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Abstract—Social scientists have observed that human behavior
in society can often be modeled as corresponding to a threshold
type policy. A new behavior would propagate by a procedure in
which an individual adopts the new behavior if the fraction of
his neighbors or friends having adopted such behavior exceeds
some threshold. In this paper we study the question of whether
the emergence of threshold policies may be modeled as a result
of some rational process which would describe the behavior of
non-cooperative rational members of some social network. We
focus on situations in which individuals take the decision whether
to access or not some content, based on the number of views that

the content has. Our analysis aims at understanding not only the
behavior of individuals, but also the way in which information
about the quality of a given content can be deduced from view
counts when only part of the viewers that access the content
are informed about its quality. In this paper we present a game
formulation for the behavior of individuals using a meanfield
model: the number of individuals is approximated by a contin-
uum of atomless players and for which the Wardrop equilibrium
is the solution concept. We derive conditions on the problem’s
parameters that result indeed in the emergence of threshold
equilibria policies. But we also identify some parameters in which
other structures are obtained for the equilibrium behavior of
individuals.

Index Terms—User-generated content, Complex Systems,
Video popularity, Game theory, Wardrop equilibria

I. INTRODUCTION

Online media constitute currently the largest share of Inter-

net traffic. A large part of such traffic is generated by platforms

that deliver user-generated content (UGC). This includes,

among the other ones, YouTube and Vimeo for videos, Flickr

and Instagram for images and all social networking platforms.

Among such services, a prominent role is played by

YouTube, with more than 3 billion hours of video watched

every month and 72 hours of video uploaded every minute

by YouTube’s users1. Of course, not all videos posted on

YouTube are equal. The key aspect is their “popularity”,

broadly defined as the number of views they score (also

referred to as viewcount). This is relevant from a twofold

perspective. On the one hand, more popular contents generate

more traffic, so understanding popularity has a direct impact on
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caching and replication strategy that the provider should adopt.

On the other one, popularity has a direct economic impact.

Indeed, popularity or viewcount are often directly related to

click-through rates of linked advertisements, which constitute

the basis of the YouTube’s business model.

Recently, a number of researchers have analysed the evo-

lution of the popularity of online media content [1], [2], [3],

[4], [5], [6], with the aim of developing models for early-stage

prediction of future popularity [7].

Such studies have highlighted a number of phenomena that

are typical of UGC delivery. This includes the fact that a

significant share of content gets basically no views [6], as

well as the fact that popularity may see some bursts, when

content “goes viral” [4]. Also, in [7] the authors demonstrate

that after an initial phase, in which contents gain popularity

through advertisement and other marketing tools, the platform

mechanisms to induce users to access contents (re-ranking

mechanisms) are main drivers of popularity.

In this paper, we address such phenomena, by developing

a model, based on game theoretical concepts and tools, for

understanding how user’s behaviour drives the evolution of

popularity of a given content. The work is based on rational

decision-making assumptions, whereby the users have to de-

cide whether to see a given content or not. This configures as

a game, where users seek to maximize some expected utility

based on their “perception” of the quality of the content2 and

on viewcount. However, users suffer also a cost for accessing

contents of bad quality, i.e., waste of time and possibly

bandwidth, batteries, etc. In particular, in the decision process

the viewcount is used as a noisy estimator of the quality

of a content. Interestingly, this context resembles closely the

situation in the economic domain, where customers of a firm

which are uninformed do infer the quality of products from

the length of the queue they encounter upon requesting firm’s

goods to purchase [8].

Extensive advertising and marketing campaigns can be used

to push the viewcount of a given content up. And in the deci-

sion making process users do not know whether the viewcount

has been “pushed” by such means. Also, the decisions made

by different users influence the viewcount and consequently

the decisions made by other users, a process which suits well

the usage of game theoretical machinery.

Specifically, we describe the conditions for the adoption of

common behaviors in online content access. This is inspired

by findings in social science [9], [10], [11]: results there show

2This may come, e.g., from the name of user who posted the content.



that emerging behaviours would propagate by a procedure in

which an individual adopts a novel behavior if the fraction

of neighbors or friends having adopted the same behavior

exceeds some threshold. In our context, the threshold would

be expressed in terms of viewcount or related metric.

