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Abstra
t: Ca
hing is undoubtedly one of the most popular solution that easily s
ales up with

a world-wide deployment of resour
es. Re
ords in Domain Name System (DNS) 
a
hes are kept

for a pre-set duration (time-to-live or TTL) to avoid be
oming outdated. Modern 
a
hes are those

that set lo
ally the TTL regardless of what authoritative servers say. In this report, we introdu
e

analyti
 models to study the modern DNS 
a
he behavior based on renewal arguments. For both

the single 
a
he 
ase and the network of 
a
hes 
ase, we derive the 
a
he performan
e metri
s and


hara
terize at ea
h 
a
he the miss pro
ess and the aggregate request pro
ess. We address the

problem of the optimal 
a
hing duration and �nd that if inter-request times have a 
on
ave CDF,

then the deterministi
 poli
y is the best. We validate our single 
a
he model using real DNS tra
es

and our network of 
a
hes model using event-driven simulations. Our models 
onsider general


a
hing durations and are tested with deterministi
, hypo-exponential, exponential and hyper-

exponential distributions. Our models are very robust as the relative error between empiri
al and

analyti
 values stays within 1% in the �rst 
ase and within 5% at the highest 
a
he level in the

network 
ase. Our models su

essfully predi
t the CDF of the miss pro
ess even when the renewal

assumption is not met.

Key-words: Ca
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y, 
a
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Modèle de gestion de 
a
hes à base de durées de vie

non-regénérées :

Cas des réseaux de 
a
hes DNS dits modernes

Résumé : Le 
a
he est sans doute l'une des solutions les plus populaires et les mieux

adaptées pour un déploiement mondial de ressour
es. Les enregistrements 
on
ernant les noms

de domaines sur Internet sont 
onservés dans les 
a
hes DNS (Système de noms de domaine)

pour une durée prédéterminée nommée TTL (time-to-live), évitant ainsi l'obsoles
en
e des en-

registrements dans le 
a
he. Les 
a
hes DNS dits modernes implantent leur propre valeur TTL,

indépendamment de la valeur re
ommandée par les serveurs de noms autoritaires du domaine


on
erné. Dans 
e rapport, nous nous appuyons sur la théorie du renouvellement pour dévelop-

per des modèles analytiques a�n d'étudier les DNS modernes. Nous 
al
ulons les performan
es

d'un 
a
he en termes d'o

upation et des probabilités de hit/miss et 
ara
térisons le pro
essus

en sortie du 
a
he (le pro
essus des miss). Ces résultats, obtenus d'abord pour un 
a
he isolé,

sont par la suite étendus aux 
as d'un réseau de 
a
hes. Dans 
e dernier 
as, nous 
ara
térisons

également le pro
essus issu de l'agrégation des requêtes dans les 
a
hes de niveau supérieur.

Nous abordons le problème de la distribution optimale du TTL dans un 
a
he et trouvons que si

les temps inter-requêtes ont une fon
tion de répartition 
on
ave alors l'optimalité est obtenue en

imposant un TTL déterministe. Nos résultats pour un 
a
he isolé sont validés sur une tra
e réelle

de tra�
 DNS et 
eux pour un réseau de 
a
hes sont validés par des simulations à événements

dis
rets, 
onsidérant des TTLs de distribution déterministe, hypo-exponentielle, exponentielle

ou hyper-exponentielle. Nos modèles s'avèrent être très robustes puisque l'erreur relative entre

les valeurs empiriques et analytiques reste inférieure à 1% dans le 
as d'un 
a
he isolé et à 5%
dans le 
as du réseau, 
hez le 
a
he de plus haut niveau. Ainsi, même si le pro
essus de requêtes

n'est pas de renouvellement, notre modèle donne ave
 pré
ision la distribution du pro
essus en

sortie d'un 
a
he.

Mots-
lés : Politiques de 
a
hes, réseau de 
a
hes, théorie du renouvellement, temporisateur,

durée-de-vie (TTL), servi
e de noms de domaine (DNS), réseau orienté 
ontenus.
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1 Introdu
tion

In-network 
a
hing is a widely adopted te
hnique to provide an e�
ient a

ess to data or re-

sour
es on a world-wide deployed system while ensuring s
alability and availability. For instan
e,


a
hes are integral 
omponents of the Domain Name System [15℄, the World Wide Web [6℄, Con-

tent Distribution Networks [21℄, or the re
ently proposed Information-Centri
 Network (ICN)

ar
hite
tures [1℄. Many of these systems are hierar
hi
al. The 
ontent being 
a
hed is managed

through the use of expiration-based poli
ies using a time-to-live (TTL) or repla
ement algorithms

su
h the Least Re
ently Used (LRU), First-In First-Out (FIFO), Random repla
ement (RND),

et
.

In this report, we fo
us on hierar
hi
al systems that rely on expiration-based poli
ies to

manage their 
a
hes. These poli
ies have the advantage of being fully 
on�gurable and provide

parameters (i.e. timers) to optimize/
ontrol the network of 
a
hes. Ea
h 
a
he in the system

maintains for ea
h item a timer that indi
ates its duration of validity. This timer 
an be initially

set by an external a
tor or by the 
a
he itself.

The Domain Name System (DNS) is a valid appli
ation 
ase. When a site's name is typed

into a browser, DNS looks up the 
orresponding IP address for that site. To do so, the DNS

maintains in a distributed database the mappings, 
alled resour
e re
ords, between names and

addresses in the Internet. Servers in 
harge of managing a mapping are said to be authoritative.

Ca
hes�used to avoid generating tra�
 up in the DNS hierar
hy�are found in both servers

and 
lients (devi
es of end users). Ca
hing is however limited in duration to avoid having stale

re
ords whi
h may break the domains involved.

