
HAL Id: hal-00913431
https://inria.hal.science/hal-00913431

Submitted on 3 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verified Programs with Binders
Martin Clochard, Claude Marché, Andrei Paskevich

To cite this version:
Martin Clochard, Claude Marché, Andrei Paskevich. Verified Programs with Binders. Programming
Languages meets Program Verification, Jan 2014, San Diego, United States. �hal-00913431�

https://inria.hal.science/hal-00913431
https://hal.archives-ouvertes.fr

Verified Programs with Binders ∗

Martin Clochard1,2,3 Claude Marché2,3 Andrei Paskevich3,2

1ENS Paris, 2Inria Saclay – Île-de-France, 3LRI (CNRS & Université Paris-Sud), France

Abstract

Programs that treat datatypes with binders, such as theorem provers
or higher-order compilers, are regularly used for mission-critical
purposes, and must be both reliable and performant. Formally prov-
ing such programs using as much automation as possible is highly
desirable. In this paper, we propose a generic approach to handle
datatypes with binders both in the program and its specification
in a way that facilitates automated reasoning about such datatypes
and also leads to a reasonably efficient code. Our method is im-
plemented in the Why3 environment for program verification. We
validate it on the examples of a lambda-interpreter with several re-
duction strategies and a simple tableaux-based theorem prover.

Categories and Subject Descriptors F.3.1 [Theory of Computa-
tion]: Logics and Meanings of Programs—Specifying and Verify-
ing and Reasoning about Programs

Keywords Formal Verification, Binders, Verified Symbolic Com-
putations, Automated Theorem Proving

1. Introduction

This work is about developing programs involving datatypes with
binders, in a safe manner. Such datatypes appear when one wants
to represent symbolic expressions, such as logic formulas, alge-
braic expressions, or abstract syntax trees of programs. As binders
are the natural way to model quantifiers and anonymous function
expressions, they are widely used to formalize logic and program-
ming languages.

In this context, we propose an approach aiming at both produc-
ing reasonably efficient programs manipulating binders, and for-
mally verifying their correctness, using as much automation as pos-
sible. Typical examples of such programs include theorem provers,
higher-order language interpreters and compilers, and computer al-
gebra systems. Some of these tools are used to produce mission-
critical code, requiring a high level of trust. Formally proving such
programs is thus desirable, and handling datatypes with binders is
a major challenge in this task.

Dealing with binders is an active research area since a long time.
On the one hand, there are several generic approaches and tools

∗ Work partly supported by the Bware project of the French national re-
search organization (ANR-12-INSE-0010, http://bware.lri.fr/)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PLPV ’14, January 21, 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2567-7/14/01. . . $15.00.
http://dx.doi.org/10.1145/2541568.2541571

for programming datatypes with binders in a systematic way, so as
to avoid classical traps such as variable capture (see [24, 25] for
an overview). On the other hand, there are also several approaches
proposed for reasoning about datatypes with binders (e.g. de Bruijn
indices, locally nameless, nominal or nested representations), typ-
ically using highly expressive logical frameworks such as those
implemented in interactive proof assistants, as exemplified by the
POPLmark challenge [3]. However, there has been significantly
less work considering simultaneously the issues for developing and
formally proving programs with binders.

Our aim is thus to bridge a gap between two seemingly opposite
objectives: reasoning easily about datatypes with binders (hence
the representation should be simple) and implementing them with
a reasonably efficient structure (hence the representation should be
clever). Instead of looking for a single representation of binders
that would be fit for both tasks, we introduce two different repre-
sentations: one on the logic side to perform reasoning, one on the
implementation side to perform efficient computations. The imple-
mentation representation is interpreted to the logic one, assigning
to every program object a logical model, which is used in program
specifications. The idea is that almost all logical reasoning is done
using the model, without losing efficiency on the program side.

Our method is implemented using the Why3 environment for
program verification [12] that generates proof obligations dis-
charged by external automated and interactive provers. This en-
vironment is presented in Section 2. Why3 allows extraction of
programs to OCaml code, thereby allowing efficient execution of
the proved code. In order to deal with datatypes with binders in a
generic way, we designed and implemented a general scheme of
definitions of such types, together with a procedure for translat-
ing them into Why3 code defining types, operations, lemmas about
them, and also hints for proving those lemmas. This method is de-
tailed in Section 4.

Our approach is illustrated on several examples: the terms
of lambda-calculus, the formulas of first-order logic, the terms
of system F<: (from the POPLmark challenge). For each ex-
ample, all properties and programs that are automatically gener-
ated are formally proved correct with quite limited human assis-
tance after generation. We experimented with the generated repre-
sentations on two case studies: a verified interpreter for lambda-
calculus using several reduction strategies (Section 5), and certi-
fied sound tableaux-based theorem prover (Section 6). The source
files for our developments are available at http://www.lri.fr/

~clochard/. The obtained results validate the fact that the imple-
mentation of datatypes with binders, as generated by our tool, is
competitive with hand-written ones. Notice that in order to handle
these examples, our approach has to treat the problem of substitu-
tion under binders, making it possible to implement, for example,
an innermost reduction strategy or a skolemization procedure.

2. Preliminaries

2.1 The Why3 Environment

Why3 is a platform for deductive program verification, providing a
rich language for specification and programming, called WhyML.
It relies on external provers, both automated and interactive, in
order to discharge the auxiliary lemmas and verification conditions.
WhyML is used as an intermediate language for verification of C,
Java or Ada programs, and is also intended to be comfortable as a
primary programming language.

The specification component of WhyML [6], used to write
program annotations and background theories, is an extension of
first-order logic. It features ML-style polymorphic types, algebraic
datatypes, inductive and co-inductive predicates, recursive defini-
tions over algebraic types. Constructions like pattern matching, let-
binding and conditionals can be used directly inside formulas and
terms. A type, function, or predicate can be either defined or de-
clared abstract and axiomatized. The specification part of the lan-
guage can serve as a common format for theorem proving prob-
lems, suitable for multiple provers. The Why3 tool generates proof
obligations from lemmas and goals, then dispatches them to mul-
tiple provers, including Alt-Ergo, CVC4, CVC3, Z3, E, SPASS,
Vampire, Coq, and PVS. As most of the provers do not support
some of the language features, typically pattern matching, polymor-
phic types, or recursion, Why3 applies a series of encoding trans-
formations to eliminate unsupported constructions before dispatch-
ing a proof obligation. Other transformations can also be imposed
by the user in order to simplify the proof search.

The programming part of WhyML [12] is a dialect of ML with
a number of restrictions to make automated proving viable. In
order to keep proof obligations in first-order logic, higher-order
procedures are not supported. Memory aliasing is restricted by
static typing, ensuring that every left-value has a statically known
finite number of mutable fields. In practice this means that recursive
datatypes cannot have mutable components.

WhyML function definitions are annotated with pre- and post-
conditions both for normal and exceptional termination, and loops
are also annotated with invariants. In order to ensure termination,
recursive definitions and while-loops can be supplied with variants,
i.e. values decreasing at each iteration according to a well-founded
order. Statically-checked assertions can also be inserted at arbitrary
points in the program. The Why3 tool generates proof obligations,
called verification conditions, from those annotations using a stan-
dard weakest-precondition procedure. Also, most of the elements
defined in the specification part: types, functions, and predicates,
can be used inside a WhyML program.

For more details about Why3 and WhyML, we refer the reader
to the project’s web site http://why3.lri.fr which provides a
extensive tutorial and a large collection of examples. The WhyML
source code in this paper is mostly self-explanatory for those famil-
iar with functional programming. Additionally, in our development,
we make use of a currently experimental feature of Why3, namely
a support for higher-order logic in specifications. This is done
via a built-in library HighOrd providing a datatype (func ’a ’b)

for functions from ’a to ’b, and the syntax (\x:ty. t) for the
function that maps any ty-typed argument x to t. These con-
structions are encoded to first-order when calling external first-
order provers. For the sake of readability, below we abbreviate
(HighOrd.func ’a ’b) as (’a -> ’b).

2.2 A Taxonomy of Binder Representations

Datatypes with binders are algebraic datatypes extended with a no-
tion of variable binding. Programming with binders, as well as for-
mal reasoning about them, gives rise to a common difficulty: the
representation of the binding structure. The traditional approach,

representing every variable by an identifier, causes a lot of trou-
ble when dealing with operations like substitution, as undesirable
captures can arise during a naive substitution. Getting it right typi-
cally involves reasoning modulo α-equivalence by renaming bound
variables into fresh ones, which is inefficient and error-prone. Also,
reasoning modulo α-equivalence requires to state and prove a great
number of invariance results.