In the sense of game theory, users of online media repre-

sent non-cooperative rational players connected through some

social tie, e.g., being users of the same UGC platform. Since

we consider systems composed by a very large number of

users, the customary tool to study the user behaviour is that

of Wardrop equilibria [12]. In particular, we have found a

number of conditions for which such equilibria exist and can

be characterized analytically. Explicit conditions were found

for content to stay at zero views or to become so popular that

it is makes sense for all users to access it the sooner the better.

Furthermore, we identify, for the general case, conditions

under which players tend to accrue around a common strategy

depending on initial conditions. This is due to the existence of

a continuum of equilibria: the system will settle at any point

very much depending on initial conditions imposed, for in-

stance, by a set of forerunners which cause significant changes

of the content popularity. Such conditions were identified in

early works such as [13] in other contexts: there, the authors

applied threshold type Nash equilibrium strategies in which

one purchases priority if and only if upon arrival the queue size

is larger than some threshold value. Key motivation in [13] is

predictability and control of purchase priority. What motivates

this work is predictability and control of online content access.

Novel contribution: in this paper, we move away from the

classical analysis of social networks in the spirit of [1], [4],

[5], [7]: instead, we provide a first analysis based on games.

The aim of this paper is to provide a novel perspective where

contents compete to gain popularity and are subject to the

effect of user’s choice. For the sake of space, we omitted

proofs and some model extensions that can be found in [14]

II. SYSTEM MODEL

We consider contents made available to a user by means of

YouTube or a similar platform. We denote by τ the lifetime of

a content, i.e., the time horizon during which the content bears

some interest. In general, such horizon differs depending on

the type of content: it can be typically of the order of weeks

to months for YouTube videos or a few days for news [7]. An

extension to variable time horizon is addressed in [14]

We denote by X(t) the viewcount attained by a given

content θ at time t seconds after it has been posted, for

0 ≤ t ≤ τ .

As in standard UGC platforms, there are two mechanisms

that coexist and can jointly increase the viewcount:

push: the content provider exploits some preferential channels

(including paid advertisement either directly on the UGC

system or via social networking platforms) to make users

aware of the content and to induce them to access it. We call

push users the users that access the content as a reaction to

the push mechanism.

pull: users find about the content through standard search and

(a) “President Obama Sings Sweet Home Chicago”

(b) “Chris Sharma Worlds’ First 5.15”

(c) “Montersino’s Sacher Cake”

Fig. 1: Dynamics of the viewcount for three sample videos: the push
dynamics can be identified with the first part of the dynamics, where
labels identify some actions that are significant for the diffusion of
the video; observe for cases a, b and c how a linear dynamics takes
over in the last part of the dynamics.

decide to access it based on the belief that the content is

relevant for them. We call users accessing a content through

the pull mechanism pull users.

In practice, many YouTube videos are subject to the push

and the pull mechanisms described above such as the examples

that we reported in Fig. 1. For instance, Fig. 1a, shows the

dynamics of a popular video with viewcount X ≥ 675000.

The YouTube statistics associated with the video describe

explicitly a series of events happening in the first part of the

dynamics of X . For instance, the event B that appears around

02/12/2012, is precisely the event ‘‘First embedded

on: plus.google.com’’ which indeed configures as a

push towards a social network platform. After the initial push,

such events vanish, and the rest of the dynamics appears

ascribed mostly to the pull mechanism defined above, with

a linear increase in the viewcount.

Also, some of the reported videos are representative of a

specific class of online contents, which are those we will be

dealing with in the rest of the paper. We can refer to those

as the contents that comply to the exponential-linear model,

for the sake of brevity. In particular, many such contents

appear to obey to the following dynamics: after an initial

exponential growth, the increase of the viewcount becomes

linear. The way to interpret such behavior can be traced to

the notion of push and pull mechanisms described above: the

exponential growth corresponds to actions through which the

source distributes the content within a basin of target push

viewers. When such basin is finite and small with respect

to the content diffusion dynamics, the viewcount dynamics

experiences a saturation effect which takes over after an initial

phase. However, at that stage, the access to the content is due

to pull users that come across the content browsing online:

they do so at random from a very large basin, so that the
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Fig. 2: The reward or the cost of content θ for a tagged user is
represented by the time during which the content can be accessed,
i.e., when viewcount is larger than threshold β.

access rate, i.e., the viewcount increase rate, is linear. These

combined effects are visible in the case of the first two videos,

i.e., Fig. 1a and Fig. 1b. In the case of the first video, the

saturation effect is well visible, whereas in the case of the

second one the linear increase following the saturation is

dominating. The example in Fig 1c is a case where all the

dynamics is linear: as it will be clear in the following, in

the exponential-linear model this case is represented when

either the basin of push users is large or when the rate

at which contents are pushed is small. Not all videos will

diffuse according to the proposed exponential-linear model.

