
HAL Id: hal-00914179
https://inria.hal.science/hal-00914179

Submitted on 5 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Discrete control for ensuring consistency between
multiple autonomic managers

Soguy Mak-Karé Gueye, Noel de Palma, Eric Rutten, Alain Tchana, Daniel
Hagimont

To cite this version:
Soguy Mak-Karé Gueye, Noel de Palma, Eric Rutten, Alain Tchana, Daniel Hagimont. Discrete
control for ensuring consistency between multiple autonomic managers. Journal of Cloud Computing:
Advances, Systems and Applications, 2013, 2 (1), pp.16. �10.1186/2192-113X-2-16�. �hal-00914179�

https://inria.hal.science/hal-00914179
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Gueye et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:16
http://www.journalofcloudcomputing.com/content/2/1/16

RESEARCH Open Access

Discrete control for ensuring consistency
between multiple autonomic managers
Soguy Mak karé Gueye1*, Noël De Palma1, Eric Rutten2, Alain Tchana1 and Daniel Hagimont3

Abstract

The increasing complexity of computer systems has led to the automation of administration functions, in the form of
autonomic managers. Today many autonomic managers are available but they mostly address a specific
administration aspect which makes necessary their coexistence for a complete autonomic system management.
However, coordinating them is necessary for proper and effective global administration. Such coordination can be
considered as a problem of synchronization and logical control of managers actions. We therefore investigate the use
of reactive models with events and states, and discrete control techniques to solve this problem. This paper presents
an application of the latter approach for coordinating autonomic managers addressing resource optimization, in the
perspective of green computing. The managers control server provisioning (self-sizing manager) and CPU frequency
(Dvfs manager), and the coordination controller controls the managers actions so as to avoid incoherent
management decisions. The coordination controller is designed using synchronous programming and Discrete
controller synthesis (DCS) which are well-suited for the design of reactive systems. Experimental results are presented
to evaluate the efficacy of the approach.

Introduction
Computing systems have become more and more com-
plex and harder to manage manually. Their architecture
is mostly distributed involving several hardware and soft-
ware components operating in a dynamic heterogeneous
environment. Manual management of such systems can
be time-consuming, expensive and error-prone. Auto-
nomic computing [1] proposes a solution for the man-
agement issues consisting in automating the management
functions in the form of an autonomic manager. An auto-
nomic manager continuously monitors the managed sys-
tem so as to detect any change in the system state that is in
contrast to its objectives. When it detects such a change,
it applies administration operations to lead the system to
a state in which its objectives are satisfied. An autonomic
manager is generally implemented in a closed loop, which
can be inspired by techniques from control theory, contin-
uous as well as discrete. Today many autonomic managers
are available but they mostly address a specific admin-
istration aspect which makes necessary their coexistence
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for a complete autonomic system management. However
the coexistence of several managers has to be coordinated
to avoid incoherent and conflicting management deci-
sions. Implementing manually such a coordination can be
tedious, difficult to test and validate, and maintain.

This paper proposes an approach for coordinating mul-
tiple autonomic managers based on the discrete control
approach. This provides high level programming lan-
guages for formal specification of a control system, and
tools for automating the verification and validation of
properties, and Discrete Controller Synthesis (DCS) for
the synthesis of the control logic allowing to guarantee the
properties, and code generation. Formal descriptions and
proofs of correction of the techniques and tools used are
presented in [2] and the theories and mathematical mod-
els in [3]. The benefit of this approach is the automatic
generation of the coordination controller instead of man-
ually programming it in which case it could be complex,
tedious and error-prone.

To put our approach into practice, we consider the
coordination of two autonomic managers addressing
the resource optimization of a system. One addresses the
resource optimization within a machine (e.g., Dynamic
Voltage/Frequency Scaling (DVFS)) while the other
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addresses the resource optimization within a replication-
based system (e.g., server provisioning (self-sizing)). These
managers act on different management levels, but their
actions are complementary to improve resource opti-
mization when coordinated, hence reducing the energy
consumption of the managed system.

In the following, we present in section ‘Autonomic
managers for resource optimization’ two autonomic
managers, self-sizing and Dvfs. We details in section
‘Synchronous programming and discrete controller syn-
thesis’ the principles of BZR, a synchronous programming
language allowing modelling a system through automata
and integrating DCS within its compiler. We detail in
section ‘Discrete control for coordinating self-sizing and
Dvfs managers’ the design of a coordination controller
for the two managers and show how it is integrated
within a management system in section ‘Implementation’.
We show evaluation of the coordinated execution with
our approach in section ‘Experimentation’ and discuss
related work in section ‘Related work’. Finally, in section
‘Conclusion and future work’, we conclude the paper and
outline directions for future work.

Autonomic managers for resource optimization
This section presents two autonomic managers deal-
ing with resource optimization. Their management deci-
sions consist to reduce the resource allocated to the
managed system while preserving good performance.
They act at different management levels but their
management actions are complementary to improve
energy optimization through resource optimization when
coordinated.

Server provisioning manager: Self-Sizing
This manager, inspired from [4], addresses the man-
agement of the degree of replication of a replicated-
based system where each replicated server handles a
part of the workload. It dynamically adapts the num-
ber of active replicated servers depending on the load
of the machines hosting the replicated servers. The load
of the machines is measured through the load of their
CPU.