Considering a datatype with binders, five operations stand out
as basic blocks, for which there is a general scheme independent of
the actual datatype.

• Construction, in order to build the values of the datatype. It
includes the important case of variable binding.

• Decomposition, usually via pattern-matching. As the inverse of
construction, the case of variable unbinding must be considered.

• Equality test—usually modulo α-equivalence.

• Substitution, in a way that avoids capture.

• Testing whether a variable occurs free in a term, or collecting
the set of free variables.

So, from the logic side, a good representation of such a datatype
is one where those operations are easy to reason about. On the
implementation side, efficiency comes first.

Let us consider several possible representations of binding, us-
ing the pure lambda-calculus and the term λx.(λy.xya)xa as an
example.

Named representation

This is the standard representation of lambda-terms, with explicitly
named variables in the abstraction. In Why3, it is written as

type term = Var id | App term term | Lambda id term

Here, id is the type of variables, usually an abstract infinite set. We
identify it with string in the examples. The representation of the
example lambda-term is straightforward1:

L "x" (A (A (L y (A (A (V "x") (V "y")) (V "a")))
(V "x")) (V "a"))

Though construction, decomposition, and free variable testing
are both easy to define and efficient, this representation has the
above-mentioned problems with substitution. Moreover, equality is
not trivial as it amounts to α-equivalence checking.

De Bruijn indices

The variables are represented as non-negative integers, called de
Bruijn [10] indices.

type term = Var int | App term term | Lambda term

An index represents the binding distance to the abstraction actually
binding this variable. Precisely, the variable i is bound by the

(i + 1)th abstraction crossed on the path from the variable to the
root of the term. If there is no such abstraction, it corresponds to
a free variable whose index is the remaining distance. Namely, it

corresponds to the (i − j)th free variable, with j the total number
of abstractions encountered on the path to the root. Assuming a is
mapped to the integer 42, the example is represented by:

L (A (A (L (A (A (V 1) (V 0)) (V 44))) (V 0)) (V 43))

Construction and decomposition are trivial except in the case of
abstraction. In order to bind a variable, it must be first renamed to 0,
and every other free variable incremented, before applying the ab-
straction constructor. Unbinding is the inverse: after removing the

1 In order to get readable representations, the constructors are shortened to
their first letter.

abstraction constructor, 0 is renamed to a fresh variable and other
free variables are decremented. However for some definitions, like
substitution or beta-reduction, this renaming is not necessary, as we
can readily use 0 as the next fresh variable. It also avoids fresh vari-
able quantification during reasoning. In other words, depending on
purpose, the construction and decomposition operations inherited
from the algebraic structure may be used instead of the others.

Equality test is trivial, as the structure gives a canonical rep-
resentation, and free variable test is quite easy. Substitution of a
term into another can be defined inductively on the structure of
the second one, but avoiding captures requires to shift the first one
by incrementing each free variable by one while putting it under a
binding. As an implementation structure, it is slightly less efficient
than the named representation because the shifting during substitu-
tion can cause performance loss greater than renaming the bound
variables to rule out captures.

However, this representation is quite counter-intuitive. As vari-
ables are necessarily integers, the meaning of a free variable can
be quite cryptic from the human point of view, except by explicitly
carrying a context. Because of this, it is also easy to make mistakes
while handling such representation—both on logic and implemen-
tation side. POPLmark [3] says about de Bruijn indices: “have two
major flaws” in particular regarding readability.

Locally nameless

The locally nameless representation [7] is hybrid. Its syntax distin-
guishes free and bound variables. Bound variables are represented
by de Bruijn indices, while free ones are named.

type term = BruijnVar int | FreeVar id
| App term term | Lambda term

The example term is represented as follows.

L (A (A (L (A (A (B 1) (B 0)) (F "a"))) (B 0)) (F "a"))

Again, this is a canonical representation, one which makes much
clearer the meaning of free variables. Equality test, free variable
testing, and even substitution are trivial, as captures are prevented
by the structure invariant. There is, however, no longer any canon-
ical way to define the decomposition function in the abstraction
case: it should rename the de Bruijn index 0 to some fresh vari-
able, all of them being equally valid. It can be easier to reason
on a canonical fresh variable, as it can be done with 0 in the de
Bruijn representation. However, this is not possible in this setting,
as the de Bruijn variables must be bound. All the reasoning must
be done modulo a non-trivial well-formedness invariant, which pre-
vents reasoning on open terms.

However, it is good as an implementation structure: it inherits
the advantages of the de Bruijn representation, while removing any
need for shifting.

Nested datatype

Basically, the nested datatype representation [5] is locally nameless
with invariants enforced by the type system itself, or de Bruijn
indices in unary representation.

type option ’a = None | Some ’a
type term ’a = Var ’a | App (term ’a) (term ’a)

| Lambda (term (option ’a))

De Bruijn indices are turned into corresponding unary integers
Somen None, while an occurrence of a free variable x is translated
into Somen x, where n is the number of abstractions on the path
from the occurrence to the root of the term. So a value of type
term ’a represents a lambda-term with free variables of type ’a.

This yields the following representation for the example:

L (A (A (L (A (A (V (S N)) (V N)) (V (S (S "a")))))
(V N)) (V (S "a")))

This representation method inherits most of the advantages of
de Bruijn indices without having cryptic free variables. The rep-
resentation is canonical, which makes the equality test trivial. The
free variable testing is quite easy as well, and though shifting is
still necessary, captures during substitutions are ruled out by the
type system itself.

Finally, construction and decompositions work as de Bruijn,
considering None to be 0 and Some to be the successor. Binding
x is done by renaming it to None, and adding a Some constructor to
other variables. Unbinding is the inverse.

function bind (x:’a) (t:term ’a) : term (option ’a)
function unbind (t:term (option ’a)) (x:’a) : term ’a

As discussed above for de Bruijn representation, there are cases
where using the construction and decompositions inherited from
the algebraic structure is more practical. As all fresh variables are
equivalent in order to decompose an abstraction, None is usually
the best choice as it is a canonical choice, is evidently fresh (it was
not part of the type of free variables), and it avoids both reasoning
about the renaming coming from unbinding and also about the
quantification over fresh variables. Moreover, binding it afterward
avoids renaming as well.

Consequently, this representation is a good candidate for rea-
soning on datatypes with binders.

3. Our Approach Illustrated on the case of Pure

Lambda-Calculus

In this section, we present our approach through the example of the
pure lambda-calculus, as it features most of the problems encoun-
tered when dealing with binders, while having a relatively simple
structure. We first focus on the theory used for specification, then
describe the implementation structure. In Section 5, we will show a
practical example of a program using such structures: a procedure
performing beta-reduction.

3.1 Specification

Choice of a specification representation

The first thing to decide upon is which representation of datatypes
to choose in order to reason about them. Such a representation
should have several properties:

• Representation should be canonical, first of all to avoid invari-
ance lemmas. Not only it avoids to state them, but it also helps
a lot automated proving, as automated provers can use special-
ized decision procedures for equality instead of trying to instan-
tiate lemmas. Moreover, in the particular case of α-equivalence,
getting a proof of invariance lemmas is non-trivial.

• There should be a canonical way to unbind variables. Though
any reasonable notion should not depend on the choice of the
fresh variable, getting it proved is another matter. Experiments
on the beta-reduction predicate in Why3 showed that it was
difficult if there was any quantifier on fresh variables. Having
such a canonical fresh variable for the unbinding prevents that
problem, especially if the unbinding and binding this variable
back correspond to simpler operations.

• As the specifications will ultimately be written and read by
human beings, the representation should not be cryptic.

• The operations must be kept as simple as possible, in order to
simplify proof search—and also human understanding.

We choose the nested datatype representation for the specifica-
tion purpose, as it seems to fit the best those requirements. Named
representation clearly conflicts with the first and fourth points. The
best fit with these requirements are the de Bruijn indices and the

nested representation. Additionally the typing constraints enforced
by the nested representation are an advantage. As for the locally
nameless representation, the problem is the second point, as there
is no canonical decomposition. This point is easy to deal with in the
nested datatype setting, where unbinding modifies the type of a free
variable and the canonical fresh variable is just None. The above-
mentioned “fresh variable independence” results can be derived
immediately from commutation with bijective renamings, which is
fairly simple to prove while using the canonical decomposition.