For instance, there exist cases when the initial viewcount

dynamics displays a characteristic epidemic sigmoid shape

[14]: we can ascribe such similarity to the presence of a

positive feedback in the push mechanism, e.g., feedback effect

can happen between different channels on the same platform,

e.g., YouTube channels, and across different platforms through

the recommendation list that is presented to the platform users.

This also qualifies the type of exponential-linear dynamics that

we consider as those for which this type of feedback does not

play a significant role.

In our model, we are interested in the uptake of the pull

users. Pull users interested in the given content do not know in

advance its quality. They may discover it during interval [0, τ ]
at random. Their estimation of the interest/potential quality is

based on the viewcount X . In the simplest case, contents with

higher viewcount are more likely to be accessed.

We define by Xps(t) the number of push users accessing

the content up to time t as a reaction to the push mechanism

and, analogously, by Xpu(t) the number of those accessing it

through the pull mechanism. Clearly, X(t) = Xps(t)+Xpu(t).
Users have beliefs about the quality of the content. We

denote by πG the belief that a given content is good (i.e.,

of interest or anyway worth accessing) and, conversely, by

πB = 1 − πG the belief that the content is bad. We denote

by π = (πG,πB) the corresponding distribution. Stating

πG = 0.75 means that a user believes that every 4 similar

contents she would get 3 good ones and 1 bad one.

The content access configures as a game where we define

players, strategies and utilities.

Players: the players are pull users; based on their belief π,

they may access the content θ or not.

Strategies: they access θ when the viewcount is above a

certain threshold, i.e., X(t) ≥ β ≥ 0. Hence, the strategy for

a certain user is the viewcount threshold β ≥ 0. Of course,

all other players also adopt their own strategy with respect to

θ and we denote α the vector of strategies, i.e., viewcount

thresholds, for all other users.

Utilities: users face either a cost C or a reward R for playing

strategy β: the cost and the reward is the fraction of lifetime

when the content is in the viewcount range, i.e, when they are

willing to access it. The rationale to define this cost/reward is

the following. Let a good content be worth one unit reward,

and a bad content worth a unit cost. The user may hit several

similar contents at random over time. If they are good, the

fraction of those actually accessed will be proportional to 1−
tβ(θ)
τ

, where we define tβ(θ) = min{t |β = X(t), θ}, i.e.,

tβ(θ) is the smallest instant when the threshold is achieved

(the dependence of tβ(θ) on α is dropped for notations’ sake).

That also is going to be the long term reward, or the cost, for

accessing similar online contents. Formally,

R(α,β, G) = (τ − tβ(G))+, C(α,β, B) = (τ − tβ(B))+

Finally, based on their belief π, players expect a utility when

playing β that amounts to

U(α,β) = πGR(α,β, G)− πBC(α,β, B)

According to the above expression, the cost and the reward

are a function of the interval when the content is above the

threshold, i.e., when the users can benefit from it, and depends

on the other players strategy. Furthermore, the action taken by

players depends on their belief on the quality of the content.

In the following we will investigate symmetric equilibria,

i.e., equilibria for which all users play α ≥ 0, i.e., α = α1;

we then define tα = min{t|α = X(t)}.

Let a tagged user playing β when all the remaining users

use α: we make the assumption that Wardrop conditions holds.

Namely, for a large number of users any unilateral deviation

of a single user does not affect the utilities of other users.

I.e., deviations due to a single user action are negligible.

Wardrop equilibria are much easier to compute than the Nash

equilibrium; however, Wardrop is a good approximation for

the latter, as in [15].3

The tagged user expects to gain a certain reward R(α,β, G),
for a good content and expects to suffer a cost C(α,β, B)
when the content is bad: under which conditions α is the best

response to itself, namely α = β∗(α)? We answer to this

question in the next sections under different knowledge of the

viewcount dynamics available to users.

