are satis ed. The design of a tailored methoand set of parameters to
minimize J would be an interesting perspective for this work.

The result of this optimisation performed for eacte, gives us a new setg,.;->"
which ultimately creates a new indicator function:

roed Coonson) = (

|GLSMoptim =y 1

(F\ g CiSM - g GLsM - GLSM 2

NN %N ) T Oy
Figures 4 and 5 show that this post processing increases theality of the reconstruction
especially in the space in-between the two scatters. Morewvgure 6 shows that the
improvement on an isolated scattered, a kite of contrast = 2 + 0 :5i, is less impressive
(i.e. we do not improve the reconstruction of the non-convepart of the kite).
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Algorithm 1 Minimizing J

for all z do
go — gz;;ll\_lSM and = .isw (2)

kFy k+
while kg'*? gk 10 kgk or J (g*') J (¢) 10 1°J (¢°) or t< 200do
g=r ¢J(di9)
<(g”( g g
<(St 1>( gt gt l))
st= g+ fLest?
t=argmin ,rJ (g + st)
gt = g + st
t t+1

end while
; GLSM

gGn = d
end for

ns = max(o;

)

Remark. In the (less general) case where thEé; method is valid, one could choose
B =F, = <(F)j+ j=(F )j in equation (21). We know thatF, is a positive and
self-adjoint operator then one can drop the absolute value in the de nition &f :
1 2
J (9= ((Fp)eg + xkgk)+ F g

and nd g; "> easily by solving the following (iteration-free) problem:

((F#)% (F#)%QN"' #On)+ F (F on n)=0:

2
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Figure 5. 1 CGSM (rstline) and | GSMoptim  (second line) applied to the penetrable
scatters for 1 and 5% of noise (from left to right)

Figure 6. | CSM and | GLSMoptim — (from left to right) with 1% of noise