Another representation which we do not present here is the
canonical locally named representation [22]. This approach seems
to fit most of our requirements, in particular, the existence of a
canonical fresh variable to perform unbinding. However, this fresh
variable actually depends on the term, which imposes additional
renaming work when defining a relation between several terms.
Moreover, this canonical choice may conflict with a variable we
are carrying outside the term, in which case it may be incorrect to
use it. This issue does not show up with the nested datatype as the
fresh variable is out of the current type for free variables.

Defined notions

Considering only the binding structure, there are only two interest-
ing notions to define: free variables and substitutions. Equality is
given for free by the representation, and the renamings necessary
for construction and decomposition derive from substitution.

It is straightforward to write the predicate “being a free variable
in” by pattern-matching on the type term:

predicate is_free_var (x:’a) (t:term ’a) = match t with
| Var y -> x = y
| App u v -> is_free_var x u \/ is_free_var x v
| Lambda u -> is_free_var (Some x) u

end

The substitution operation is slightly more complicated. We
define substitutions as functions that simultaneously map every
variable to a term. Prior to defining the substitution operation, we
need to handle the special case of variable renaming, which is done
by a structural recursion.

function rename (t:term ’a) (sigma:’a -> ’b) : term ’b =
match t with
| Var x -> Var (sigma x)
| App u v -> App (rename u sigma) (rename v sigma)
| Lambda u ->

let sigma’ = \ x:option ’a. match x with
| None -> None
| Some x -> Some (sigma x)
end

in Lambda (rename u sigma’)
end

The first two cases are natural. In the case of abstraction, the
substitution must be modified to take into account the new variable
None, which should be replaced by itself. This corresponds exactly
to the definition of sigma’ above.

The substitution operation is quite similar:

constant lift_renaming = (\ x:’a. Some x)
function subst (t:term ’a) (sigma: ’a -> term ’b) :

term ’b =
match t with
| Var x -> sigma x
| App u v -> App (subst u sigma) (subst v sigma)
| Lambda u ->

let sigma’ = \ x:option ’a. match x with
| None -> Var None
| Some y -> rename (sigma y) lift_renaming
end

in Lambda (subst u sigma’)
end

where the substitution sigma’ to apply under the binder is now de-
fined with a renaming, in order to add a Some constructor over the
variables of substituted terms (which corresponds to the shifting
of de Bruijn indices). Notice that a definition using subst instead
of rename would be rejected by Why3 since it would not be struc-
turally decreasing.

Interestingly, the type system prevents us from writing an incor-
rect version of substitution lifting, which could cause captures. The
new input type forces the case of the new fresh variable to be con-
sidered, while the output type prevents us from forgetting lifting
the variables in the second case. It is possible to write an erroneous
version of the function, but not easily (or intentionally). This would
not have been true for de Bruijn indices, so those errors could have
gone undetected until we try to prove properties of the substitution.

Although substitution and renaming are the principal interesting
functions, there are also some other functions or constants that are
interesting to name: first, composition of substitutions, defined by
pointwise substitution

function subst_compose (sigma1: ’a -> term ’b)
(sigma2: ’b -> term ’c) : ’a -> term ’c =

(\ x:’a. subst (sigma1 x) sigma2)

and variants when one or both substitutions are renamings; second,
the identity substitution:

constant subst_id: ’a -> term ’a = (\ x:’a. Var x)

Proved properties

Considering only the binding structure, there are several properties
that are interesting to have in any case.

• Substituting twice into a term is equivalent to apply the compo-
sition of both substitutions, that is mathematically

(tσ1)σ2 = t(σ1 ◦ σ2)

lemma subst_consecutive:
forall t:term ’a, s1:’a -> term ’b,

s2:’b -> term ’c.
subst (subst t s1) s2 =

subst t (subst_compose s1 s2)

• As an immediate consequence (by extensionality) of the previ-
ous property, composition of substitutions is associative.

lemma subst_compose_associative:
forall s1:’a -> term ’b, s2:’b -> term ’c,

s3:’c -> term ’d.
subst_compose (subst_compose s1 s2) s3
= subst_compose s1 (subst_compose s2 s3)

• Characterization of the free variables after a substitution.

x ∈ fv(tσ) ↔ (∃y ∈ fv(t). x ∈ fv(σ(y)))

lemma subst_free_var:
forall t:term ’a, sigma:’a -> term ’b, x:’b.
is_free_var x (subst t sigma) <->
exists y:’a. is_free_var y t /\

is_free_var x (sigma y)

• The identity substitution preserves lambda-terms.

lemma subst_identity:
forall t:term ’a. subst t subst_id = t

• Result of substitution depends only on the instances of free
variables

tσ1 = tσ2 ↔ (∀x ∈ fv(t). σ1(x) = σ2(x))

lemma subst_equality:
forall t:term ’a, s1 s2:’a -> term ’b.
subst t s1 = subst t s2 <->
(forall x:’a. is_free_var x t -> s1 x = s2 x)

i.e. if two substitutions are equal on every free variable of a
term, then applying them to this term yields the same result ;
and conversely.

The lemmas above have several variants, considering the cases
where the substitutions are renamings. The variants involving re-
namings must be proved first and then used for the main lemmas.

Two of those properties, the fact that substitution depends only
on free variables and that substitution by identity preserves terms,
can be proven by direct induction. The other properties require
more work. In the case of the property about consecutive substi-
tutions into a term, we have to prove that the lifting operation pre-
serves composition of substitution. As it involves two renamings
interleaved with substitution, proving this property requires the two
variants of this lemma where one of the substitutions is replaced by
a renaming. Unraveling completely the proof, the four variants of
the lemma are necessary. For more details about how many hints
are given inside Why3 in order to get the lemmas proved automat-
ically, see Section 4.4.

Actually, because of the presence of a renaming in the lifting
operation, in this formalization it is a common pattern to first prove
whatever property we want for substitution with renamings. In this
case, this means that it is necessary to prove the four lemmas in the
order of increasing strength.

The characterization of the free variables follows the same pat-
tern: in order to be able to relate free variables in the substitutions
before and after lifting, it is first necessary to prove its variant
with renamings. The remaining lemmas are straightforward con-
sequences.

3.2 Implementation

As for specification, we first have to choose a representation. There
is a trade-off between efficiency and difficulty to prove the relation
between the implementation and the specification. The difficulty
prevented us from using overly complex data structures (delayed
substitution in the structure, director strings [11], etc.), while effi-
ciency was the obvious reason for not using directly the specifica-
tion data structure. The encoding of variables in the latter consumes
a lot of memory (potentially quadratic in the size of the term), and
the shifting operation causes similar performance loss.

Also, as the logical reasoning is not done with the implemen-
tation structure, it is no longer needed for the representation to be
canonical, neither for unbinding to have a simple canonical variant.

The type of lambda-terms of our implementation is a record as
follows.

type id = int
type iterm = {

repr : Nameless.term;
mfv : int;
ghost term_model : Nested.term id

}

The first field is the locally nameless representation of the term,
as defined in Section 2.2. In order to generate fresh variables effi-
ciently, we also carry in the second field an upper approximation
of its set of free variables, that is in practice, as we use integers for
the type of free variables, we carry an upper bound of the free vari-
ables of the term, which is very easy to keep up-to-date. Finally, we
use a so-called ghost field, that is seen only in specifications, that
is the image of that term in the logic side, that we call its model.
The characterization of the model is done thanks to a function that
maps a term in the nameless representation into a term in the nested

one. This is defined recursively, and takes as extra parameters two
evaluations for free and de Bruijn variables into lambda-terms:

type nameless = Nameless.term
function model (t: nameless)

(fr:id -> Nested.term ’a)
(b:int -> Nested.term ’a) : Nested.term ’a =

match t with
| BruijnVar n -> b n
| FreeVar x -> fr x
| App u v -> Nested.App (model u fr b) (model v fr b)
| Lambda u ->

Nested.Lambda
(model u (\ x:id. rename (fr x) lift_renaming)

(\ n:int. if n = 0 then Var None else
rename (b (n-1)) lift_renaming))

end

A property of this evaluation function is that it is independent of the
values in the environment for de Bruijn indices which are greater
than every free de Bruijn variable in the locally nameless repre-
sentation. The model of a well-formed locally nameless represen-
tation (well-formed meaning without free de Bruijn variables) is
thus obtained by taking the model with the evaluation composed of
the identity substitution for free variables and any evaluation for de
Bruijn variables, since it does not depend on it. Thanks to this prop-
erty, we can define the following predicate which plays the role of
an invariant for our implementation type iterm:

predicate impl_ok (t:iterm) =
no_free_debruijn t.repr /\
t.term_model = model t.repr subst_id subst_dummy /\
(forall x:id. is_free_var x t.term_model -> x < t.mfv)

where no_free_debruijn is a predicate checking that each de
Bruijn index i in the term is below at least i binders.