Before we introduce our analysis, we recall that the utility

function has the following expression for β ≥ βτ,B

U(α,β) =

{

0 if β ≥ βτ,G

πG(τ − tβ(G)) if βτ,B ≤ β ≤ βτ,G

3A traditional application of Wardrop equilibria is road traffic, where users
tend to settle to routes minimizing their delay: the effect of a route change
of an individual driver belonging to a flow is negligible system-wide to the
utilities of other users.
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where βτ,θ is solution of the following equation tβτ
(θ) = τ .

We observe that the utility function U is nonincreasing for

β ≥ βτ,B . However the best response β∗(α) can be found only

in the interval [0,βτ,B]. As a result we restrict our analysis

to case when β ≤ βτ,B in which the utility function can be

expressed as

U(α,β) = πG(τ − tβ(G)) − πB(τ − tβ(B))

III. PLAIN VIEWCOUNT

The basic model that we introduce in this section is based

on the assumption that pull users rely on the number of hits

of the contents to judge if it is worth to access it or not, i.e.,

they judge based on how many users accessed it. Thus, they

play based on the dynamics. We hence specialize our analysis

to two cases.

A. Linear case

First, we examine the case when the process of diffusion

of contents is linear. This is the case when the time scale

of the content diffusion is very large compared to the pool of

potential viewers. A mechanism that that is able generate such

a dynamics is the combined effect of an advertisement which

is broadcasted to a very large pool of viewers, e.g., covering

newspapers or other general audience media, and people so

made aware of the existence of the content who decide to

access the content with some random delay thereafter.

Thus, we let Xps(t, θ) = λpst· (t) where (t) is the unitary

step function, and Xpu(t, θ) = λpu(t− tα) · (t− tα)
Observe that in this case λps = λps(θ), whereas λpu is

independent of θ. In fact, we assume pull users judge based

on viewcount only [8]. However, we assume that λps(G) ≥

λps(B). The above results provide a characterization of the

possible symmetric Wardrop equilibria of the system.

Theorem 1: i. If πG

λps(G) ≥
πB

λps(B) , then 0 is a symmetric

Wardrop equilibrium

ii. If πG

λps(G) ≤ πB

λps(B) but πG

λps(G)+λpu
≥ πB

λps(B)+λpu
,then

all 0 ≤ β ≤ βτ,B are symmetric Wardrop equilibria

iii. If πG

λps(G) ≤ πB

λps(B) but πG

λps(G)+λpu
< πB

λps(B)+λpu
, then

βτ,B is a symmetric Wardrop equilibria

It is possible to interpret the above result as follows: πG

λps(G)

represents the time pace at which push users are believed to

access a good content. Similarly πB

λps(B) represents the time

pace at which push users are believed to access a bad content.

Thus, condition i. suggests that it is always convenient to

anticipate the access to the content. In case ii., the situation is

dictated by the uptake of pull users, because they increase the

viewcount thus reinforcing the believed viewcount pace of a

good content against that of a bad content. Finally, in case iii.

there is no incentive in accessing the content.

B. Exponential case: fixed time horizon

Let us consider the content dissemination process operated

by a content provider using a finite set of potential target

users. After the content is posted by the provider directly to

users, it will be transmitted to more and more users by using

some preferential channels. In this case, we need to model the

push dynamics accounting for the size N of the pool of push

users, i.e., we assume that the content provider disseminates

the content according to

Ẋps(t, θ) = λps(θ)(N −Xps(t, θ)),

so that

Xps(t, θ) = N(1− e−λps(θ)t) for t ≥ 0 (1)

We reported in Fig. 3 the shape of the utility function under

the exponential case for a fixed time horizon. As it can be

observed in case a), for smaller values of α, i.e, α = 400 a

low value of the belief πG causes the access to be delayed till

time τ , whereas for increasing values of πG we observe first

a local maximum at α (πg = 0.75), and finally the strategy

β = 0 takes over corresponding to very large values of πG.

Indeed, such behavior of the utility function resembles – for a

fixed N – what we observed in the linear case. However, at a

closer look, namely in Fig. 3c) we understand that the situation

is more elaborate: in particular, we know that number of push

users N impacts the speed at which the viewcount increases.