As shown in Figure 1, the management decisions of
the manager rely on thresholds (maximum threshold and
minimum threshold) delimiting the optimal CPU load
range. The manager collects the CPU load of the machines
hosting the active replicated servers and computes a mov-
ing average (Avg_CPU). When Avg_CPU is higher than
the maximum threshold, it considers that the servers
(hosts) are overloaded and it adds a new replicated server.
When Avg_CPU is less than the minimum threshold, it
considers that the servers are underloaded, removes a
replicated server and turns off the machine that hosts
the server.

CPU-frequency manager: Dvfs
This manager, inspired from [5], targets a single machine
management. Its role is to dynamically adapt the CPU-
frequency of the machine depending on its CPU load.

As shown in Figure 2, the management decisions rely
also on thresholds (maximum threshold and minimum
threshold) delimiting the optimal CPU load range. When
the CPU load of the machine is higher than the maximum
threshold, the manager increases the CPU-frequency if
the maximum frequency is not reached. It decreases the
CPU-frequency when the CPU load of the machine is less
than the minimum threshold if the minimum CPU fre-
quency is not reached. This manager runs on the machine
it manages. It is implemented either in hardware or soft-
ware. The one we use is a software implementation and
follows the on-demand policy.

Coexistence problem
The coexistence of both self-sizing and Dvfs managers
can improve resource optimization. While using the self-
sizing manager to optimize the number of active machines
allocated to a replication-based system, Dvfs managers
can be deployed on each active machine to perform local
optimization by adjusting the CPU frequency. However
their coexistence has to be coordinated to avoid incoher-
ent management decisions. Indeed when each machine
hosting a replicated server is equipped with a Dvfs man-
ager, their CPU-frequency might not be maximal all the
time. The Dvfs managers can lower the frequency of the
CPU of the machines which makes the latter work slower.
In higher frequency a CPU can handle more instruc-
tions per time unit than in lower Frequency. A workload
which can overload a CPU in lower frequency can possi-
bly be supported by the CPU in higher frequency. So when
self-sizing detects an overload in lower CPU frequency,
the adding operation it performs can be unnecessary if
increasing the CPU frequency of the active machines
before the adding operation is sufficient to support the
workload. More when an overload occurs in lower fre-
quency and is detected by self-sizing and Dvfs, the adding
operation and the CPU increase operations performed by
the managers can cause a decrease of the CPU utiliza-
tion under the minimum threshold leading to removal
and CPU decrease operations. When an underload occurs
in higher frequency, the removal operations and CPU
decrease operations performed by the managers can cause
an increase of the CPU utilization over the maximum
threshold leading to adding and CPU increase operations.

Coordination strategy
A strategy to achieve an efficient resource optimization
and avoid incoherent operations could be to delay as
long as possible adding a new replicated server when
the machines hosting the active servers are not in their
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Figure 1 Self-sizing manager. Figure 1 shows the execution scheme of the server provisioning manager. The CPU utilization of the machines
hosting the replicated servers are measured and a moving average is computed. If this moving average is higher than the fixed maximum threshold,
the manager adds a new server on one unused machine. If the moving average is less than the fixed minimum threshold, the manager removes a
server and turns the machine running the stopped server off.

maximum CPU frequency. Indeed the evaluation of an
overload by self-sizing is relevant only in higher CPU fre-
quency in which case the CPU frequency can no more be
increased. This can be stated as follows:

• Ignoring overload of the machines hosting the
replicated servers — if these machines are not in
their maximum CPU frequency.

This allows to add a new replicated server only when the
active ones are in maximum CPU frequency and become
overloaded.

Synchronous programming and discrete controller
synthesis
Synchronous programming allows to model the dynamics
(functional and/or non-functional aspects) of a system as
an automaton. A system composed of several sub-systems
can be modelled via a composition of automata, where
each single automaton models the dynamics of each spe-
cific sub-system. Hence, the composition models the state
of the system as a whole.

With some controllable transitions in the automata,
Discrete Controller Synthesis (DCS) tools [6] can com-
pute a controller that restrains the set of reachable states
(i.e., all possible behaviours) to those satisfying a control
objective (e.g., a coordination policy).

In this Section, we first briefly introduce the basics of
the synchronous language Heptagon. We then describe
the main features of BZR, that extends Heptagon with a
new construct for expressing behavioural contracts [3].
BZR is the language we use for the synthesis of a coordi-
nation controller.

Automata and data-flow nodes
The Heptagon language allows the programming of reac-
tive systems by means of mixed synchronous data-flow
equations and automata with parallel and hierarchical
composition [7]. The basic behaviour is that of the syn-
chronous data-flow languages family [8]: at each reaction
step, values of the input flows are used, as well as local and
memory values, in order to compute the values of the out-
put flows for that step, and memories for the next step.
Inside nodes (i.e., block of codes defining an automaton or

Figure 2 Dvfs Manager. Figure 2 shows the execution scheme of this manager. The CPU utilization of the machine is measured. If the CPU
utilization is higher than the fixed maximum threshold, the manager increases the CPU frequency of the machine. If the CPU utilization is less than
the fixed minimum threshold, the manager decreases the CPU frequency of the machine.
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a composition of automata), these computations are spec-
ified as a system of equations defining, for each output and
local, the value of the flow in terms of an expression on
other flows and memories.