Another direct property of the model function that can be shown
by induction is that it commutes with substitution:

lemma model_commute_subst :
forall t:nameless, fr:id -> term ’a,

b:int -> term ’a, sigma:’a -> term ’b.
subst (model t fr b) sigma =

model t (subst_compose fr sigma)
(subst_compose b sigma)

Both properties are crucial to show that binding and unbinding
operations coincide with particular substitutions in the model.

As we want to use this representation for lambda-terms in our
implementation, we implement the five basic operations mentioned
in Section 2.2. Construction and decomposition for non-binder
cases, as well as equality, are straightforward. Free variable testing
is easy to write as a recursive function but a little trickier to ver-
ify correct because the model is given by the evaluation function.
In order to do it, we introduce two ghost arguments correspond-
ing to evaluations into variables, and a precondition ensuring that
free de Bruijn variables of the term were always interpreted differ-
ently than any possible free variable. On a well-formed nameless
term, this coincides exactly with free variable testing. Finally, the
code for substitution is extremely similar to the one for unbinding
(especially unbinding with a term), so let us focus on binding and
unbinding operations.

In order to implement those functions, we have to be able to
transform the de Bruijn variable 0 to a free variable and the other
way, since the de Bruijn variable 0 corresponds to the variable
bound by the abstraction constructor. We implement two recursive
functions over locally nameless representation to achieve that: one
that takes a free variable name and changes it to a given de Bruijn
index, and another that transforms a given de Bruijn index to a well-
formed locally nameless term. The second one is more powerful

than needed, but it is not harder to prove neither less efficient,
and it can replace efficiently the pattern of unbinding followed by
substitution. Both functions are straightforward to write:

function bind (t:nameless) (x:id) (i:int) : nameless =
match t with
| BruijnVar j -> BruijnVar j
| FreeVar y -> if x = y then BruijnVar i else FreeVar y
| App u v -> App (bind u x i) (bind v x i)
| Lambda u -> Lambda (bind u x (i+1))
end

function unbind (t:nameless) (i:int) (u:nameless) :
nameless =

match t with
| BruijnVar j -> if i = j then u else BruijnVar j
| FreeVar y -> FreeVar y
| App v w -> App (unbind v i u) (unbind w i u)
| Lambda v -> Lambda (unbind v (i+1) u)
end

By induction (as they can be written as logic functions), or equiva-
lently by adding ghost evaluation arguments and writing those two
properties in the postconditions, we get the expected lemmas:

function update (f:’a->’b) (x:’a) (v:’b) =
(\ y:’a. if x = y then v else f x)

lemma model_bind :
forall t:nameless, x:id, i:int, f:id -> term ’a,

b:int -> term ’a.
model (bind t x i) f b = model t (update f x (b i)) b

lemma model_unbind :
forall t:nameless, i:int, u:nameless,

f:id -> term ’a, b b’:int -> term ’a.
no_free_debruijn u ->
model (unbind t i u) f b =
model t f (update b i (model u f b’))

In the particular case of abstraction construction/decomposition
with terms respecting the locally nameless invariants (no free de
Bruijn variables), those equalities correspond to the bindings and
unbinding operations over the model. Also, it is straightforward to
prove that the invariants are preserved.

4. A Generator of Binder Specification and

Implementation

The work required to model and implement a datatype with binders
is complex but mostly generic: the needed operations such as sub-
stitution are always the same, and the lemmas to reason on such
structures are also the same. Still, adapting this work to a particular
datatype is error-prone and takes a lot of time. This stresses the need
for some automated generic method. However, as it involves rea-
soning over inductive structures of datatypes, this is hardly doable
in the programming language itself, and calls instead for some kind
of meta-programming. The Why3 environment is no different in
this respect: its current lack of reflection capabilities makes it im-
possible to describe a datatype with binders, in a generic style, di-
rectly in Why3.

So instead, we wrote a standalone independent tool that gener-
ates Why3 code, from a high-level description of datatypes with
binders. Technically, the tool generates type declarations, func-
tions, predicates, procedures, lemmas and hints to automatically
prove those lemmas, corresponding to the representations of the
datatypes with binders, the operations over them, and their stan-
dard properties. Our tool is written in OCaml and is roughly 6000
lines of code long.

The class of datatypes with binders accepted by this tool is the
class of finite mutually inductive families of algebraic datatypes

extended with potentially multiple occurrences of bindings inside
constructors, and with at most one kind of variable per declared
datatype. The idea is that a kind of a variable corresponds to the
datatype of terms that may be substituted for it. It would probably
be possible to extend the class with several/infinitely many kinds
per datatype, but this is mostly irrelevant from the point of view
of the binding structure, as all those kinds have the same behavior.
Moreover, there is a simple way to refine kinds by encoding the
kind information in the variables themselves.

4.1 Description of a datatype with binders

An algebraic datatype with binders is described by its list of con-
structors. There are two kinds of constructors:

• The variable constructor Var. It declares a constructor taking
a variable name corresponding to the kind of variable for the
current datatype. It is not allowed more than once, because of
the correspondence between variable kinds and the types of
terms that can be substituted for it. It is only possible to replace
such a variable with a term from the datatype currently defined.

• A constructor declared under the form C p1 · · · pn where each
parameter pi is either a type or a binding of some kind denoted
as ♯kind. A binding pi = ♯k corresponds to a variable of
kind k bound in every arguments corresponding to the types
in pi+1 · · · pn. In other words, a binding binds to the right.

EXAMPLE 1. The pure lambda-calculus is described as

term ::= Var | App term term | Lambda ♯term term

EXAMPLE 2. Formulas of first-order logic are described as

term ::= Var | FApp function symbol term list

term list ::= Nil | Cons term term list

fmla ::= Forall ♯term fmla | Exists ♯term fmla

| And fmla fmla | Or fmla fmla | Not fmla

| PApp predicate symbol term list

Notice that the types term list and fmla do not have a Var con-
structor, meaning that there are no variables of these kinds.

EXAMPLE 3. The system F<: is described by the grammar

τ ::= α | ⊤ | ∀α<: τ. τ | τ → τ

t ::= x | t t | λx : τ.t | Λα<: τ.t

where τ denotes types, α denotes type variables, t denotes terms
and x denotes term variables. In our setting, it is described as
follows.

ftype ::= Var | Top | Forall ftype ♯ftype ftype

| Arrow ftype ftype

fterm ::= Var | App fterm fterm

| Lambda ftype ♯fterm fterm

| TLambda ftype ♯ftype fterm

Notice the order of arguments of Forall, Lambda and TLambda,
making explicit the sub-terms where the variable is bound, e.g. in
the notation ∀α <: τ1. τ2, the type variable α is bound only in τ2.

4.2 Specification scheme

Encoding of the binding structure

Following the idea of the nested datatype encoding, each declared
type typei is translated into a parameterized Why3 type TYPEi.
The type parameters of TYPEi correspond to the types of the free
variables of each kind that may appear in a value of this type. More
precisely, the Why3 declaration of TYPEi has the form

type TYPEi (’ak)k∈kinds(i) = Var ’ai (| C · · ·)C

where kinds(i) is the least fix-point of the equation

{i} ∪
⋃

C,j|pjnot a binding

kinds(j) = kinds(i)

The Var constructor is omitted if there is no Var in the description,
and in that case the {i} is also omitted in the previous fix-point
equation. The arguments of a constructor C correspond to the non-
bindings pi = typej , with each pi replaced by

TYPEj (optionni,k ’ak)k∈kinds(j)

where ni,k is the number of bindings of kind k occurring in
p1 · · · pi−1.

Using this encoding, the unary integer (Somem None), with
m < n, corresponds to the m-th binding found when going to
the left from the argument. It can also be interpreted in terms of
applying binding operations from right to left, starting from the
current argument.