DNS 
a
he updates are strongly related with how the DNS hierar
hy works. When a requested

resour
e re
ord R is not found at the 
lient's 
a
he, the 
lient issues a request to a bottom

level DNS server (usually that of the Internet server provider). If R 
annot be resolved lo
ally

and is not found in the 
a
he, the latter server forwards the request to a server higher in the

hierar
hy. The pro
ess repeats itself until R is fet
hed at a 
a
he or ultimately from the disk

of an authoritative server. The server providing R is 
alled the answerer. The re
ord R is sent

ba
k to the 
lient through the reverse path between the answerer and the 
lient, and a 
opy of

R is left at ea
h 
a
he on this path.

A

ording to RFC 6195, 
alled the TTL rule in the literature, all 
opies of R are marked by

the answerer with a time-to-live (TTL) whi
h indi
ates to 
a
hes the number of se
onds that

their 
opy of R may be 
a
hed. Re
ords marked with a null value should not be 
a
hed. Ca
hes


ompliant with the TTL rule are referred to as traditional DNS 
a
hes. Those overriding the

advo
ated TTL with a lo
ally 
hosen value (
f. [18, 3℄) are 
alled modern DNS 
a
hes [4℄.

The obje
tive of this report is to assess the performan
e of modern DNS 
a
hes. The 
ontri-

butions of this work are as follows:

� we are the �rst to provide analyti
 models to study both a single modern DNS 
a
he and

a network of (modern) 
a
hes with general 
a
hing durations;

� we 
hara
terize the distribution of the DNS tra�
 �owing upstream in the DNS hierar
hy

besides deriving the usual 
a
he performan
e metri
s;

� for the 
ase of a single 
a
he we identify when is the deterministi
 
a
hing duration the

optimal poli
y and dis
uss the optimal deterministi
 value when this is the 
ase;

� for the 
ase of a network of 
a
hes with diagonal matrix-exponential distributions, we


ompute the distribution of the request and miss pro
esses anywhere in the network in


losed-form;

RR n° 8414
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� we 
he
k the robustness of our single 
a
he model over DNS tra
es 
olle
ted at Inria and

� the robustness of our network of 
a
hes model through event-driven simulations.

The rest of the report is organized as follows. Se
tion 2 reviews the works most relevant to

this report. Se
tion 3 presents the s
enario 
onsidered and most of the de�nitions, assumptions

and notation used throughout the report. Our single 
a
he model is analyzed in Se
t. 4 and

its appli
ability in other 
ontexts is dis
ussed in Se
t. 5. The 
ase of a network of 
a
hes is

analyzed in Se
t. 6. We validate our models in Se
t. 7 and show some numeri
al results. Se
tion

8 summarizes our �ndings.

2 Related Works

2.1 TTL rule and 
a
hing durations

By marking R with a suitable 
a
hing duration, the authoritative server makes sure that no

outdated 
opy is 
a
hed. A 
onsequen
e of the TTL rule is that all 
opies of a re
ord along a

path would be 
a
hed mainly for the same duration. A request o

urring anywhere just after

the 
ontent expired in the lo
al 
a
he yields 
a
he misses at all 
a
hes along the path to an

authoritative server. Ca
he misses are then syn
hronized [13℄, this re�e
ts a redu
ed e�
ien
y

of 
a
hing.

Short 
a
hing durations translate in a good 
onsisten
y between the original version of a

re
ord and its 
opies [12, 15℄ and balan
e the load between servers, avoiding 
ongestion at

bottom level 
ontent provider's servers [18℄. The downside is an in
rease of the DNS tra�
 even

if re
ords remain un
hanged at the authoritative servers. Short 
a
hing durations emphasize also

the so-
alled miss syn
hronization e�e
t [13℄.

Re
ently, some experiments on Internet led to the observation that the TTL rule is not always

applied [4, 18℄. Re
ords may be 
a
hed for a lo
ally 
hosen duration regardless of the TTL value

marked on them by the answerer. Some DNS server software 
an be 
on�gured so that DNS


a
hes override low TTL values with a global minimum duration for instan
e. Bayardo et al.

mention in [3℄ that many servers at IBM are apparently 
on�gured to 
a
he re
ords for at least

�ve minutes whereas browsers like Mozilla and most likely Internet Explorer use a default 
a
hing

duration (�fteen minutes for Mozilla). Ja
kson et al. explained later in [14℄ that, by doing so,

web browsers prote
t users from 
ross-site s
ripting atta
ks. Jung, Berger and Balakrishnan have

shown experimentally in [15℄ that �fteen minutes long 
a
hing a
hieves a global 
a
he hit ratio

over 80%. Breaking the TTL rule and 
a
hing for longer durations do have advantages at the

risk of making a site ina

essible to the 
lient for some minutes.

2.2 State-of-the-art in modeling DNS 
a
hes

Sin
e the re
ent observation of the modern behavior of DNS 
a
hes [4, 18℄, only few results of

the state of the art are appli
able to modern DNS 
a
hes. Hou et al. 
onsider in [12℄ a tree of

traditional DNS 
a
hes fed by Poisson tra�
. The performan
e metri
s derived in [12℄ 
annot


hara
terize modern 
a
hes as these do not 
ause a miss syn
hronization e�e
t�like traditional


a
hes do�whi
h is extensively used in their model.

Jung, Berger and Balakrishnan study in [15℄ a single traditional DNS 
a
he fed by a renewal

pro
ess. Their model assumes that ea
h 
ontent is 
a
hed for a deterministi
 duration whi
h

would be either the value marked by an authoritative server or the maximum among all values

re
eived from intermediate 
a
hes. The hit/miss probabilities derived are approximate in tra-

ditional DNS 
a
hes re
eiving di�erent TTLs from higher-level 
a
hes and exa
t in traditional

Inria
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DNS 
a
hes getting always their responses from authoritative servers. It is interesting to note

that the model of [15℄ is valid for a single modern DNS 
a
he that overrides the given TTL

with a �xed 
a
hing duration. Chara
terizing the tra�
 not served by the 
a
he (the miss pro-


ess), 
onsidering distributions of 
a
hing durations other than the deterministi
 one, and most


hallenging extending to the 
ase of a network of 
a
hes are issues yet to be addressed.