Figure 3 shows a small program in Heptagon. It
expresses the control of a delayable task that can either
be idle, waiting or active. When it is in the initial Idle state,
the occurrence of the true value on input r requests the
start of the task. Another input c (which will be controlled
by an external controller) can either allow the activation,
or temporarily block the request and make the automa-
ton go to a waiting state (Wait). When in Active, the task
can end and go back to the Idle state, upon the notifica-
tion input e. The delayable node has two outputs, a
representing activity of the task, and s being emitted on
the instant when it becomes active : this latter triggers the
concrete start operation in the system’s API.

Such automata and data-flow reactive nodes can be
composed in parallel and in a hierarchical way. They can
be defined and re-used by instantiations of the nodes (see
Figure 4 bellow for an illustration, with two instances of
Figure 3’s node). They run in parallel, defined by syn-
chronous composition (noted “;”): one global step corre-
sponds to one local step for every equation, i.e., here, for
every instance of the delayable node.

The compilation of an Heptagon program produces exe-
cutable code in target languages such as C or Java, in the
form of an initialization procedure reset, and a step proce-
dure implementing the transition function of the resulting
automaton. step takes incoming values of input flows gath-
ered in the environment, computes the next state on
internal variables, and returns values of the output flows.
It is called at relevant instants from the infrastructure
where the program is used.

Contracts and control in BZR
[3] propose BZRa that extends Heptagon with a new
construct for expressing behavioural contracts. Its com-

Figure 4 Mutual exclusion enforced by DCS in BZR. Figure 4
shows the design of a controller in BZR programming language. In
this example we compose two instances of the program shown in
Figure 3 and enforce a mutual exclusion between two instances.

pilation involves discrete controller synthesis [6]. DCS
can be described as a formal operation on automata [9]:
given an automaton representing all possible behaviours
of a system, its variables are partitioned into controllable
and uncontrollable variables. For a given control objective
(e.g., staying permanently inside a subset of states, consid-
ered “good”), the DCS algorithm automatically computes,
for each state and value of the uncontrollables, the con-
straint on controllable variables so that all remaining
behaviours satisfy the objective. This constraint is the least
necessary, inhibiting the minimum possible behaviours,
therefore it is called maximally permissive. Formalisms
and algorithms are related to model-checking techniques
for state space exploration. They are described elsewhere
by [6] and [10].

Concretely, the BZR language permits the declaration,
using the with statement, of controllable variables, the
value of which being not defined by the programmer.
These free variables can be used in the program to
describe choices between several transitions. They are
then defined, in the final executable program, by the con-
troller computed by DCS, according to the expression
given in the enforce statement. A possibility exists, not

Idle

Active

Wait

delayable(r,c,e) = a,s

a = true

a = false a = false

r and c/se

c/s

r and not c

Figure 3 Delayable task in textual and graphical syntax. Figure 3 shows an example of a program with the BZR programming language. In the
left hand side, we show the syntax of the language. In the right hand side, we depict the corresponding automaton.
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used here, to take into account some knowledge about the
environment in an assume statement; observers can be
used to have objective like: always having a task t1 between
t2 and t3”. BZR compilation invokes a DCS tool, and inserts
the synthesized controller in the generated executable
code. The latter has the same structure as above: reset and
step procedures.

Figure 4 shows an example of contract coordinating
two instances of the delayable node of Figure 3. The
twotasks node has a with part declaring controllable
variables c1 and c2. The enforce part asserts the prop-
erty to be enforced by DCS. Here, we want to ensure that
the two tasks running in parallel will not be both active
at the same time: not (a1 and a2). The controllable vari-
ables c1 and c2 will be used by the computed controller
to block some requests, leading automata of tasks to the
Wait state whenever the other task is in its Active state.
Observe that the constraint produced by DCS can have
several solutions: the BZR compiler generates determin-
istic executable code by favouring, for each controllable
variable, value true over false, in the order of declaration
in the with statement.

Discrete control for coordinating self-sizing and
Dvfs managers
This section presents the design of a coordination con-
troller for the self-sizing and Dvfs managers. We first
describe the automata modelling the self-sizing and Dvfs
managers, then we describe how the coordination con-
troller is designed from these models. The self-sizing is
modelled with some control point allowing the control of
its operations. In this work, the Dvfs actions are not con-
trolled, we model the global states of the set of Dvfs which
are necessary for controlling the self-sizing operations.
Indeed the management actions of each Dvfs depend
mainly on the load its managed machine receives, which
affects the CPU utilization.