EXAMPLE 4 (Example 3 continued). The Why3 generated code
for types and terms of F<: is as follows.

type ftype ’a =
| Var_ftype ’a
| Top
| Forall (ftype ’a) (ftype (option ’a))
| Arrow (ftype ’a) (ftype ’a)

type fterm ’a ’b =
| Var_fterm ’b
| App (fterm ’a ’b) (fterm ’a ’b)
| Lambda (ftype ’a) (fterm ’a (option ’b))
| TLambda (ftype ’a) (fterm (option ’a) ’b)

We have kinds(ftype) = {ftype} and kinds(fterm) = {ftype,
fterm} and thus the type ftype is parameterized only for the kind
corresponding to ftype.

Operations of binders

The predicate checking if a variable occurs free in a term is gener-
alized in a natural way from the one for lambda-calculus. The only
new aspect is that there are several predicates, one for each variable
kind and each datatype where variables of that kind may occur.

The operations of renaming and substitution are generalized
following the same guidelines. There are as many such functions
as types in the given family of datatypes with binders. More-
over, the renaming (resp. substitution) operation for a given type
is parametrized by substitution functions given for every type. In
other words, a renaming or a substitution is a tuple of functions,
which gives terms to instantiate every possible free variable. The
general scheme is as follows.

function renamei (t:TYPEi (’aj)j∈kinds(i))

((sigmaj:’aj -> ’bj))j∈kinds(i) : TYPEi (’bj)j∈kinds(i) =

match t with
| Var x -> Var (sigmai x)
| C (t1:TYPEl1). . .(tm:TYPElm) ->

let t’1 =
renamel1 t1 (lift1,k sigmak)k∈kinds(l1)

in
. . .

let t’m =
renamelm tm (liftm,k sigmak)k∈kinds(lm)

in
C t’1 . . .t’m

| . . .

end

function substi (t:TYPEi (’aj)j∈kinds(i))

((sigmaj:’aj -> TYPEj (’bk)k∈kinds(j))j∈kinds(i) :

TYPEi (’bj)j∈kinds(i) =

match t with
| Var x -> sigmai x
| C (t1:TYPEl1). . .(tm:TYPElm) ->

let t’1 =
substl1 t1 (lifts1,k sigmak)k∈kinds(l1)

in
. . .

let t’m =
substlm tm (liftsm,k sigmak)k∈kinds(lm)

in
C t’1 . . .t’m

| . . .

end

Functions lifti,k and liftsi,k corresponds to the lifting opera-
tions that should be applied to renaming/substitution functions be-
cause of the bindings. This is because the bound variable must be
considered as part of the free variables, and the substituted terms/-
variables must be shifted accordingly.

They are defined from the two base lifting functions:

function liftb (f:’a -> ’b) :
option ’a -> option ’b =
(\ x:option ’a. match x with

| None -> None
| Some x -> Some (f x) end)

function liftbsi (sigma:’a -> TYPEi (’bj)j∈kinds(i)) :

option ’a -> TYPEi (’bj)j∈kinds(i),j 6=i (option ’bi) =

(\ x:option ’a. match x with
| None -> Vari None
| Some x ->

renamei (sigma x) (identity)j∈kinds(i),j 6=i

lift_renaming
end)

For renaming, lifti,k is the power of liftb to the exponent ni,k

defined above. For substitution, (liftsi,k sigma) is:

(\ x:’ak. renamek (liftbs
ni,k

k
)

((\ x:’al. Someni,l x))l∈kinds(i),l 6=k identity

The substitution composition is still defined as pointwise sub-
stitution, so it is modified in the same way as substitution is. For
each kind of variable k, the composition of a substitution of kind k
is done with substitution functions for every kind in kinds(k). The
renaming of a substitution is modified in the same way, while other
composition functions are unchanged.

The identity substitution definitions, one for each kind of vari-
able, are the same as for the lambda-calculus example.

Stated Properties

Our generator automatically produces Why3 lemmas as direct
adaptation of those stated for lambda-calculus: (1) Renamings are
special cases of substitutions; (2) Applying consecutive substitu-
tions is equivalent to substitution by the composition; (3) Asso-
ciativity of substitution composition; (4) Characterization of the
free variables after a substitution; (5) Identity substitution preserves
term; (6) Substitution depends only on the free variables of a term,
and conversely.

4.3 Implementation scheme

Our generator tool also generates the implementation types and the
code corresponding to the nameless representation of a datatype
with binders. The generated implementation follows the same
structure as for the lambda-calculus example.

The evaluation function for a locally nameless term follows di-
rectly from the generalization of substitution: there are two evalua-
tions for free and de Bruijn variable of each kind.

function modeli (t:namelessi)
((fj:idj -> TYPEj (’ak)k∈kinds(j))

(bj:int -> TYPEj (’ak)k∈kinds(j)))j∈kinds(i) :

TYPEi (’aj)j∈kinds(i)

The namelessi type corresponds to the locally nameless encoding
of the datatype of index i, while idi is the type used to represent
free variables of kind i (int in practice).

The evaluation function definition follows the same pattern as
the one defined for lambda-calculus, with the same generalization
as substitution for the non-variable cases. We only detail the lifting
operations for evaluations.

• The free variable evaluations are directly renamed by shifting
every variable with the correct powers of the Some constructor,
as in the locally nameless representation free variables are un-
concerned by the binders— there is no new free variable in the
open term to consider.

• The de Bruijn variable evaluations are lifted in the same way
as substitutions, except for the base lifting operation which is
adapted from options to integers:

function liftbbi (b: int -> TYPEi (’aj)j∈kinds(i)) :

int -> TYPEi (’aj)j∈kinds(i),j 6=i (option ’ai) =

(\ n:int. if n = 0 then Vari None
else renamei (b (n-1)) (identity)j∈kinds(i),j 6=i

lift_renaming)

From this definition, the properties which already held in the
lambda-calculus example, commutation with substitution and in-
dependence from evaluations on non-free de Bruijn variables, can
still be proved directly by induction.

To deal with binder construction and decomposition, it is
enough to transform the two (un)binding functions into two fam-
ilies of functions defined similarly for each pair of type and kind:

function bindj,i (t:namelessi) (x:idj) (n:int) :
namelessi

function unbindj,i (t:namelessi) (n:int) (u:namelessj) :
namelessi

Of course, the same lemmas can be proved about the interpretation
on both functions. These are given below.

lemma model_bindj,i :
forall t:namelessi,x:idj,n:int,
(fl: idl -> TYPE (’ak)k∈kinds(l),

bl: int -> TYPE (’ak)k∈kinds(l))l∈kinds(i).

modeli (bindj,i t x n) (fl bl)l∈kinds(i)

= modeli t (fl bl)l∈kinds(i),l 6=j (update fj x (b n)) bj

lemma model_unbindj,i :
forall t:namelessi,n:int,u:namelessj,
(fl: idl -> TYPE (’ak)k∈kinds(l),

bl: int -> TYPE (’ak)k∈kinds(l))l∈kinds(i),

(b’l: int -> TYPE (’ak)k∈kinds(l))l∈kinds(j).

modeli (unbindj,i t n u) (fl bl)l∈kinds(i)

= modeli t (fl bl)l∈kinds(i),l 6=j fj

(update bj n (modelj u (fk b’k)k∈kinds(j)))

As expected, the use cases for (multi-)binders constructions and
decompositions correspond to the binding and unbinding opera-
tions in the model.

Finally, the other operations can be written and proved exactly
in the same way as it was done for the lambda-calculus example.

Equality test is still trivial, and free variable test is proved in the
same way. Substitution is an immediate variant of unbinding to a
term, and is proved nearly identically.

4.4 Proof scheme

Let us now detail how all the proofs are actually done, keeping in
mind that we strive for full proof automation.

Generalities

First, we adopted the axiom of functional extensionality. Every-
thing could have been done without it, but this would have im-
plied proving a lot of congruence properties. More importantly, this
would have forced the automated provers to use these properties in-
stead of the specialized decision procedures for equality.

Second, Why3 support for first-class logic functions is still ex-
perimental, especially handling of lambda-expressions, so we de-
cided not to rely on it. Although we have used lambda-expressions
in this paper for the sake of readability, in the Why3 code, they are
lifted out and axiomatized:

function f p1 . . .pn : t1 -> t2 = (\ x:t1. expr)

is replaced with

function f p1 . . .pn : t1 -> t2
axiom f_def : forall p1 . . .pn,x:t1. f p1 . . .pn x = expr

Importantly, both functional extensionality and this axiom scheme
are consistent with Why3 logic.