As such, small values of N do not permit to pass the threshold

α, whereas a very large one incentivizes early access: recall

that βmax := βτ,B means access at time t = 0. In between,

the presence of a maximum predicts, as in the linear case, the

existence of best responses that lie in the interior of [0,βmax].
This intuitive numerical insight is confirmed by the theoretical

results that we detail in the following.

As before, we need to distinguish two cases, namely α < β

and β ≤ α, consider the dynamics and the utility experienced

for users adopting a strategy β above and below the threshold

and compare the utility corresponding to the best response

β∗(α). We omit here the detail, that can be found in [14].

The resulting cases are summarized in the following theo-

rem

Theorem 2: Let λps(G) > λps(B) and λps(G)N ≤ λpu,

then in the exponential case

i) If πG ≤ πB then βτ,B is a symmetric Wardrop equilib-

rium

ii) If πG > πB then the following cases hold

a) If πG

πB
<

λps(G)
λps(B) and

1+W (ζ(G)ξ(α,G))
W (ζ(B)ξ(α,B)) ≥ πG

πB
for all

β ∈ [α,βτ,B] then all 0 < β ≤ βτ,B are symmetric

Wardrop equilibrium

b) If πG

πB
<

λps(G)
λps(B) and

1+W (ζ(G)ξ(βτ ,G))
1+W (ζ(B)ξ(βτ ,B)) ≤ πG

πB
for

all β ∈ [α,βτ,B] then βτ,B is a symmetric Wardrop

equilibrium

c) If πG

πB
<

λps(G)
λps(B) and there exists a β̄ is the solution

of the following equation

1 +W (ζ(G)ξ(β̄, G))

1 +W (ζ(B)ξ(β̄, B))
=

πG

πB

then β̄ is a symmetric Wardrop equilibrium

iii) If πG

πB
>

λps(G)
λps(B) , then the following cases hold

a) if
1+W (ζ(G)ξ(α,G))
1+W (ζ(B)ξ(α,B)) ≥ πG

πB
for all β ∈ [α,βτ,B] then

0 is a symmetric Wardrop equilibrium

4
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Fig. 3: The utility function for N = 1000, for τ = 10 days, λps(G) = 10−1 views/day, λps(B) = λps(G)/10. a) α = 400 views, b) α = 700
views. Increasing values of the belief πG determine different shapes for the utility function. c) Increasing values of N = 700, 1000, 50000
for α = 700. All graphs for λpu = 1.5Nλps(G).

b) if
1+W (ζ(G)ξ(α,G))
1+W (ζ(B)ξ(α,B)) ≤ πG

πB
for all β ∈ [α,βτ,B], then

there exists a symmetric Wardrop equilibrium which

is given by






0 if τπB < πGtβτ,B
(G)

βτ,B if τπB > πGtβτ,B
(G)

β∗ ∈ {0,βτ,B} if τπB = πGtβτ,B
(G)

(2)

Thm. 2 displays a structure of the best response that is

similar to the result obtained for the linear case, but we

should highlight some differences. First, the additional request

λps(G)N ≤ λpu is excluding the case when the effect of the

pull mechanism is negligible compared to push mechanism.

This means that we are restricting to the case when the

aggregated maximum rate at which the viewcount can increase

due to the push mechanism is smaller than the increase that

is generated once the viewcount is above threshold for pull

users. Indeed, this is the interesting case when the content

provider’s aim is to attract a large basin of pull users using a

target limited audience of push users.

Second, we observe that the term πθ

λps(θ)+λpu
that was

present in the linear case is now replaced by a term involving

the Lambert function W (·) [16]: this is due to the combined

effect of the exponential growth and the linear growth above

the threshold, accounting for the saturation of the basin of push

users. In the case when N is very large or λps is very small,

the term collapses to the condition expressed in the linear case.

The existence of symmetric Wardrop equilibria was deduced

for all cases when α = β∗(α).

IV. USERS WITH SIDE INFORMATION

In general, contents that are present online since a long

time display different popularity than contents which last only

a short time [7]. As we noticed in the previous sections,

when popularity saturation occurs, Ẋ vanishes for large t.

If users choose among contents with different trend and

different viewcount, they would naturally choose a content

with large viewcount and large increasing trend. To this respect

y(t) = Ẋ(t)X(t) encodes the condition when the pull user

still values the viewcount, but, she favors a large increasing

trend given two contents with the same viewcount.