Modelling the self-sizing manager
This section presents the automata modelling the self-
sizing manager. They represent both the behaviours of
the manager (Figure 5) and the control of its opera-
tions (Figure 6). The automaton in Figure 5 shows the
behaviours of the manager. Initially in the UpDown state,
When an overload occurs and the upsizing operations are
allowed, the manager requests a new node, and goes to
the Adding state. It awaits in this state until the requested
server is available and active. During this period it can
no longer perform operations. When node_added occurs,
the manager returns back to the UpDown state or goes the
Down state if the maximum number of active servers is
reached. The Down state is left once one node is removed
upon an Underload event. The Up state represents the
state in which the degree of replication is minimum and

can no longer be decreased. In this case the manager will
not perform a downsizing operation regardless the work-
load (i.e., only upsizing operations can be performed).
Table 1 describes the input and output variables of the
automaton. The automaton in Figure 6 models the con-
trol of the adding operations. Initially in the Idle state
where adding operations are inhibited, when c becomes
true the automaton goes to the Active state allowing
to perform adding operations. It stays in this state until
c becomes false and returns back to the Idle state. As
shown in Table 2, this automaton has one output, i.e.,
delay, which allows upsizing operations when it is false.
This output feeds the input delay in Figure 5. The input
and output variables of the automaton are described in
Table 2.

Modelling the global states of the set of Dvfs
This section presents the automaton modelling the global
states of the set of Dvfs managers presented in Figure 7.
Initially in the Normal state, the automaton goes to the
Max state when all Dvfs managers are in their maximum
CPU-frequency or to the Min state when all Dvfs man-
agers are in their minimum CPU-frequency. It returns
back to the Normal state when all Dvfs are neither in
their maximal frequency nor in the minimal frequency.
As shown in Table 3, this automaton has two outputs,
max_freq being true when all local Dvfs reach their
maximum frequency and min_freq being true when all
local Dvfs reach their minimum frequency. The input and
output variables of the automaton are described in Table 3.

Designing the coordination controller for self-sizing and
Dvfs
This section presents the design of the coordination con-
troller for self-sizing and the set of active Dvfs. As shown
in Figure 8, the automata modelling the self-sizing and
the Dvfs are composed in parallel. The composition of
the automata models the uncoordinated coexistence of
the managers. The coordination policy is expressed as a
contract to be enforced on the latter composition. At com-
pilation DCS automatically generates the control logic
capable to attribute value to the controllable variable so
as to enforce the coordination policy and restrain the
composition to the states satisfying the coordination pol-
icy. The composition of the automata and the generated
control logic model the coordinated coexistence of the
managers.

Contract
To achieve the coordination strategy, we formally define
an invariant. The invariant is expressed via the outputs of
the automata. It is specified as a contract to be enforced at
compilation time.
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UpDown

UpDown

Adding

= true

= false

= false

adding

adding

adding

adding = false

underload /

underload /
remove

remove

overload 

overload 

and

and

not

not

delay / 

delay / 

add

add

node_added
and not
max_node /

node_added
and max_node /

min_node /
not max_node /

 = add, remove, adding
Sizing_Control(delay, overload, underload, max_node,min_node,node_added)

Figure 5 Modelling self-Sizing behaviours. Figure 5 shows the automaton modelling the behaviours of the self-sizing manager.

Coordination policy The strategy consists in prevent-
ing the self-sizing manager from adding a new replicated
server when the machines hosting the current active
servers are not in maximum CPU frequency. This means
that the adding operations are inhibited when the Dvfs
managers can increase the CPU frequency of their man-
aged machines. To this end, the invariant is defined as
follows:

• invariant = (max_freq and not delay ) or
(not max_freq and delay)

Enforcement
At compilation, the BZR compiler will synthesize a con-
trol logic capable of enforcing the coordination policy in
the composition by acting on the controllable variable c
which is an input of the automaton in Figure 6. The com-
position of the automata and the computed control logic is

Figure 6 Modelling the control of self-Sizing. Figure 6 models the
control of the self-sizing adding operations.

generated in a target language ( i.e., in Java for this work),
which will constitute the coordination controller for the
managers within the managed system. This coordination
policy is very simple but allows to perform the complete
experiment including implementation as shown in next
section.

Implementation
This section shows how the generated program from BZR
compiler is integrated into the management system. This
consists in connecting the inputs of the automata to the
corresponding events and the outputs of the automata to
the corresponding commands or operations.

Table 1 Variables of the automaton modelling the
self-sizing behaviours

Variable Type Description

delay Input Upsizing operations are suspended.

overload Input An overload occurs in the system.

underload Input An underload occurs in the system.

min_node Input The minimum number of replicas is reached

max_node Input The maximum number of replicas is reached.

node_added Input The completion of an upsizing operation.

adding Output The manager is waiting for the completion of
an upsizing operation.

add Output The manager is launching an upsizing
operation. Its value depends on the value of
delay and overload.

remove Output The manager is launching the downsizing
operation. Its value depends on the value of
underload.

Table gives a description of the input and output variables of the automaton
modelling the self-sizing behaviours.
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Table 2 Variables of the automaton modelling the control
of self-sizing

Variable Type Description.

c Input The upsizing operations must be suspended.

delay Output The manager has suspended the launch of
upsizing operations.

Table gives a description of the input and output variables of the automaton
modelling the control of the self-sizing.

Connecting the automata
The automata model an aspect of the dynamics of the self-
sizing and Dvfs. Their inputs correspond to the events
that trigger transitions between the states in the dynamics
(e.g., overload for self-sizing and maximum CPU fre-
quency reached for Dvfs). Their outputs reflect the cur-
rent state in which the automata are and possibly the
operations which should be processed (e.g., add server).