The 
losest paper to our work, methodologi
ally speaking, is [7℄. Choungmo et al. analyze

both a single 
a
he and a network of 
a
hes in whi
h ea
h 
ontent remains in 
a
he for a random

period. The essential di�eren
e with our work is that 
a
hing durations are regenerated from

the same distribution at ea
h 
a
he hit. As su
h, the model of [7℄ applies to modern DNS 
a
hes

only if 
a
hing durations are exponentially distributed, thanks to the memoryless property of the

exponential distribution. Observe that the 
ontext targeted in [7℄ is that of ICN a
hite
tures.

It has been reported in [4, 16, 18℄�and we have observed it in our 
olle
ted DNS tra
es�that the

sequen
e of TTLs re
eived relatively to a given resour
e re
ord exhibits some randomness. We

believe it is 
ru
ial to 
onsider this randomness when modeling a modern DNS 
a
he. Another

key issue 
on
erns the optimal distribution for the 
a
hing durations. Callahan, Allman and

Rabinovi
h mention in [4℄ that no model or experiment 
hara
terizes the optimal (deterministi
)

TTL 
hoi
e. We will address a more general problem in this report, namely, �nding the best

distribution.

3 S
enario, De�nitions, Assumptions

3.1 Considered S
enario

In this report, 
a
hes are assumed to 
onsist of in�nite size bu�ers. This assumption derives

naturally from the fa
t that the 
a
hed entities�the DNS re
ords�have a negligible size when


ompared to the storage 
apa
ity available at a DNS server [15℄. A ni
e 
onsequen
e is that the

management of di�erent re
ords 
an safely be de
oupled, simplifying thereby the modeling of


a
hes. Our analysis will fo
us on a single 
ontent/re
ord, 
hara
terizing the pro
esses relevant

to it, keeping in mind that the same 
an be repeated for every single 
ontent requested by users.

This will be done in Se
t. 5.2, where multiple �les share a single limited bu�er 
a
he.

Without loss of generality, 
onsider that a 
a
he miss o

urred at time m0 = t0 = 0. In

other words, the 
ontent was not in 
a
he at a request arrival at time t0. We will negle
t the

request/re
ord pro
essing time at ea
h server/
lient and the request/re
ord travel time between

servers, as these times are typi
ally insigni�
ant in 
omparison with the request inter-arrival

time. Consequently the 
ontent requested is 
a
hed and made available to the requester also at

time t0. More pre
isely, upstream requests and downstream responses are instantaneous.

A 
a
he miss makes the 
ontent available in the respe
tive 
a
he for a duration T . Ea
h


a
he samples this duration from its respe
tive distribution. Ca
hes along the path between the

server/
lient re
eiving the original request and the server where the 
ontent was found all initiate

a new duration T at the same time, but the durations initiated being di�erent they will expire at

di�erent instants. Consequently, 
a
hes be
ome asyn
hronous, something that would not o

ur

should the 
a
hes follow the so-
alled TTL rule.

Any request arriving during T will �nd the 
ontent in the 
a
he. This is a 
a
he hit. The

�rst request arriving after T has expired is a 
a
he miss as depi
ted in Fig. 1. It initiates a new

duration during whi
h the 
ontent will be 
a
hed.

RR n° 8414
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m0 m1

SZ

jump time SZ+1

S1

X1 XZ XZ+1

miss

inter-miss time Y

T

data in 
a
he

hit

. . . . . . . . .

time

t0 t1 tZ−1 tZ

m2

Z hits

data in 
a
he


a
hing duration T

Figure 1: Requests, 
a
hing durations and inter-miss times.

3.2 Metri
s and Properties of a Ca
he

The performan
e of a 
a
he poli
y 
an be assessed through the 
omputation of several metri
s.

The hit probability hP 
aptures the 
han
es that a request has to be served by the 
a
he. Themiss

probability mP is simply the 
omplementary probability. The hit/miss rate (hR/mR) represents

the rate at whi
h 
a
he hits/misses o

ur. The o

upan
y π is the per
entage of time during

whi
h the 
ontent is 
a
hed. We say �a 
a
he poli
y is e�
ient� if its miss probability is low.

This is relevant as long as 
a
hed 
ontents are up-to-date.

In fa
t, by setting timers (or violating the TTL rule in the 
ase of modern DNS), a server/
lient

takes a risk by 
a
hing a 
ontent for a longer period than it should, as the 
ontent may well have


hanged by the time the lo
ally 
hosen duration T expires. The 
a
he would then be providing

an outdated 
ontent. Observe that the 
ontent in 
a
he is updated only upon a 
a
he miss. But

it is only when the update originates from the authoritative server that one 
an absolutely be


ertain that the given update is 
orre
t. Therefore, a relevant performan
e metri
 is the 
or-

re
tness probability of a 
a
he. Another property of a 
a
he is its freshness. It de�nes how fast

a 
hange in a re
ord 
an propagate until this 
a
he. High freshness is desirable with dynami


authoritative servers.

3.3 Pro
esses at Hand

To fully analyze a 
a
he one needs to 
onsider:

The arrival pro
ess: it may result from the superposition of multiple independent requests

arrival pro
esses. Let Xk = tk − tk−1 be the k-th inter-request time (k > 0). It is useful to
de�ne the kth jump time Sk = X1 +X2+ . . .+Xk with its 
umulative distribution fun
tion

(CDF) F(k)(t) = P(Sk < t) and its probability density fun
tion (PDF) f(k)(t) = dF(k)(t)/dt.
The arrival pro
ess is {N(t), t > 0} with N(t) = sup{k : Sk ≤ t} =

∑

k>0 1{Sk ≤ t}.