Symmetric equilibria can be determined when in the system

all users adopt a strategy α := y(tα), 0 ≤ tα ≤ τ and

again we determine the best response for a user deviating using

β := y(tβ) as a reply, where 0 ≤ tβ ≤ τ .

It is easy to see that in the linear case, the model developed

in the previous section applies as long as one replaces the

dynamics with the one below

Xps(t, θ) = λ2
ps(θ)t+λps(θ), Xpu = λ2

pu(t− tα) · (t− tα)

so that all the results can be specialized accordingly replacing

λps and λpu with λ2
ps and λ2

pu wherever they appear. The

intuition is that when the regime of content diffusion is linear,

i.e., when a large number of push users exists, the trend

of popularity has the only effect to reinforce the inequality

λps(B) %= λps(G). We then move to a more interesting case.

We are interested in the effect that information available

to the viewers has onto the equilibria. In particular, potential

viewers may be provided additional information on the up-

coming popularity of a certain content, e.g., relying on some

predictors or some apriori information they have. They judge

whether to access or not a given content based on the product

of the popularity X and the popularity trend Ẋ . But, they only

know how such metric is going to accumulate over time, i.e.,

the metric for a user that approaches the content at time t is

y(t) =

∫ τ

t

X(u)Ẋ(u)du =
1

2
(X2(τ) −X2(t))

This metric can be used as a simple benchmark case: it

contains information on the future dynamics of X(θ), and it

is defined by the current and the final values of the viewcount.

However, the amount of such information is not sufficient at

time t to state the type of the content in general. Of course,

more sophisticated metrics are possible. Nevertheless, the one

at hand will do for the purpose of showing that by making the

potential viewers of a content aware of some side information,

the system may experience a deep change in the structure of

the equilibria.

Let all users adopt strategy

α := y(tα), 0 ≤ tα ≤ τ

5



and in the same way as done before we want to determine

the best response for a user adopting β := y(tβ) as a reply,

where 0 ≤ tβ ≤ τ ; as done before, it is sufficient to consider

β ∈ [0,βτ,B], where βτ,B := 1
2X(τ, B)

In the case β ≥ α, we recall that the dynamics is

X(t, θ) = α+ λ(θ)(t − tα)

where λ(θ) := (λpu+λps(θ)) for the sake of notation, so that

α+ λ(θ)(tβ − tα) =
√

X2(τ, θ)− 2β

which solves for tβ =
1

λ(θ)

(

α
λpu

λps(θ)
+

√

X2(τ, θ)− 2β
)

.

The corresponding expression for the utility is U(α,β) =

U0(α,β) −

[

πG

√

X2(τ, G)− 2β

λ(G)
−

πB

√

(X2(τ, B)− 2β)

λ(B)

]

where the term U0(α,β) = (πG−πB)τ−αλpu

(

πG

λps(G)λ(G) −

πB

λps(B)λ(B)

)

. By deriving the calculation for the two cases,

best responses turn out to depend on two real parameters (see
[14] for a detailed derivation):

β1 =
1

2

−X2(τ, G)
(

πB

λ(B)

)2
+X2(τ, B)

(

πG

λ(G)

)2

(

πG

λ(G)

)2
−

(

πB

λ(B)

)2

β2 =
1

2

−X2(τ, G)
(

πB

λps(B)

)2
+X2(τ, B)

(

πG

λps(G)

)2

(

πG

λps(G)

)2
−

(

πB

λps(B)

)2

Finally, the above combines into the characterization of

symmetric equilibria as it follows:

Theorem 3: Denote threshold

λs
pu =

πB

πG − πB

(λps(G)− λps(B)) − λps(B)

i. If λpu > λs
pu, then

Ws = [β1,β2] ∩ [0,βτ,B]

is the set of symmetric Wardrop equilibria for the system.

ii. If λpu < λs
pu then Ws ⊆ {0,βτ,B}.

The result in Thm. 3 let us observe a neat phase transition

effect on λpu: when the intensity of the views due to the pull

mechanism is below threshold λs
pu, only extremal Wardrop

equilibria are possible. Above that threshold, there can exist

a continuum of equilibria where the system can settle. Let

µ(·) denote the standard real measure: a sufficient condition

is provided in the following

Corollary 1: µ(Ws) > 0 if λpu > λs
pu and β2 ≥ 0 > β1.