The automaton shown in Figure 7 takes the state of
the sef of Dvfs represented by the inputs maximum
and minimum. The input maximum (respectively mini-
mum) being true corresponds to the state where the set
of Dvfs reaches the maximum CPU frequency (respec-
tively the minimum CPU frequency). The automaton in
Figure 5 models the dynamics of the decision making
module of the self-sizing and its control. The input over-
load (resp. underload) is the event that triggers upsiz-
ing (resp. downsizing) if max_node (resp. min_node) is
false.overload and underload are the result of the eval-
uation of the CPU_Avg while max_node and min_node
are the result of the execution of the management oper-
ations upsizing and downwsizing. The triggering of
upsizing (resp. downsizing) is represented by the output
add_node (resp. remove_node) being true. The automa-
ton in Figure 6 models the control of the decision making
module. It has one input (i.e., c) which is controllable. The
latter is managed by the synthesized control logic through
DCS and the output (delay) of the automaton is used

Normal

Min

Max

max_freq
min_freq

min_freq
max_freq

= false
= false

= false

= false

= true

= true

maximum /

minimum /

maximum /

minimum /not

not

max_freq
min_freq

DvfsControl(maximum, minimum) = max_freq, min_freq

Figure 7 Modelling the global states of the set of Dvfs. Figure 7
models the global states of the set of Dvfs managers.

Table 3 Variables of the automaton modelling the global
states of the set of Dvfs

Variable Type Description

maximum Input Corresponds to the conjunction of
all max.

minimum Input Corresponds to the conjunction of
all min.

max_freq Output All Dvfs manager are in the
maximum CPU-frequency.

min_freq Output All Dvfs manager are in the
minimum CPU-frequency.

Table gives a description of the input and output variables of the automaton
modelling the global states of the set of Dvfs managers.

to control the value of the input delay in the automaton
in Figure 5 in order to control transitions leading to the
adding state when necessary.

Integration of the generated code for coordinating
managers
The compilation of the BZR program returns a set of Java
classes corresponding to the composition of the automata
presented above with the computed control logic. A main
Java class allows to interact with the program. This class
has two methods: reset and step. The reset method allows
to initialize the program (i.e., initialize all automata and
the generated controller) and the step method allows to
compute transitions (i.e., transition in the automata). The
step method takes arguments corresponding to the inputs
of the automata and returns outputs corresponding to
outputs of the automata. A loop has to be defined to call
the step with the appropriate inputs and to manage the
outputs referring to commands such as preventing upsiz-
ing operations of the Self-sizing manager. We implement
a loop that receives events from sensors, calls the step
method with required inputs and transmits the outputs of
the step method to managers.

Figure 9 represents the architecture of a system in which
the coordination controller is integrated. Since the role
of this coordination controller is to control which man-
ager should react or not to events, all detected events
are first transmitted to the coordination controller. The
outputs of the latter are forwarded to the controlled man-
agers i.e in this case the self-Sizing manager. The interface
allows interaction between the synchronous program, the
sensors and the managers.

Experimentation
In this paper we only focus on the integration of a con-
troller obtained through the Discrete control techniques
for the coordination of autonomic managers. The pur-
pose is to show that the latter controller react properly
regarding the coordination policy although the system
considered is small.
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With c

...

......
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Figure 8 Modelling the coordinated coexistence. Figure 8 models the coordinated coexistence of the self-sizing and Dvfs managers.

The experimental platform, as shown in Figures 10 and
11, consists of a network of three nodes with the same
characteristics (CPU, memory, etc.). node 0 hosts the
Apache server, the coordination controller and self-sizing.
node 1 and node 2 host a Tomcat server. The Apache
server acts as a load balancer, it receives all clients requests
and distributes the requests to active Tomcat servers for
treatment. The self-sizing manager controls the number
of active Tomcat servers. Initially, only node 1 is on, self-
sizing either turns node 2 on when node 1 is not able to
handle all clients requests or off when clients requests can
be treated by node 1. node 1 and node 2 have two CPU
frequency levels which are 800MHz being their minimum
CPU frequency and 1.20GHz being their maximum CPU
frequency. The experimental application is CPU bound.
We use jmeterb to simulate clients sending HTTP requests
to the managed system.

In the following we calibrate the thresholds of the man-
agers in order for them to react properly individually
at runtime. Then we present executions, to evaluate the
behaviours of the synthesized controller.

Dvfs

Coordination controller

Synchronous program

Interface

CPU INC/DEC

state Commands

ADD/REMOVECPU_AVG

Sizing

Figure 9 Integration. Figure 9 shows how the generated program
can be integrated within a management system.

Calibrating the managers thresholds
This section details how the Maximum Threshold and the
Minimum Threshold for both self-sizing and Dvfs man-
agers are determined. We perform heuristic experimenta-
tions to determine these thresholds. For both managers,
the Maximum Threshold can be statically fixed while the
Minimum Threshold can be dynamically adapted.