Next, the large majority of the proofs needs polymorphic mu-
tual induction, which requires human help as such proofs cannot
be done by an automated prover. The natural way to do that in
Why3 without using an interactive prover is to make explicit the in-
duction proof structure using mutually recursive lemma functions,
which consist only of recursive calls instantiating the induction hy-
pothesis. The induction cases are then dispatched to the automated
provers as the verification conditions of the procedures.

The lemma functions are also used in order to help provers.
When a goal is too hard to be proved directly by an automated
prover, and does not require some technique beyond its scope (like
induction), the usual way to get the proof done is to split the goal
by giving explicitly a cut rule. In lemma functions, this can be done
simply by adding an assertion, which will not be remembered out-
side the proof. It can also be done outside by adding an auxiliary
lemma, but the lemma will be remembered later, potentially de-
grading automated prover performance. Moreover, some of the hy-
potheses have to be stated again.

Here are some frequent kinds of cuts that had to be added:

• Intermediate lemmas when the proof is too big to be found.

• Universally quantified hypothesis, as automated provers will
usually not try to prove them. A typical example of such hy-
pothesis is extensional equality.

• Explicitly giving the instance for existential quantifiers. Unless
they can be derived immediately from the context, they will
usually not be found. Existentially quantified goals cause a lot
of trouble to automated provers.

• Explicit case disjunction: it is not uncommon to split explicitly
the reasoning between several cases. The typical case is rea-
soning over the option type, where doing case analysis usually
gets the goal proved immediately. However, most of the time
the automated provers do not instantiate the inversion axiom,
that is generated by Why3 when encoding algebraic datatypes
(for provers that do not know them).

The latter three problems mostly concern the SMT solvers with
trigger-based instantiation.

Proofs of the Generated Code

The first proved lemmas are the ones over consecutive substitutions
and renamings, in order of increasing strength, interleaved with
associativity lemmas. As explained in Section 3.1, it must start with
the lemmas about renamings. Here is the complete order:

• Prove compositionality of the base renaming lifting operation.

• Prove the lemma about consecutive renamings by mutual in-
duction.

• Using the previous lemma and extensionality, derive the three
variants of the associativity lemma about composing two re-
namings and a substitution in all possible orders.

• Prove the compositionality of the base substitution lifting oper-
ations for compositions of a substitution and a renaming.

• Using the previous associativity lemmas, prove the lemma
about consecutive renamings and substitution in both orders by
mutual induction.

• Using the two previous lemma and extensionality again, derive
the three variants of the associativity lemma about composing
two substitutions and a renaming.

• Prove the compositionality of the base substitution lifting oper-
ation for composition of substitutions.

• Derive the lemma about substitution associativity.

For our three examples (lambda-calculus, first-order logic for-
mulas, F<: terms), these lemmas were proved without real diffi-
culty by the automated provers. Interestingly, some of them are re-
quired only in cases with more than one kind of variable.

The next proved ones are the identity substitution lemma, which
are not as easy as one could expect in the cases with several kinds
of variable. Because of the structure of the lifting operation, its
renaming variant must be proved first, which amounts to prove that
lifting preserves identity before an immediate inductive proof. For
the same reason, it was also necessary to prove that the identity
substitution commutes with renamings. With one kind of variable,
the proof can be done directly from the last step as the lifting
operation is only a power of the base substitution lifting operation.

The remaining lemmas can be proved in any order. Defining
renamings in terms of substitution follows immediately from the
previous lemmas, and the characterization of equality of terms af-
ter substitution can be derived by immediate mutual induction. In
order to simplify the provers’ task, as one side of the equivalence
is universally quantified, this induction is split in two for each di-
rection of the equivalence. The only challenging property is the
characterization of free variables after substitution, as one side of
the equivalence is existentially quantified. One direction can still be
proved quite easily by two inductions, one for renamings and one
for substitution, since the existential quantification is eliminated.
The other is not proved in general without an unreasonable number
of cuts—practically giving the complete proof structure before dis-
patching any proof obligation. To avoid that problem, we generated
a constructive version of the proof: two recursive procedures which
returns an instance for the existential variable, one for renamings
then one for substitution. We complete the proof by calling the fi-
nal procedure inside a lemma function.

5. Case study: an interpreter for lambda-calculus

In order to check that those constructions were enough to handle
lambda-calculus, we implemented and proved a procedure for beta-
normalizing terms (up to a given bound, to prevent from non-
termination). There are two major steps:

• Proving that the beta-reduction is preserved under (bijective)
renaming, in order to propagate the relation across abstraction.
This corresponds exactly to an independence result relatively to
the choice of a fresh variable.

• In order to prove that the redex search terminates, finding a
variant over the implementation structure. The problem is that
decomposing the abstraction constructor is not a structurally
decreasing operation, neither on the implementation side nor on
the specification side. It was enough to write a variant function
which is preserved under renamings, such as term size.

After those steps, writing the function was straightforward.
The specification of one-step beta-reduction is given by an in-

ductive predicate as follows.

function unbindt (u:term ’a) : option ’a -> term ’a =
\ x:option ’a. match x with

| None -> u | Some y -> Var y
end

inductive beta_red (term ’a) (term ’a) =
| BAppL : forall u v w:term ’a.

beta_red u v -> beta_red (App u w) (App v w)
| BAppR : forall u v w:term ’a.

beta_red v w -> beta_red (App u v) (App u w)
| BLamC : forall u v:term (option ’a).

beta_red u v -> beta_red (Lam u) (Lam v)
| BRedex : forall u:term (option ’a),v:term ’a.

beta_red (App (Lam u) v) (subst u (unbindt v))

Interestingly, thanks to the nested representation, this definition
of beta-reduction does not require to explicitly bind or unbind
variables, neither any kind of fresh variable quantification. This
is the case in particular when defining reduction under a lambda
(case BLamC) where the hypothesis applies to terms u and v of type
term (option ’a).

The procedure performing one step of beta-reduction on the
program side is then specified as follows.

exception Irreducible
val reduce (u:term_impl) : term_impl

requires { impl_ok u }
ensures { impl_ok result }
ensures { beta_red (model u) (model result) }
raises { Irreducible ->
forall v:term id. not(beta_red (model u) v) }

That is, if the function returns normally then the result is a one-
step reduction of the input, whereas of it raises the exception
Irreducible then the input term cannot be reduced at all. We wrote
and proved four implementations of this function, corresponding to
various strategies: innermost or outermost, leftmost or rightmost.

The reduction up to a given number of steps is specified as

val reduce_n_steps (u:term_impl) (n:int) :
(term_impl,int)

requires { n >= 0 /\ impl_ok u }
ensures { let (r,n0) = result in
0 <= n0 <= n /\ term_ok r /\
beta_red_power n0 u.term_model r.term_model /\
(n0 < n ->

forall v:term id. not(beta_red r.term_model v)

That is, the result is a pair (r, n0) such that n0 is at most n, r is a
reduction in n0 steps of the input, and if n0 < n then r cannot be
reduced anymore.

In all, the generated part plus the additional specifications and
code for the interpreter amounts to around 1,000 lines of Why3
source. The number of verification conditions is around 450, and
these are all proved by at least one of the automated provers Alt-
Ergo, CVC3, CVC4, Eprover and Yices.

Experimental results

To validate the efficiency of the generated verified interpreter, we
tested against examples of lambda-terms representing the appli-
cation of standard functions over integers (exponential, factorial,
Ackermann) using several reduction strategies. The integers are
represented using Church’s encoding, and factorial and Ackermann
functions are encoded using a fix-point combinator. In each case,
the interpreter was used to normalize the term while computing ev-
ery intermediate term of the reduction sequence.

46 57 7! 8! ack 2 5 ack 3 1

inner 29 40 2173 - 10480 13793
right 0.0s 1.2s 4.1s >5m 4.1s 9.1s
inner 29 40 2173 - 10480 13793
left 0.0s 1.4s 4.8s >5m 2.7s 8.0s
outer 2732 - 1618 3116 25688 27480
right 1.9s >5m 0.2s 3.3s 2.9s 4.2s
outer 2732 - 30901 - - -
left 2.4s >5m 48.7s >5m >5m >5m

The table above gives for each test the number of reduction
steps and the execution time. The experiments were carried out
using a processor Intel Core 2 Duo 2.26 GHz. Notice that for being
really efficient, an interpreter of lambda-calculus should not, at
each step, restart the search of a redex from the top of the term, as
we do here. Our purpose is not to provide the best possible lambda-
interpreter, but just to show that our automatically generated term
representation and operations are adequate for the practical use.