We can observe that πG < πB implies β2 ≥ 0 and λpu > 0 >

λs
pu, so that a stronger sufficient condition than the one just

provided in turn becomes: πG < πB and β1 ≤ βτ,B .

V. CONCLUSIONS

In this paper we characterized the access to online contents

by game theoretical means by leveraging on the concept of

Wardrop equilibrium. We deduced the structure of equilibria

in systems where users adopt threshold type policies to select

online contents. The analysis presented here can cover several

cases: the case when the plain viewcount is the metric, or the

viewcount trend, or both are combined as a product metric (see

[14] for the full derivation). Finally, we explored the impact

of side information available to content viewers.

In all such cases we deduced the presence of a continuum of

equilibria, which has potential implications in the design and

control of platforms for online content access. In future work,

in particular, we are exploring the dynamics associated to such

sets of interior restpoints, when they exist, and comparing

those with typical dynamics of online contents. However,

not only equilibria are relevant: as showed in [10], threshold

strategies, under specific conditions, may well lead the system

to be asymptotically unstable; system trajectories may in turn

consist of cycles that can move into a chaotic dynamics,

essentially indistinguishable from random noise.

REFERENCES

[1] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “I tube,
you tube, everybody tubes: analyzing the world’s largest user generated
content video system,” in Proc. of ACM IMC, San Diego, California,
USA, October 24-26 2007, pp. 1–14.

[2] R. Crane and D. Sornette, “Viral, quality, and junk videos on YouTube:
Separating content from noise in an information-rich environment,” in
Proc. of AAAI symposium on Social Information Processing, Menlo
Park, California, CA, March 26-28 2008.

[3] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “YouTube traffic characteriza-
tion: A view from the edge,” in Proc. of ACM IMC, 2007.

[4] J. Ratkiewicz, F. Menczer, S. Fortunato, A. Flammini, and A. Vespig-
nani, “Traffic in Social Media II: Modeling Bursty popularity,” in Proc.

of IEEE SocialCom, Minneapolis, August 20-22 2010.

[5] G. Chatzopoulou, C. Sheng, and M. Faloutsos, “A First Step Towards
Understanding Popularity in YouTube,” in Proc. of IEEE INFOCOM,
San Diego, March 15-19 2010, pp. 1 –6.

[6] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “Analyzing
the video popularity characteristics of large-scale user generated content
systems,” IEEE/ACM Transactions on Networking, vol. 17, no. 5, pp.
1357 – 1370, 2009.

[7] G. Szabo and B. A. Huberman, “Predicting the Popularity of Online
Content,” Comm. of the ACM, vol. 53, no. 8, pp. 80–88, Aug. 2010.

[8] L. G. Debo, C. Parlour, and U. Rajan, “Signaling quality via queues,”
Manage. Sci., vol. 58, no. 5, pp. 876–891, May 2012.

[9] M. Rolfe, “Social networks and threshold models of collective behavior,”
Preprint, University of Chicago, 2004.

[10] M. Granovetter and R. Soong, “Threshold models of interpersonal effects
in consumer demand,” Journal of Economic Behavior and Organization,
no. 7, pp. 83–99, 1986.

[11] M. Granovetter, “Threshold models of collective behavior,” American
Journal of Sociology, vol. 83, no. 6, pp. 1420–1443, 1978.

[12] J. Wardrop, “Some theoretical aspects of road traffic research,” Proc.

Inst. Civil Eng., Part 2, vol. 1, pp. 325–378, 1952.

[13] R. Hassin and M. Haviv, “Equilibrium threshold strategies: The case of
queues with priorities,” Oper. Res, pp. 966–973, 1997.

[14] E. Altman, F. De Pellegrini, R. El Azouzi, D. Miorandi, and T. Jimenez,
“Emergence of equilibria from individual strategies in online content
diffusion,” CoRR, vol. arXiv:1212.6856, 2012. [Online]. Available:
http://arxiv.org/abs/1212.6856

[15] A. Haurie and P. Marcotte, “On the relationship between Nash-Cournot
and Wardrop equilibria,” Networks, vol. Volume 15, no. 3, p. 295308,
1985.

[16] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, , and
D. E. Knuth, “On the Lambert W Function,” Advances in Computational

Mathematics, vol. 5, pp. 329–359, 1996.

6


