A. Longtin and J. G. Milton, Modelling autonomous oscillations in the human pupil light reflex using non-linear delay-differential equations, Bulletin of Mathematical Biology, vol.70, issue.5, pp.605-624, 1989.
DOI : 10.1007/BF02459969

J. Boulet, R. Balasubramaniam, A. Daffertshofer, and A. Longtin, Stochastic two-delay differential model of delayed visual feedback effects on postural dynamics, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.4, issue.2, pp.368423-438, 1911.
DOI : 10.1007/BF00346137

A. Hutt, M. Bestehorn, and T. Wennekers, Pattern formation in intracortical neuronal fields, Network: Computation in Neural Systems, vol.14, issue.2, pp.351-368, 2003.
DOI : 10.1088/0954-898X_14_2_310

F. M. Atay and A. Hutt, Neural Fields with Distributed Transmission Speeds and Long???Range Feedback Delays, SIAM Journal on Applied Dynamical Systems, vol.5, issue.4, pp.670-698, 2006.
DOI : 10.1137/050629367

S. Coombes and M. R. Owen, Bumps, Breathers, and Waves in a Neural Network with Spike Frequency Adaptation, Physical Review Letters, vol.94, issue.14, p.148102, 2005.
DOI : 10.1103/PhysRevLett.94.148102

I. Franovic, K. Todorovic, N. Vasovic, and N. Buric, Spontaneous Formation of Synchronization Clusters in Homogenous Neuronal Ensembles Induced by Noise and Interaction Delays, Physical Review Letters, vol.108, issue.9, p.94101, 2012.
DOI : 10.1103/PhysRevLett.108.094101

S. Campbell, Delay Differential Equations: Recent Advances and New Directions , chapter Calculating Center Manifolds for Delay Differential Equations Using Maple, 2008.

B. Redmond, V. G. Leblanc, and A. Longtin, Bifurcation analysis of a class of first-order nonlinear delay-differential equations with reflectional symmetry, Physica D: Nonlinear Phenomena, vol.166, issue.3-4, pp.131-146, 2002.
DOI : 10.1016/S0167-2789(02)00423-2

W. Wischert, A. Wunderlin, and A. Pelster, Delay-induced instabilities in nonlinear feedback systems, Physical Review E, vol.49, issue.1, 1994.
DOI : 10.1103/PhysRevE.49.203

M. Schanz and A. Pelster, Synergetic System Analysis for the Delay-Induced Hopf Bifurcation in the Wright Equation, SIAM Journal on Applied Dynamical Systems, vol.2, issue.3, pp.277-296, 2003.
DOI : 10.1137/S1111111102412802

G. Schoener and H. Haken, The slaving principle for stratonovich stochastic differential equations, Zeitschrift f??r Physik B Condensed Matter, vol.29, issue.4, pp.493-504, 1986.
DOI : 10.1007/BF01726198

C. Chicone and Y. Latushkin, Center Manifolds for Infinite Dimensional Nonautonomous Differential Equations, Journal of Differential Equations, vol.141, issue.2, pp.356-399, 1997.
DOI : 10.1006/jdeq.1997.3343

P. Boxler, A stochastic version of center manifold theory, Probability Theory and Related Fields, vol.27, issue.4, p.509, 1989.
DOI : 10.1007/BF01845701

C. Xu and A. J. Roberts, On the low-dimensional modelling of Stratonovich stochastic differential equations, Physica A: Statistical Mechanics and its Applications, vol.225, issue.1, pp.62-80, 1996.
DOI : 10.1016/0378-4371(95)00387-8

A. Hutt, A. Longtin, and L. Schimansky-geier, Additive Global Noise Delays Turing Bifurcations, Physical Review Letters, vol.98, issue.23, p.230601, 2007.
DOI : 10.1103/PhysRevLett.98.230601

URL : https://hal.archives-ouvertes.fr/inria-00401534

J. K. Hale and S. M. , Introduction to functional differential equations, 1993.
DOI : 10.1007/978-1-4612-4342-7

R. Quesmi, M. A. Babram, and M. L. Hbid, A Maple program for computing a terms of a center manifold, and element of bifurcations for a class of retarded functional differential equations with Hopf singularity, Applied Mathematics and Computation, vol.175, issue.2, pp.932-968, 2006.
DOI : 10.1016/j.amc.2005.08.013

S. Campbell and J. Belair, Analytical and symbolically-assisted investigations of hopf bifurcations in delay-differential equations, Canadian Applied Mathematics Quarterly, vol.3, pp.137-154, 1995.