The 
a
hing duration: a 
a
he draws the duration T from the same distribution, su
h that

µ = 1/E[T ]. The s
enario analyzed here 
onsiders memoryless 
a
hes, i.e. all 
a
hing

durations set by the same 
a
he are independent and identi
ally distributed. With a slight

abuse of notation, let T (t) be the CDF of the random variable (rv) T .

The outgoing miss pro
ess: 
a
he misses form a sto
hasti
 pro
ess whose inter-miss time is

denoted by Yk = mk − mk−1 for k > 0.

Inria
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The number of hits between 
onse
utive misses: these hits o

ur within a single 
a
hing

duration. Their number is a rv denoted by Z.

When 
onsidering more than one 
a
he, a subs
ript referring to the 
a
he number will be added

to the random variables for disambiguation.

Besides the �instantaneous transmission/pro
essing� assumption that holds throughout this

report, the following holds:

Assumption 1 (renewal arrivals) Inter-request times are independent and identi
ally dis-

tributed random variables.

Let X be the generi
 inter-request time, F (t) be its CDF, f(t) = dF (t)
dt

be its PDF, and λ =
1/E[X ].

Assumption 2 (independen
e) At any 
a
he, inter-request times and 
a
hing durations are

independent.

Assumption 3 (independent arrivals) Multiple arrivals at any high-level 
a
he are indepen-

dent.

Assumption 4 (independent 
a
hes) Ca
hing durations from any two di�erent 
a
hes are

independent.

Assumption 1 is in agreement with the analysis in [15℄ and [10℄. Feldmann and Whitt show

in [10℄ that heavy-tailed pro
esses 
an be well approximated by a renewal pro
ess with a hyper-

exponential inter-arrival distribution. Jung, Berger and Balakrishnan show in [15℄ that the

request pro
ess arriving at a DNS server's 
a
he is heavy-tailed. Renewal pro
esses with either

Weibull or Pareto inter-event distributions are used to �t the 
olle
ted inter-request times. As-

sumptions 2 and 4 hold at modern DNS servers [18, 4℄ and Web browsers [3℄ as these use their

own 
a
hing durations independently of the requests and other servers/browsers. Assumption 3

holds if exogenous arrivals are independent, as long as requests for a given 
ontent �see� a tree

network (that is a dire
ted graph without any undire
ted 
y
les).

It is worth noting that the s
enario and the set of assumptions 
onsidered here �t the 
ase of

a single traditional DNS server if the distribution of its 
a
hing durations �ts the values marking

the responses. Observe also that the popularity of a 
ontent is proportional to its request rate

λ. Therefore, it should be 
lear that our models a

ount for a 
ontent's popularity (whi
h 
an

be Zip�an, Uniform, Geometri
, et
.) through the per-
ontent request rate λ.

A word on the notation: for any fun
tion χ(t), its Lapla
e-Stieltjes Transform (LST) is

χ∗(s) =
∫∞

0 e−stdχ(t) (s ≥ 0). Observe that the LST of a fun
tion is the Lapla
e transform of

its derivative. The 
omplementary 
umulative distribution fun
tion (CCDF) of a CDF χ(t) is

χ̄(t) = 1 − χ(t). Table 1 summarizes the main notation used in the report.

4 Analysis of a Single Ca
he

We are ready now to analyze a 
a
he taken in isolation. The results found here will be used in

Se
t. 6 when studying multiple 
a
hes in a tree network.

RR n° 8414
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Table 1: Glossary of Main Notation

hP hit probability F (t) CDF of X

hR hit rate f(t) PDF of X

mP miss probability λ arrival rate (1/E[X ])

mR miss rate N(t) requests during t (rv)

π o

upan
y M(t) renewal fun
tion

T 
a
hing duration (rv) m(t) renewal density fun
t.

T (t) CDF of T Y inter-miss time (rv)

1/µ expe
tation of T G(t) CDF of Y

X inter-request time (rv) Z hits during T (rv)

Sk kth jump time (rv) χ∗(s) LST of χ(t)

L(t) expe
ted number of hits until t within T

H(t) CDF of inter-request time at higher-level 
a
he

4.1 The Model and its Analysis

Our �rst goal is to 
hara
terize the miss pro
ess whi
h is the same as the pro
ess going out from

a server towards the higher-level server. The request pro
ess and the 
a
hing durations are as

assumed in Se
t. 3, i.e. {N(t), t > 0} is a renewal pro
ess. The renewal fun
tion and the renewal

density fun
tion asso
iated to {N(t), t > 0} are, respe
tively, M(t) = E[N(t)] =
∑

k>0 F(k)(t)

and m(t) = dM(t)
dt

=
∑

k>0 f(k)(t). It is well-known that the renewal fun
tion satis�es the

so-
alled renewal equation [8℄

M(t) = F (t) +

∫ t

0

M(t − x)dF (x) = F (t) +

∫ t

0

F (t − x)dM(x). (1)

Sin
e T is a rv and N(t) the 
ounting variable, N(T ) is a rv whi
h represents the number of

requests during a 
a
hing duration T . As all requests arriving during this period are ne
essarily

hits, then following the de�nition of Se
t. 3 we have that Z = N(T ) and its expe
tation is

E[Z] = E[N(T )] = E [E[N(T )|T ]] = E[M(T )] (M is a fun
tion).

Proposition 4.1 (Miss pro
ess) Under Assumptions 1 and 2 the miss pro
ess of a single


a
he is a renewal pro
ess.