Also notice that the extraction mechanism of Why3 maps inte-
gers into the OCaml implementation of arbitrary precision num-
bers (library Big_ints). We believe we could have a significant
speed-up by using a more advanced library such as ZArith (http:
//forge.ocamlcore.org/projects/zarith), or even better,
using machine integers and proving that our WhyML code is safe
with respect to integer overflow.

6. Case study: a Tableaux-Based Theorem Prover

The tableaux method [15] is a procedure to find a proof of inconsis-
tency for a set of first-order formulas. Basically, it works by decom-
posing formulas and exploring the possible disjunctive branches,
using unification to generate contradictions in those. Existential
quantifiers are eliminated by skolemization, and the universal ones
are eliminated during decomposition by generating a fresh name
for the bound variable, which can get instantiated in unification. If
the procedure succeed in deriving contradictions in every branch,
then the set of initial formulas is unsatisfiable.

Using our framework, we wrote a simple theorem prover based
on the tableaux method and proved its soundness: the main pro-
cedure takes a set of first-order formulas as arguments, and if it
succeeds, then this set is guaranteed to be unsatisfiable.

In order to develop the prover, it is necessary to formalize first-
order logic in this framework. It is done by interpreting formulas
over a first-order structure directly into their Why3 equivalent. A
first-order structure is represented as a parametrized type contain-
ing two interpretations for functions and predicate symbols over the
type parameter intended as the domain of the structure.

The theorem prover is developed in several steps:

• Writing and proving a unification procedure for first-order
atomic formulas, as unification is the base operation used in
order to find contradictions in a tableaux prover. This was the
longest step, as unification maintains complex invariants. The
implemented algorithm is a variant of Robinson algorithm.

• Proving that unification, as a substitution, preserved the seman-
tics of the branches explored by the prover. This corresponds

exactly to the substitution lemma for the semantics of first-order
logic.

• Proving satisfiability preservation for skolemization, the pre-
processing transformation used in order to remove the existen-
tial quantifiers. It was done assuming a variant of the axiom of
choice in Why3.

• Proving lemmas about other preprocessing transformations and
implications for formula decomposition. As purely proposi-
tional transformations/implications were trivial for automated
provers, it is only necessary to state a lemma for universal quan-
tifier instantiation.

• Writing the prover itself.

The specification of the prover is that it is correct, in the sense
that if it terminates, then the input first-order formula set is unsat-
isfiable. We do not prove any completeness result, though for our
implementation it is likely to be true.

6.1 Automatically Generated Objects

Running our generator on the description of first-order formulas
produces around 16,000 lines of Why3 code, including types, logic
functions, lemmas and program code (and lemma functions). From
these objects, the number of verification conditions is 3,051.

6.2 The Unification Algorithm

On top of the generated Why3 code, we designed a unification algo-
rithm, that we proved correct in the sense that whenever unification
of two terms succeeds, returning some substitution σ, then it is true
that the models of those terms instantiated by σ coincide. For our
purpose, we did not have to prove that our algorithm is complete.

6.3 Semantics of Formulas

To specify our prover, we need to formalize the semantics of first-
order logic. It is parametrized by the signature, the interpretation
domain and the interpretation of each symbol:

type interpretation ’fsymb ’psymb ’var ’dom = {
interp_fun : ’fsymb -> list ’dom -> ’dom;
interp_pred : ’psymb -> list ’dom -> bool;
interp_var : ’var -> ’dom;

}

Semantics of terms and formulas are then defined by recursive
functions in a natural way, here is an excerpt of the definitions:

function term_semantics (t:term ’fsymb ’var)
(rho:interpretation ’fsymb ’psymb ’var ’dom) : ’dom =
match t with
| Var x -> rho.interp_var x
| FApp f l ->

rho.interp_fun f (term_list_semantics l rho)
end

predicate fmla_semantics (f:fmla ’fsymb ’psymb ’var)
(rho:interpretation ’fsymb ’psymb ’var ’dom) :
list ’dom =

match f with
| Forall f0 -> forall x:’dom.

let iv = (\ y:option ’var. match y with
None -> x | Some y -> rho.interp_var y
end)

in fmla_semantics f0 { rho with interp_var = iv }
| And f0 f1 ->

fmla_semantics f0 rho /\ fmla_semantics f1 rho
| PApp p l ->

rho.interp_pred p (term_list_semantics l rho)
| ...
end

It is important to note that using Why3 types in order to represent
the domains of first-order structures is correct only because Why3
types are always non-empty.

6.4 The Prover

Here is the actual specification of the theorem prover.

val prove (fl:fmla_list_impl) : unit
requires { impl_ok_fmla_list fl }
ensures { forall rho:interpretation int int int ’dom.
not (fmla_list_semantics (model_fmla_list fl) rho) }

Notice that this procedure may not terminate. To produce a reason-
ably efficient code for finding proofs, we implemented the proof
search method known as the regular connection tableaux [15].

In all, the number of lines of Why3 code written by hand on top
of the generated part is around 6,000. From these additional specifi-
cations and code, 4,303 verification conditions are generated. Glob-
ally for this case study, the total of 7,354 proof obligations are auto-
matically proved by at least one automated prover among Alt-Ergo,
CVC3, CVC4, Eprover, Spass, and Z3, given a limit of at most 20s.

6.5 Experimentation

Since we do not only seek for a certified sound prover but also a
reasonably efficient one, we extracted the Why3 code to OCaml
and experiment it on a family of problems. After testing it on
some simple examples, we evaluated its efficiency on a family of
examples of increasing difficulty. We chose the following family

(∀x.R x ∨R(f x)) → ∃x.R x ∧R (f2n
x)

from the TPTP library (http://www.cs.miami.edu/~tptp/).
All these formulas are valid, hence we tried to prove that their
negation is unsatisfiable. Here is a summary of results:

n 3 4 5 6

time (sec.) 0.02 0.55 3.36 19.67
nb calls to
unification

2,438 69,614 381,542 2,018,934

(per sec.) 122,229 126,814 113,659 102,643
nb of nodes
generated

502 9,506 42,898 197,244

(per sec.) 25,134 17,316 12,779 10,028

The first fact is that our prover is significantly slower than state-
of-the-art provers which can solve all these problem instances in
a fraction of a second. This should not be surprising because the
search strategy in our prover is a basic one. Our main goal is
to validate the efficiency of the generated code handling binders.
This is why we provide the number of calls to unification and
the number of proof nodes generated during search. This makes
evident that the source of inefficiency is not the representation of
terms with binders, but the search strategy. Roughly speaking, our
code can perform around 100,000 term unification per seconds and
explore 10,000 proof nodes per second. Moreover, the memory
consumption remains very low.

7. Related Work

7.1 Meta-Programming with Binders

The genericity of issues related to datatypes with binders in pro-
gramming lead to several approaches aiming at provided generic
support for binders in programming languages. This can take the
form of specialized type systems like is the FreshML proposal [25].
It can take the form of meta-programming, in the sense that sup-
port for binders can be provided by a layer on top of the considered
programming language, like what is proposed by the Cαml code
generation tool [23]. A recent approach of meta-programming is

proposed by Pouillard [24], under the form of suitable program in-
terface built upon the Agda environment.

Our own tool that generates code from a higher level descrip-
tion clearly belongs to the same family of approaches, this time
producing both Why3 specifications and WhyML code. The use of
the nested representation in the logic side is inspired by the work
of Pouillard.

7.2 Mechanical Reasoning with Binders

The problem of reasoning about datatypes with binders is also a
long-standing problem, and its difficulties motivated the design of
the POPLmark challenge [3], in order to help comparison of dif-
ferent approaches. In the solutions proposed for that challenge, the
locally nameless representation was quite popular (4 solutions, see
http://www.seas.upenn.edu/~plclub/poplmark/). There is
also one solution based on the nested representation by Hirschowitz
and Maggesi [16].

The LNgen tool [4] is similar to our own generator. It generates
definitions and lemmas for datatypes with binders using the locally
nameless representation, for the Coq proof assistant. LNgen does
not aim at generating an efficient representation from an imple-
mentation point of view.

Going further, the nominal logic by Gabbay et al. [14] is an
attempt to incorporate the binders directly into the logic. It is
implemented for example in the Nominal-Isabelle framework, with
which another solution to POPLmark is provided (Urban et al.,
see http://isabelle.in.tum.de/nominal/). Given that we
wanted to use the existing Why3 environment for the proofs, an
approach with a different logic was not an option for us.