T. Faria and L. Magalhaes, Normal Forms for Retarded Functional Differential Equations with Parameters and Applications to Hopf Bifurcation, Journal of Differential Equations, vol.122, issue.2, p.281, 1995.
DOI : 10.1006/jdeq.1995.1144

F. M. Asl and A. G. Ulsoy, Analysis of a System of Linear Delay Differential Equations, Journal of Dynamic Systems, Measurement, and Control, vol.125, issue.2, 2003.
DOI : 10.1115/1.1568121

J. C. Li and C. H. Hansen, Forced phase-locked response of a nonlinear system with time delay after hopf bifurcation, Chaos, Solitons and Fractals, vol.25, pp.461-473, 2005.

J. Xu and K. W. Chung, Effects of time delayed position feedback on a van der Pol???Duffing oscillator, Physica D: Nonlinear Phenomena, vol.180, issue.1-2, pp.17-39, 2003.
DOI : 10.1016/S0167-2789(03)00049-6

T. D. Frank and P. J. Beek, Stationary solutions of linear stochastic delay differential equations: Applications to biological systems, Physical Review E, vol.64, issue.2, p.21917, 2001.
DOI : 10.1103/PhysRevE.64.021917

S. Guillouzic, I. L. Heureux, and A. Longtin, Small delay approximation of stochastic delay differential equations, Physical Review E, vol.59, issue.4, p.3970, 1999.
DOI : 10.1103/PhysRevE.59.3970

N. Yeganefar, P. Pepe, and M. Dambrine, Input-to-State Stability of Time-Delay Systems: A Link With Exponential Stability, IEEE Transactions on Automatic Control, vol.53, issue.6, pp.1526-1531, 2008.
DOI : 10.1109/TAC.2008.928340

S. M. Cox and A. J. Roberts, Centre manifolds of forced dynamical systems, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, vol.35, issue.04, pp.401-436, 1991.
DOI : 10.1175/1520-0469(1986)0432.0.CO;2

A. Amann, E. Schoell, and W. Just, Some basic remarks on eigenmode expansions of time-delay dynamics, Physica A: Statistical Mechanics and its Applications, vol.373, pp.191-202, 2007.
DOI : 10.1016/j.physa.2005.12.073

J. Lefebvre, A. Hutt, V. G. Leblanc, and A. Longtin, Reduced dynamics for delayed systems with harmonic or stochastic forcing, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.22, issue.4, p.43121, 2012.
DOI : 10.1063/1.4760250

URL : https://hal.archives-ouvertes.fr/hal-00764986

A. Hutt, A. Longtin, and L. Schimansky-geier, Additive noise-induced Turing transitions in spatial systems with application to neural fields and the Swift???Hohenberg equation, Physica D: Nonlinear Phenomena, vol.237, issue.6, pp.755-773, 2008.
DOI : 10.1016/j.physd.2007.10.013

URL : https://hal.archives-ouvertes.fr/inria-00332982

H. Haken, Advanced Synergetics, 1983.
DOI : 10.1007/978-3-642-45553-7

A. Hutt, J. Lefebvre, and A. Longtin, Delay stabilizes stochastic systems near a non-oscillatory instability, EPL (Europhysics Letters), vol.98, issue.2, 2012.
DOI : 10.1209/0295-5075/98/20004

R. Bellmann and K. L. Cooke, Differential-Difference Equations, 1963.

J. Carr, Applications of Center Manifold Theory, Applied Mathematical Sciences, vol.35, 1981.

O. Arino, M. L. Hbid, and E. , Ait Dads. Delay Differential Equations and Applications . NATO science series, 1999.

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields, Applied Mathematical Sciences, vol.42, 1983.

R. Quesmi, M. A. Babram, and M. L. Hbid, Center manifolds and normal forms for a class of retarded functional differential equations with parameter associated with Fold-Hopf singularity, Applied Mathematics and Computation, vol.181, issue.1, pp.220-246, 2006.
DOI : 10.1016/j.amc.2006.01.030

G. Orosz, Hopf bifurcation calculations in delayed systems, Periodica Polytechnica Ser. mech. Eng, vol.48, issue.2, pp.198-200, 2004.

X. Yan and W. Li, Hopf bifurcation and global periodic solutions in a delayed predator???prey system, Applied Mathematics and Computation, vol.177, issue.1, pp.427-445, 2006.
DOI : 10.1016/j.amc.2005.11.020

S. A. Campbell, Limit cycles, tori, and complex dynamics in a second-order differential equation with delayed negative feedback, Journal of Dynamics and Differential Equations, vol.17, issue.1, p.213, 1995.
DOI : 10.1007/BF02218819

J. Bechhoefer, Feedback for physicists: A tutorial essay on control, Reviews of Modern Physics, vol.77, issue.3, 2005.
DOI : 10.1103/RevModPhys.77.783