Proof 4.1 Without loss of generality, we assume that the �rst request arrives at time t0 = 0
while the 
ontent is not 
a
hed. This 
a
he miss triggers a new 
a
hing period. Consequently,

miss instants are regeneration points of the state of the 
a
he, implying that these form a renewal

pro
ess.

A

ording to Proposition 4.1 inter-miss times {Yk}k>0 are independent and identi
ally dis-

tributed. Let Y be the generi
 inter-miss time and G(t) be its CDF. Deriving G(t) 
ompletes the


hara
terization of the miss pro
ess. To this end we 
onsider �rst the number of hits o

urring

in a renewal interval Y until time t, and more spe
i�
ally its expe
tation L(t). We 
an readily

write for t ≥ 0

L(t) =
∑

k>0

P(Sk < t, T > Sk) =

∫ t

0

T̄ (x)dM(x). (2)

Observe that L(∞) is nothing but the expe
ted number of hits in a renewal interval and is equal

to E[Z].

Inria
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Proposition 4.2 (Inter-miss times) The CDF G(t) of the generi
 inter-miss time Y and its

LST are given by

G(t) = F (t) −

∫ t

0

(1 − F (t − x))dL(x) (3)

G∗(s) = 1 − (1 − F ∗(s))(1 + L∗(s)). (4)

Proof 4.2 Let m0 = 0 be the �rst miss time. The CDF G(t) of the inter-miss time Y 
an be

derived by noti
ing that Y = SZ+1 where Z is the number of hits in a renewal interval (Z ∈ N).

As su
h, the (Z + 1)st request o

urs after T expires and it will initiate a new renewal interval.

By 
onsidering the possible values of Z, we 
an write

G(t) = P (SZ+1 < t) =
∑

k≥0

P (SZ+1 < t, Z = k)

=
∑

k≥0

P (Sk + Xk+1 < t, Sk < T < Sk + Xk+1).

By 
onditioning �rst on Sk and then on Xk+1, we get

G(t) =
∑

k≥0

∫ t

0

∫ t−u

0

(T (u + x) − T (u))f(x)dx f(k)(u)du

=
∑

k≥0

∫ t

0

∫ v

0

(T (v) − T (u))f(v − u)f(k)(u) du dv

The last equality is obtained after letting v = u + x in the inner integral and then ex
hanging the

integrals. Observe now that, under Assumption 1, the density f(k)(t) of the jump time Sk is the

k-fold 
onvolution of f(t) (the density of X). Also, the 
onvolution of f(k) and f is nothing but

f(k+1). Note that S0 = 0 and f(0)(t) = 1{t = 0}. A straightforward 
al
ulation yields

G(t) =
∑

k>0

∫ t

0

(1 − F (t − x))T (x)f(k)(x)dx

=

∫ t

0

(1 − F (t − x))(1 − T̄ (x))dM(x)

= F (t) −

∫ t

0

(1 − F (t − x))T̄ (x)dM(x) (5)

where we have used (1) to write (5). By di�erentiating (2) and using dL(x) in (5), we �nd (3).

It su�
es to di�erentiate (3) then apply the Lapla
e transform to get the LST given in (4). The

proof is 
omplete.

Proposition 4.2 states that one needs to know the CDFs of the arrival pro
ess and the 
a
hing

duration to derive the CDF of the miss pro
ess, or equivalently, the outgoing pro
ess. This

proposition will be repeatedly used in Se
t. 6 when analyzing networks of 
a
hes.

4.2 Performan
e Metri
s

Our next goal is to derive the performan
e metri
s de�ned in Se
t. 3 at a single 
a
he. Note

that these metri
s have been de�ned with respe
t to a single 
ontent. Similar metri
s for the a

set of 
ontents 
an also be de�ned as long as the 
ontents popularity is known. The following

proposition provides the 
a
he performan
e metri
s.
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Proposition 4.3 (Ca
he performan
e) Under Assumption 1, the stationary hit probability

hP , the stationary miss probability mP , the o

upan
y π, the stationary hit rate hR, and the

stationary miss rate mR are respe
tively given by

hP =
E[Z]

1 + E[Z]
; mP =

1

1 + E[Z]
; π =

λ/µ

1 + E[Z]
;

hR =
λE[Z]

1 + E[Z]
; mR =

λ

1 + E[Z]
.

Proof 4.3 In the stationary regime, E[Z] is the expe
ted number of hits within a renewal interval

and E[Z] + 1 is the expe
ted number of requests (in
luding the single miss) in a renewal interval.

Their ratio naturally gives the hit probability. We 
an readily �nd mP = 1 − hP , hR = λhP

and mR = λmP sin
e λ is the requests arrival rate. As Y is the inter-miss time, we have

E[Y ] = 1/mR. Last, regarding the o

upan
y or the stationary probability that the 
ontent data

is in 
a
he, we know that a 
ontent is 
a
hed for a duration T in a renewal interval Y . Then by

renewal theory the o

upan
y π is the ratio E[T ]/E[Y ] = µ−1mR whi
h 
ompletes the proof.

Proposition 4.3 states that it is enough to 
ompute E[Z] and estimate the request rate λ
at a 
a
he to derive all its metri
s of interest (µ is lo
ally known). It is worth noting that the

hit probability hP and the o

upan
y π are di�erent in general and in parti
ular under renewal

arrival pro
esses. The equality hP = π holds only if the arrival pro
ess is a Poisson pro
ess

thanks to the PASTA (Poisson Arrivals See Time Average) property.

A 
a
hed 
ontent may be refreshed only after T expires, upon a 
a
he miss. Hen
e the refresh

rate is nothing but the miss rate in the 
ase of a 
a
he dire
tly 
onne
ted to the authoritative

server. In the presen
e of intermediate 
a
hes, the refresh rate of a 
a
he is its miss rate times

the produ
t of miss probabilities at all intermediate 
a
hes. The 
orre
tness probability of a

server is the probability that a request gets the 
orre
t 
ontent, whether it was 
a
hed or not.