It may be surprising that we decided to use the nested repre-
sentation instead of the locally nameless representation, despite the
apparent success of the latter. We believe that nested representa-
tion solves elegantly the issue of generation of a fresh name when
opening a binder, and thus is a great advantage when one wants to
perform proofs with automated provers only.

All the approaches mentioned above are built on top of interac-
tive proof assistants. Our approach makes use of automated provers
only, and we believe it greatly helped us, in the sense that it signif-
icantly shortens the time needed for development of proofs.

7.3 Development of Verified Programs

In a broader scope, there exists a plethora of approaches for de-
velopment of verified programs. A large effort was put towards
verification of code written in general-purpose programming lan-
guages: Java (ESC/Java, KeY, KIV, Krakatoa, etc.), C (KeY-C,
VCC, Frama-C, etc.), C# (Spec#) and Ada (SparkAda). These
projects are specialized in relatively low-level pointer programs,
and are typically applied on applications that do not involve sym-
bolic computations, not to mention datatypes with binders. Also, in
this context, program verification is made difficult largely because
of the intricate semantics of the underlying language.

More recently, several projects were aiming to propose environ-
ments for simultaneously programming and proving: Plaid2 [1, 2],
Trellys3, ATS4, Guru [26], Fstar5. These environments are promis-
ing in the sense that since the language is designed with proving
in mind, it is usually simpler to achieve the development of a cer-
tified code. For example, a verified SAT solver was developed in
Guru [21]. We are not aware of any attempt of a generic support for
binders in such a context.

2 http://www.cs.cmu.edu/~aldrich/plaid.html
3 http://code.google.com/p/trellys/
4 http://www.ats-lang.org/
5 http://research.microsoft.com/en-us/projects/fstar/

The most famous success stories of development of verified pro-
grams are probably the L4-verified project [17] developing a guar-
anteed secure micro-kernel (proved in Isabelle), and the CompCert
project [19] developing a verified C compiler (proved in Coq). As
far as we know, there are no binders involved in those projects. Re-
garding compilers, Flatau [13] and later Myreen and Gordon [20]
developed verified Lisp compilers using Nqthm and HOL4, re-
spectively. There were no important issues with binders and vari-
able capture, since a dynamic scope semantics was used in both
projects. Kumar et al. developed a verified ML compiler [18], with
static scoping, but since the evaluation strategy is call-by-value, this
project, too, does not have to deal with binders. Similarly, Chlipala
proposed a higher-order encoding of binding structures in order to
verify functional language compilers [8, 9] without the usual has-
sle of binding issues; substitution under binders is not considered
in this work.

We believe that our approach using Why3 makes one further
step towards making the development of large verified projects
(such as state-of-the-art theorem provers) easier, in particular in
terms of proof automation.

8. Conclusions and Perspectives

This work presents a new way to prove programs manipulating
binders, through a general approach to binders. To validate this ap-
proach, we developed and certified two examples of such programs:
a lambda-calculus interpreter and a simple tableaux-based theorem
prover. The key point here is the separation between the logic and
the implementation representation of the binder datatypes, which
allows us to reason on a simple structure while using a more effi-
cient one.

This contribution is subject to the usual assumption of a trusted
code base that arises when considering mechanical proofs. With
our approach, the standalone tool that generates Why3 specifica-
tions and code do not need to be trusted: instead, one should be
convinced that the generated definition of datatypes and operations
(substitution and such) are the ones expected. The generic scheme
given in Section 4 is complex, but that is internal to our tool. User
sees instances, which are simpler, e.g. for first-order logic, it is not
hard to review the generated code, which is reasonably understand-
able. Then, the part that needs of course to be trusted is the Why3
environment and its external automated provers.

As future work, we could extend the class of supported generic
definitions. Currently it is not possible to describe complex binding
structures like for pattern-matching, that binds an unknown number
of variables. Another possibility would be to extend Why3 in order
to generate types with binders directly in Why3, and to get rid both
of an external tool and of the need to prove everything from scratch
every time.

In the long term, we plan to use this representation in order to
prove real-life programs manipulating binders, such as compilers,
program verifiers, etc. In particular, every element mentioned above
as part of the trusted code base (Why3 itself, SMT provers) is a
potential use case for this approach.

Acknowledgments

We gratefully thank J.-C. Filliâtre and A. Charguéraud for their
comments and suggestions, and anonymous referees for pointing
out additional relevant related work.

References

[1] J. Aldrich. Resource-based programming in Plaid. Fun Ideas and
Thoughts, June 2010.

[2] J. Aldrich, J. Sunshine, D. Saini, and Z. Sparks. Typestate-oriented
programming. In OOPSLA, pages 1015–1022, Oct. 2009.

[3] B. Aydemir, A. Bohannon, M. Fairbairn, J. Foster, B. Pierce, P. Sewell,
D. Vytiniotis, G. Washburn, S. Weirich, and S. Zdancewic. Mech-
anized metatheory for the masses: The POPLmark challenge. In
TPHOLs, number 3603 in LNCS, pages 50–65. Springer, 2005.

[4] B. Aydemir and S. Weirich. LNgen: Tool support for locally nameless
representations. Technical report, University of Pennsylvania, 2010.
http://www.cis.upenn.edu/~sweirich/papers/lngen/.

[5] R. S. Bird and R. Paterson. De Bruijn notation as a nested datatype. J.

Funct. Program., 9(1):77–91, Jan. 1999.

[6] F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich. Why3: Shep-
herd your herd of provers. In Boogie, pages 53–64, August 2011.

[7] A. Charguéraud. The locally nameless representation. Journal of

Automated Reasoning, 49(3):363–408, 2012.

[8] A. Chlipala. Parametric higher-order abstract syntax for mechanized
semantics. In ICFP, pages 143–156. ACM Press, Sept. 2008.

[9] A. Chlipala. A verified compiler for an impure functional language.
In POPL. ACM Press, Jan. 2010.

[10] N. G. de Bruijn. Lambda calculus with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-
Rosser theorem. Proc. of the Koninklijke Nederlands Akademie,
75(5):380–392, 1972.

[11] M. Fernández, I. Mackie, and F.-R. Sinot. Lambda-calculus with
director strings. Applicable Algebra in Engineering, Communication

and Computing, 15(6):393–437, 2005.

[12] J.-C. Filliâtre and A. Paskevich. Why3 — where programs meet
provers. In ESOP, volume 7792 of LNCS, pages 125–128. Springer,
Mar. 2013.

[13] A. Flatau. A verified implementation of an applicative language with

dynamic storage allocation. PhD thesis, University of Austin, Texas,
1992.

[14] M. J. Gabbay. Nominal terms and nominal logics: from foundations to
meta-mathematics. In Handbook of Philosophical Logic, volume 17.
Kluwer, 2013.

[15] R. Hähnle. Tableaux and related methods. In Handbook of Automated

Reasoning, pages 100–178. 2001.

[16] A. Hirschowitz and M. Maggesi. Nested abstract syntax in Coq.
Journal of Automated Reasoning, 49(3):409–426, 2012.

[17] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. seL4: Formal verification of an OS kernel.
Communications of the ACM, 53(6):107–115, June 2010.

[18] R. Kumar, M. O. Myreen, S. Owens, and M. Norrish. CakeML: A
verified implementation of ML. In POPL, 2014.

[19] X. Leroy. A formally verified compiler back-end. Journal of Auto-

mated Reasoning, 43(4):363–446, 2009.

[20] M. O. Myreen and M. J. Gordon. Verified LISP implementations
on ARM, x86 and PowerPC. In TPHOLs, LNCS, pages 359–374.
Springer, 2009.

[21] D. Oe, A. Stump, C. Oliver, and K. Clancy. versat: A verified modern
SAT solver. In VMCAI, volume 7148 of LNCS, pages 363–378.
Springer, 2012.

[22] R. Pollack, M. Sato, and W. Ricciotti. A canonical locally named rep-
resentation of binding. Journal of Automated Reasoning, 49(2):185–
207, 2012.

[23] F. Pottier. Cαml reference manual. http://cristal.inria.fr/

~fpottier/alphaCaml/alphaCaml.pdf.

[24] N. Pouillard. Nameless, painless. SIGPLAN Not., 46(9):320–332,
Sept. 2011.

[25] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: program-
ming with binders made simple. SIGPLAN Not., 38(9):263–274, 2003.

[26] A. Stump, M. Deters, A. Petcher, T. Schiller, and T. Simpson. Verified
programming in Guru. In PLPV, pages 49–58. ACM, 2009.