Determining the maximum threshold (Tmax) for self-sizing
and Dvfs
The CPU load is 100 percent means that the CPU is fully
utilized. This causes delay on the execution of instructions
and the degradation of the performance of the machine.
So it is better to consider a maximum threshold less than
100. We choose arbitrary 90 as Tmax. At 90 percent, a
machine becomes overloaded but it executes instructions
in an optimal period of time. This allows to perform oper-
ations for monitoring (i.e., CPU load) and reconfiguring
(i.e., increase of the CPU frequency) sufficiently fast to
avoid performance degradation. The Maximum Thresh-
old (Tmax) for self-sizing as well as for Dvfs is fixed to 90
percent.

Determining the minimum threshold (Tmin) for self-Sizing
and Dvfs
We use different workloads following the same profile
(a ramp-up phase followed by a constant phase), to
observe the impact of the management operations of
the managers on the CPU utilization. The management
operations are performed manually once the workload is
constant and stable to evaluate the factor by which the
CPU utilization varies. The difference between the work-
load is the amount of requests injected. This allows to
determine if the factor is the same for each workload. This
allows to deduct an equation for calculating the Minimum
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Tomcat 1 

Tomcat 2 

node 1  

node 2  

node 0  

Apache mod_jk 
Round−robin policy

Figure 10 Experimental Platform Architecture: Managed system. Figure 10 shows the architecture of the managed system. It is a
replicated-based system with replicated Tomcat servers and an Apache server acting as a load balancer.

Threshold based on the Maximum Threshold, and the
number of active replicated servers for self-sizing.

Minimum threshold (Tmax) for self-sizing Figure 12
shows experimentations in which adding operations are
performed. We start each experimentation with one
server. Once the load becomes stable, we add a new
replicated server. Since the workload is fairly distributed
between the active servers, we expect a decrease of
the CPU utilization by half. However the average load
measured is always higher than the expected average.
Figures 13 shows experimentations in which we perform
removal operations. We start each experimentation with
two servers. Once the load becomes stable, we remove
a replicated server. The load of the remaining server
increases but not by factor of two compared to the load
before the removal. This means that, for a replicated-
based system that can run at most two replicated servers,
Tmin = Tmax/2.

However, in a replicated server-based system there are
possibly more than two replicated servers and we want to

remove a machine as soon as possible. Removing a server
as soon as possible when its workload can be distributed
to the remaining servers without overloading them leads
to a dynamic estimation of Tmin depending on the current
active servers. This can be expressed as follows:

Tmin + Tmin

(n − 1)
< Tmax,

where n is the current number of servers.

Tmin <Tmax ∗ (n − 1)

n
→ Tmin =[Tmax ∗ (n − 1)

n
] −C

C is a margin. It denotes the difference between the
maximum value of Tmin and the acceptable value of Tmin

sufficiently high for detecting underload and sufficiently
far from Tmax to avoid oscillations of the CPU utiliza-
tion between the maximum threshold and the minimum
threshold which possibly trigger unnecessary reconfig-
uration operations. In our experimentations, we con-
sider C = 0. In case of two machines, we have: Tmin =
[ Tmax

2 ]−C.

Self−Sizing

Ctrl

Probes

Dvfs

Dvfs

node 1 

node 2 

add / remove

state

node 0 CPU_avg

CPUusage / Dvfs state

 Dvfs state
CPU_avg/

active/
Idle

Figure 11 Experimental Platform Architecture: Administration system. Figure 11 shows the architecture of the management system.
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Figure 12 Calibrating self-sizing minimal threshold. Figures 12
shows executions, with different workloads. During these executions,
we add a replicated server in order to observe the impact of these
operations on the CPU utilization.

As shown in Figures 12, the CPU load does not decrease
by half when one server was added and Figures 13, the
CPU load does not double when one server was removed.
This equation, Tmin =[ fracTmax2], is enough to avoid
side effects. So there is no risk of oscillations.

Determining the value of C – To avoid oscillation when
the number of servers becomes large a maximum value for
Tmin can be fixed. This avoid Tmin to be close to Tmax.
In this case the maximum value of Tmin is used whenever
the computed value of Tmin is higher than the latter.

Minimum threshold (Tmin) for Dvfs In our platform,
the machines hosting replicated server have two CPU
frequency levels, 800Mhz and 1.2Ghz. A workload that
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Figure 13 Calibrating self-sizing minimal threshold. Figures 13
shows executions, with different workloads. During these executions,
we remove a replicated server in order to observe the impact of these
operations on the CPU utilization.

overloads the machine in frequency 800Mhz could pos-
sibly be supported when increasing the frequency up to
1.2Ghz. Theoretically, in frequency 1.2Ghz, the machine
performs 1.5 times more instructions than in frequency
800Mhz. This corresponds to the theoretical factor of
decrease of the CPU utilization.