When a 
a
he is dire
tly 
onne
ted to the authoritative server, a 
a
he miss ensures that the

delivered 
ontent is 
orre
t whereas a 
a
he hit may or may not provide a 
orre
t 
ontent. This

will depend on the distribution of the inter-
hange time at the authoritative server. A thorough

analysis of this metri
 is left for future work.

4.3 Spe
ial Distributions of Ca
hing Durations

We will 
onsider three parti
ular 
ases for the distribution of the 
a
hing duration and derive

the 
orresponding results.

4.3.1 Deterministi
 Distribution

We �rst look at the 
ase when the 
a
hing duration is deterministi
 and equal to the 
onstant

D. This setup (single 
a
he, deterministi
 TTL) is identi
al to the one in [15℄.

Result 4.1 (deterministi
 
a
hing duration) The expe
ted number of hits in a renewal in-

terval is E[Z] = M(D).

Combining Result 4.1 with Proposition 4.3 yields the performan
e metri
s. These are exa
tly

the ones found in [15, Thm 1℄. The CDF G(t) of the generi
 inter-miss time, on the other hand,

is a new result. Using T (t) = 1{t > D}, (3) be
omes

G(t) = 1{t > D}

(

F (t) −

∫ D

0

(1 − F (t − x))dM(x)

)

. (6)
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4.3.2 Exponential Distribution

If 
a
hing durations follow an exponential distribution with rate µ, then T (t) = 1− e−µt
and the

following holds.

Result 4.2 (exponential 
a
hing duration) The expe
ted number of hits in a renewal inter-

val is E[Z] = F ∗(µ)/(1 − F ∗(µ)), and (4) giving the LST of G(t) be
omes

G∗(s) =
F ∗(s) − F ∗(s + µ)

1 − F ∗(s + µ)
. (7)

The result above is identi
al to Propositions 3.1 and 3.2 in [7℄. The system 
onsidered in [7℄


onsists of 
a
hes using expiration-based poli
ies whose 
a
hing durations are reset at every


a
he hit. The DNS s
enario 
onsidered in this report pre-sets the 
a
hing duration at ea
h


a
he miss. However, when durations are drawn from an exponential distribution, both systems


oin
ide thanks to the memoryless property of the exponential distribution.

4.3.3 Diagonal Matrix-Exponential Distribution

The third parti
ular 
ase 
onsidered here is the one of a family of distributions, the so-
alled

diagonal matrix exponential distribution (diag.ME for short). The CDF of an ME distribution


an be written as 1 − α exp(St)u, where α and u are dimension-n ve
tors and S is an n × n
matrix; the ME distribution is said to be of order n. If S is diagonalizable,

1

then a diag.ME is

obtained. The LST of its CDF is rational.

Our interest in the diag.ME is threefold. First, it 
overs a large set of distributions in
lud-

ing the a
y
li
 phase-type distributions like the generalized 
oxian distribution, the exponential

distribution, the hypo-exponential distribution or generalized Erlang, the hyper-exponential dis-

tribution or mixture of exponentials. Se
ond, as reported in [10℄, a general point pro
ess 
an

be well �tted by a renewal pro
ess having a �phase-type distribution� su
h as the �mixture of

exponentials�. Third (and most attra
tively) it is analyti
ally tra
table as will be
ome 
lear in

Se
t. 6. In brief, if inter-request times of exogenous arrivals and 
a
hing durations all follow this

distribution, then any inter-miss time and any overall inter-request time in a network of 
a
hes

will also follow this distribution (with other parameters), as long as an additional assumption is

enfor
ed.

The CDF of a 
a
hing duration following a diag.ME of order K 
an be written

T (t) = 1 −
K
∑

k=1

bke−µkt, with

K
∑

k=1

bk = 1. (8)

There is no restri
tions on {µk}1≤k≤K ex
ept that T (t) must be a CDF. The following then

holds.

Result 4.3 (diag.ME 
a
hing duration) The expe
ted 
a
hing duration and the expe
ted num-

ber of hits in a renewal interval are, respe
tively,

µ−1 =

K
∑

k=1

bkµ−1
k ; E[Z] =

K
∑

k=1

bkF ∗(µk)

1 − F ∗(µk)
, (9)

and the LST of G(t) given in (4) 
an be rewritten

G∗(s) = 1 −

K
∑

k=1

bk

1 − F ∗(s)

1 − F ∗(s + µk)
. (10)

1

There exist then an n × n matrix P and an n × n diagonal matrix A su
h that S = PAP−1
.
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Using (9) in Proposition 4.3 yields the performan
e metri
s.

4.4 Optimal TTL Distribution per 
ontent

This se
tion addresses the following 
hallenging question: whi
h distribution optimizes the per-

forman
e of a 
ontent 
a
hing poli
y and under whi
h 
onditions? A partial answer will be

provided in the following.

There are 
on�i
ting obje
tives when optimizing a 
a
hing poli
y. Ca
hing has been intro-

du
ed to limit wide-area DNS tra�
 and to speed up DNS lookups at 
lients. An e�
ient 
a
he

is then one that has a small miss rate, a high hit probability and yet a small o

upan
y (data is

in 
a
he only when needed). The 
ounter e�e
t is an in
rease in the probability for the user to

obtain an outdated 
ontent. Indeed, as explained in Se
t. 3, 
ontents are refreshed only upon a


a
he miss. Having then a high miss rate is desirable when the 
ontent is likely to 
hange often.