Figure 14 shows that the ratio of the maximum fre-
quency to the minimum frequency for different workload
profiles. For each workload, the ratio is constant and is
less than 1.5. This allows to define the Minimum Thresh-
old depending on the Maximum Threshold and the ratio
of two consecutive frequencies. Indeed, when we put the
CPU frequency of machine to a higher frequency than
the previous, if the load before the operation was higher
or equal to the Maximum Threshold, once the operation
is done, the load obtained will be higher than (Maxi-
mum Threshold over 1.5) in our platform. The decrease of
the load is higher than the “theoretical” decrease, hence
this latter could be used as Minimum Threshold since it
is reached only if the workload decreases. We can con-
sider the dynamic estimation of the Minimum Threshold
expressed as follows:

Tmin = Tmax ∗ next lower frequency
current frequency

Coordination controller evaluation
This section presents the evaluation of our approach. We
apply our approach for coordinating the self-sizing and
Dvfs managers for the management of a replicated-based
system. We inject different workload profiles. Each work-
load profile is defined by two phases, a first phase that
consists of a ramp-up load about three minutes then a sec-
ond phase that consists of a constant the load after the
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Figure 14 Calibrating Dvfs thresholds. Figures 14 shows
executions, with different workloads. During these executions, we
changed the CPU frequency on the fly in order to observe the impact
of these operations on the CPU utilization.
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ramp-up phase. For each workload profile, we performed
two executions, one without coordinating managers and
another one by coordinating managers execution. At each
experimentation, each machine hosting an active Tom-
cat server starts with its minimum CPU frequency, the
local Dvfs adjusts it on the fly. Initially, one Tomcat
server is started. The second Tomcat server was either
added or removed automatically by the self-sizing man-
ager depending on the workload. The executions takes 20
minutes. After this duration, we stopped sending requests.
In this paper, we present three workload profiles Work-
load1 (4750 requests/sec), Workload2 (5000 requests/sec)
and Workload3 (5542 requests/sec). Workload1 and Work-
load2 are supportable by one Tomcat server at max CPU
frequency. Workload3 necessitates two Tomcat servers for
treatment.

Without coordination, for Workload1 (Figures 15) as
well as for Workload2 (Figures 16), the overload detection
triggers adding operation and CPU frequency increase
operation because the machine hosting the Tomcat server
is at minimum CPU capacity. In Figure 15, the over-
load is detected by self-sizing (Avg_load) about 8 minutes
after starting sending requests, hence a new server is
requested. One minute later Dvfs detects the overload and
increase the CPU frequency (CPUFreq_node1 at 9 min).
Once the new Tomcat server becomes active on node 2
(about 11 min), the CPU utilization for both machines
hosting the Tomcat servers are around 60% after the Dvfs
on node 1 decreases its CPU frequency. We observe the
same behaviour in Figure 16. Unlike to uncoordinated
executions, in the coordinated executions for Workload1
(Figures 17) as well as for Workload2 (Figures 18), only
CPU frequency increase is observed. No adding opera-
tion is performed when the overload is detected. Once the
CPU frequency is executed, the CPU utilization decreases.
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Figure 15 Uncoordinated execution: Workload1 (4750
requests/sec). This figure shows an execution in which self-sizing and
Dvfs managers are not coordinated.
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Figure 16 Uncoordinated execution: Workload2 (5000
requests/sec). This figure shows an execution in which self-sizing and
Dvfs managers are not coordinated.

For Workload3, in the uncoordinated execution
(Figure 19) as well as in the coordinated execution
(Figure 20), a new Tomcat server is added. In contrast to
the executions in Figures 19, In Figures 20 the adding
operation (about 6 min) is performed later after the
increase of the CPU frequency on node 1 (about 4 min).
After increasing the CPU frequency, the overload is not
persists (6 min) and a new Tomcat server is added since
no more CPU-frequency increase operation was possible.
The generated coordination controller does not prevent
from adding new replicated Tomcat server when it is nec-
essary. The coordination controller is able to ensure the
respect of coordination policy. Unlike to the execution
without coordination, where undesired behaviours have
been observed, we observe that the coordination execu-
tion follows the defined policy. Adding operations are
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Figure 17 Coordinated execution: Workload1 (4750
requests/sec). This figure shows an execution in which self-sizing and
Dvfs managers are coordinated.
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Figure 18 Coordinated execution: Workload2 (5000
requests/sec). This figure shows an execution in which self-sizing and
Dvfs managers are coordinated.

performed only when all active nodes hosting a Tomcat
server are in their maximum CPU frequency.

Related work
Concerning energy control, many works addressed energy
management on datacenters. Some of these researches are
based on (i) hardware with voltage and frequency control
(e.g., DVFS [11]), (ii) resource allocation: Reducing power
consumption by reducing the clock frequency of the pro-
cessor has been widely studied [5,12], Flautner et al. [13]
explored a software managed dynamic voltage scaling pol-
icy that sets CPU speed on a task basis rather than by
time intervals. [14] proposes a power budget guided job
scheduling policy that maximizes overall job performance
for a given power budget. Many works such as [4,15-18]
focused on dynamic resource provisioning in response
to dynamic workload changes. These techniques monitor
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Figure 19 Uncoordinated execution: Workload3 (5542
requests/sec). This figure shows an execution in which self-sizing and
Dvfs managers are not coordinated.
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Figure 20 Coordinated execution: Workload3 (5542
requests/sec). This figure shows an execution in which self-sizing and
Dvfs managers are coordinated.

workloads or other SLA (Service Level Agreement) met-
rics experienced by a server and adjust the instantaneous
resources available to the server. Depending on the gran-
ularity of the server (single or replicated), the dynamically
provisioned resources can be a whole machine in the case
of replicated servers. Energy efficiency is achieved using a
workload-aware, just-right dynamic provisioning mecha-
nism and the ability to power down subsystems of a host
system that are not required.