In this se
tion, we will order distributions a

ording to the a
hieved performan
e metri
s,

namely the miss rate mR, the hit probability hP and the o

upan
y π. Consider two di�erent

poli
ies. In one poli
y, a 
ontent is 
a
hed for a deterministi
 duration D; in the other, the


a
hing duration T has a CDF T (t) su
h that E[T ] = D. The performan
e metri
s vary with

the distribution, the rv is then expli
itely appended to the notation, e.g. π(T ).

Proposition 4.4 (optimal poli
y) If inter-arrival requests at a 
a
he have a 
on
ave CDF

then the deterministi
 
a
hing duration yields the most e�
ient 
a
hing, i.e.

mR(D) ≤ mR(T ) , hP (D) ≥ hP (T ) , π(D) ≤ π(T ).

Proof 4.4 De�ne φ(t) = 1+M(t). We therefore have (use E[Z] = E[M(T )] in Proposition 4.3)

mR(T ) =
λ

E[φ(T )]
, hP (T ) = 1 −

1

E[φ(T )]
, π(T ) =

λD

E[φ(T )]
.

We will now prove that φ is 
on
ave. Re
all that M(t) is the renewal fun
tion. Di�erentiating

twi
e (1) yields

φ′′(t) = m′(t) = f ′(t) +

∫ t

0

m(t − x)f ′(x)dx. (11)

Sin
e m(t) is a positive fun
tion, it follows that φ(t) is a 
on
ave fun
tion if F (t) is 
on
ave (i.e.
if f ′(t) < 0). Using now Jensen's inequality yields E[φ(T )] ≥ φ(E[T ]) = φ(D) = E[φ(D)] whi
h

ompletes the proof.

As F is a CDF, it may not be 
onvex and the 
orollary of Proposition 4.4 never applies.

Finding the optimal poli
y when F is not 
on
ave is an open problem. The simulations dis
ussed

in Se
t. 7.2 suggest however that, in this latter 
ase, the higher the 
oe�
ient of variation, the

better.

The 
on
avity of the CDF F (t) of the inter-request times is not a strong 
ondition. Jung,

Berger and Balakrishnan use in [15℄ Pareto and Weibull (with shape less than 1) distributions

to �t 
olle
ted inter-request times (
f. dis
ussion around Assumption 1 in Se
t. 3). These distri-

butions have 
on
ave CDFs. Also, it is known that long-tailed distributions having a de
reasing

failure rate 
an be well approximated by a mixture of exponentials [10℄, whose CDF is 
on
ave.

Last, a 
on
eptual model often used in the analysis of 
a
hes (e.g. [9, 20, 22℄) is the so-
alled

independent referen
e model (IRM). This model is equivalent to assuming that requests for a

single 
ontent form a Poisson pro
ess [11℄. The CDF of the (exponential) inter-arrival times is

then 
on
ave.
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Proposition 4.4 states that deterministi
 
a
hing durations are the optimal when F is 
on
ave

(Assumption 1 must hold).This does not mean that all 
ontents should use the same 
onstant

TTL value but rather to have a �xed value per 
ontent. For ea
h 
ontent whi
h re
eives its

own deterministi
 timer, the hit probability is maximized and yet the o

upan
y is minimized,

suugesting that the 
ontent is found in the 
a
he mainly when needed, i.e. at requests arrivals.

The next obvious question is: whi
h deterministi
 value is the optimal one? This question,

already posed in [4℄, will be addressed now.

Sin
e the deterministi
 poli
y is optimal only for 
on
ave F , we will only 
onsider this 
ase in

the dis
ussion. Ideally, the optimal deterministi
 value, D⋆
, should maximize the hit probability

and minimize the o

upan
y. For a deterministi
 
a
hing duration, these have the following

expressions (
ombine Result 4.1 and Proposition 4.3):

hP (D) = 1 −
1

1 + M(D)
, mR(D) =

λ

1 + M(D)
, (12)

π(D) =
λD

1 + M(D)
(13)

For 
on
ave F , the renewal fun
tion M(D) is also 
on
ave (and in
reasing) (
f. (11)). It is 
lear

from (12) that the hit probability hP (D) is 
on
ave in
reasing (and the miss rate mR(D) 
onvex
de
reasing).

Introdu
e now the fun
tion g(D) = 1 + M(D) − Dm(D). The derivative of π(D) w.r.t. D

yields π′(D) = λ g(D)
(1+M(D))2 . Given that g(0) = 1 and g′(D) = −Dm′(D) ≥ 0 for any D ≥ 0

(re
all that m′(D) < 0 for 
on
ave F ), the fun
tion g is thus always positive and so is π′
. Hen
e,

the o

upan
y is an in
reasing fun
tion of the 
a
hing duration. It is therefore not possible to

maximize hP (D) while minimizing π(D), as both in
rease with the 
a
hing duration D.

We believe that having a high hit probability supersedes the desire of having a low o

upan
y.

However, the miss rate should not be minimized (its minimum is 0 when D → ∞) as it dire
tly

relates to the 
orre
tness of the 
a
hed 
ontent. Ca
he misses must o

ur in order to update the


ontent.

The proper thing to do in su
h a 
ase is to solve a 
onstrained optimization problem, looking

for instan
e to maximize the hit probability subje
t to a maximal o

upan
y πmax (for 
a
he

size issues) and/or a minimal miss rate mR,min (for 
orre
tness issues). Given the monotoni
ity

of hP , mR and π (for 
on
ave F ), the solution is readily found as

D⋆ = min{argπmax, arg mR,min}.

The maximal o

upan
y πmax for a given 
ontent 
an be for instan
e the fra
tion of the 
a
he

size that is proportional to the 
ontent's popularity.

5 Appli
ability in Other Contexts

5.1 Single Traditional DNS Ca
he

The modern DNS 
a
he analyzed in Se
t. 4 holds the 
ontent for a lo
ally 
hosen duration.