While these works are relevant, they did not address
the problem of coordinating multiple energy managers.
Our work is complementary since it can be used to build
a system that includes more that one of the previous
approaches. Few works have also investigated manager
coordination for energy efficiency. Kumar [19] proposes
vManage, a coordination approach that loosely cou-
ples platform and virtualization management to improve
energy savings and QoS while reducing VM migrations.
Kephart [20] addresses the coordination of multiple auto-
nomic managers for power/performance trade-offs based
on a utility function in a non-virtualized environment.
Nathuji [21] proposes VirtualPower to control the coor-
dination among virtual machines to reduce the power
consumption. These works involve coordination between
control loops, but these loops are applied to the managed
applications. However, these work propose adhoc specific
solutions that have to be implemented by hand. If new
managers have to be added in the system the whole coor-
dination manager need to be redesigned. Also, the design
of the coordination infrastructure becomes complex if
the number of co-existing autonomic managers grows.
Instead, we propose an approach for coordinating several
managers based on control techniques. The latter pro-
vide high level programming languages and discrete con-
troller synthesis techniques for the automated synthesis
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of the controller capable to ensure the coordination. [22]
propose an approach for synchronizing multiple Control-
Loops to ensure stability of their behaviours based on a
binary linear program. It introduces an Actions Synchro-
nization Module (ASM) that selects, whenever a set of
actions needs to be synchronized, the best subset allowed
to execute which maximizes a set of QoS metrics. Our
approach is similar to the latters since it allows, among
a set of actions, a subset to execute. However, contrary
to a binary linear program, in our approach the decision
is based on the invariants on Control-Loops behaviours.
[23] address stability in autonomic networking. It iden-
tifies three issues that must be considered to ensure
stability which are interactions, conflicts resolution and
Time scaling of control-loops. The Game theory approach
which provides analytical tools is proposed for studying
the efficient collaboration of control-loops. An architec-
tural design is proposed based on the GANA architec-
ture which provides features for structuring control-loops
and ensuring their synchronization to achieve stability
through Action Synchronization Functions presented in
[22]. This approach is based on optimization, typically
of QoS metrics, by means of Game theory, whereas our
approach proposes an enforcement of logical properties
upon states or sequences of actions.

In contrast with [24], which relies on formal specifica-
tion to derive a formal model that is guaranteed to be
equivalent to the requirements, our work can be related
to the applications of control theory to autonomic or
adaptive computing systems [25]. In particular, Discrete
Event Systems in the form of Petri nets models and con-
trol have been used for deadlock avoidance problems
[26]. Compared to these works, we rely on synchronous
programming and discrete controller synthesis. Once an
autonomic manager is modelled as automata, insert-
ing this autonomic manager with other pre-existing just
require to update the coordination invariants. The new
coordination manager is automatically generated from the
managers models and the coordination invariants.

In contrast with [27], which addresses the management
of datacenters based on thermal awareness with external
sensing infrastructure for energy and cooling efficiency,
the work, presented in this paper, focuses on coordinating
multiple workload-aware managers to ensure an energy
efficiency.

Conclusion and future work
One major challenge in system administration is coor-
dinating multiple autonomic managers for correct and
coherent system management. In this paper we pre-
sented an approach for coordinating multiple autonomic
managers in a consistent manner. This approach, based
on synchronous programming and Discrete Controller
Synthesis, has the advantage of generating by construction

the correct controller to enable the coordination of
managers.

The advantages of this approach are following: (1)
High-level of programming, (2) Automated genera-
tion/synthesis of the controller and (3) correctness of the
controller, (4) that is maximally permissive. The resulting
controlled automaton is correct in the sense that the for-
mal technique of DCS has been applied to guarantee, in a
form of verification, that it can have only behaviours that
satisfy the property to be enforced. It is also maximally
permissive in the sense that all behaviours that satisfy the
property are kept possible by the controller.

We tested this approach for coordinating two auto-
nomic managers addressing resource optimization: self-
Sizing, which manages the degree of replication for a
system based on a load balancer scheme, and Dvfs, which
manages the level of CPU frequency for a single node. In
this case, the coordination policy was to allow self-Sizing
to add new node only when all Dvfs modules cannot
apply increase operations at all in response to the increas-
ing load the system receives. The experimentations shows
that the generated controller ensures a correct coordina-
tion with respect of our coordination policy. However,
we used thresholds as base for managers decision. These
thresholds are not sufficient to capture only overload and
underload since there is a probability for a peak of load not
to correspond to an overload.

For future work, we plan to improve the model with the
use of continuous control to take into account quantitative
aspects and avoid oscillations and reduce decision errors.
We will improve our use of discrete control by consider-
ing more advanced control techniques with cost functions
and optimal control. We plan to evaluate this approach
for large scale coordination with more complex coordina-
tion policies and several managers, combining both self-
optimization and self-regulation frequency managers with
self-repair manager that heal fail-stop clustered multi-
tiers system.
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