Instead, in a traditional DNS 
a
he, the 
a
hing duration is the one advo
ated by the answerer.

What matters in the analysis of a single 
a
he is the distribution of the 
a
hing durations and

not whether the distribution is set lo
ally or it is imposed. Therefore, the �ndings of Se
t. 4

apply in the 
ase of a single traditional DNS 
a
he, as long as Assumptions 1-2 hold. Note that

the model developed in [15℄ provides approximate results for a single traditional DNS 
a
he, as
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the authors 
onsider a deterministi
 
a
hing duration that is set to the maximum value among

all those observed in the responses. The results of [15℄ are exa
t for a single modern DNS 
a
he

that 
hooses a deterministi
 
a
hing duration. Our model yields exa
t results for a traditional


a
he and a modern 
a
he, regardless of the distribution 
hosen for the 
a
hing durations.

5.2 Single Ca
he with Limited Bu�er

In a 
a
he with limited bu�er 
apa
ity, there is a 
onstraint on the number of 
ontents that 
an

be 
a
hed simultaneously. In 
a
hes where all 
ontents are equally sized, like in DNS 
a
hes, the

bu�er size 
an be expressed as the maximum number of 
ontent that 
an be 
a
hed, let B be this

number. The analysis of Se
t. 4 is useful in this 
ase as it helps setting the 
a
hing durations in

su
h a way that the 
apa
ity 
onstraint is satis�ed.

Let R be the total number of 
ontents that 
ould be 
a
hed and let r be a given 
ontent

(r = 1, . . . ,R). All the notation relative to 
ontent r will have an additional subs
ript r. The


apa
ity 
onstraint is then written as follows

R
∑

r=1

πr ≤ B ⇔

R
∑

r=1

λr/µr

1 + E[Zr]
≤ B. (14)

Note that the expe
ted number of hits E[Zr] is a fun
tion of the expe
ted 
a
hing duration µ−1
r .

Should the same 
a
hing poli
y be applied to all 
ontents, i.e., µr = µ, then µ 
an be found as

the solution of a �xed point equation

µ =
1

B

R
∑

r=1

λr

1 + E[Zr]
. (15)

6 Analysis of a Network of Ca
hes

Se
tion 4 fo
used on results for a single 
a
he. In this se
tion, we will extend these results for the


ase where we have 
a
hes at multiple nodes (e.g. 
lient, ADSL modem, Internet server provider's

DNS server, authoritative server). We say that we have a network of 
a
hes. To analyze it, one

additionally needs to 
onsider the network topology. The notation relative to 
a
he c will have

an extra subs
ript c. Assumptions 1-4 are enfor
ed throughout this se
tion. Requests for a

given 
ontent may only �ow over a tree network and exogenous arrivals are independent so that

Assumption 3 holds. In the following we 
onsider the parti
ular 
ase of linear networks for whi
h

exa
t results 
an be derived (
f. Se
t. 6.1). We will move next to the general tree network 
ase

for whi
h approximate results 
an be derived by enfor
ing an additional assumption (
f. Se
t.

6.2). Last, we fo
us on the parti
ular 
ase where 
a
hing durations and exogenous inter-request

times follow a diag.ME distribution (
f. Se
t. 6.3). Results for this last 
ase are interesting as

the diag.ME distribution will be preserved inside the network.

6.1 Linear Networks: Exa
t Results

Consider the linear network depi
ted in Fig. 2. There are C 
a
hes and the disk of the authori-

tative server (the rightmost 
a
he is the one of the authoritative server). By Assumption 1, the

overall request pro
ess at 
a
he 1 is a renewal pro
ess. By Proposition 4.2, the miss pro
ess at


a
he 1 (whi
h is nothing but the request pro
ess at 
a
he 2) is also a renewal pro
ess. Hen
e,

all pro
esses in this linear network of 
a
hes are renewal pro
esses. The performan
e metri
s at

ea
h 
a
he are derived using Proposition 4.3.
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· · ·1 2 C
disk exogenous

requests

independent

Figure 2: A linear network with C 
a
hes.

6.2 Tree Networks: a Re
ursive Pro
edure

The aggregation of several renewal pro
esses in not a renewal pro
ess. However, it is mandatory

to have a renewal pro
ess for Proposition 4.1 to hold at any high-level 
a
he inside the network.

Similarly to [7℄, we overtake this limitation by pro
eeding as if we do have a renewal pro
ess,

and then assess the robustness of the model against situations where this is not the 
ase. The

approximate results obtained are strikingly a

urate as will be seen later in Se
t. 7.2. In the rest

of the report, the following assumption will be enfor
ed.

Assumption 5 (aggregation) The overall request arrival pro
ess at ea
h 
a
he is a renewal

pro
ess.

A dire
t 
onsequen
e of Assumption 5 is that the miss pro
ess at ea
h 
a
he is a renewal pro
ess

thanks to Proposition 4.1. Propositions 4.2 and 4.3 are also valid at any 
a
he. For the 
ase of a

single 
a
he, the CDF of the inter-miss time at a 
a
he, namely G(t), is expressed as a fun
tion

of the CDF of the inter-request time, namely F (t); see (3).
In the 
ase of a network, one needs to 
onsider at a 
a
he c the inter-request time of the

aggregate pro
ess arriving at 
a
he c. Let Hc(t) be its CDF. Equation (3) provides the CDF of

the inter-miss time at 
a
he c, denoted by Gc(t), after repla
ing F (t) with Hc(t) and by using the

renewal fun
tion asso
iated with the aggregate request pro
ess, say Mc(t), in (2). To expli
itly

write this equation for the 
ase of a network of 
a
hes, additional notation is needed.

The set of 
hildren of 
a
he c is C(c) with C = |C(c)|. The rate of exogenous requests (if any)
at 
a
he c is λc; the CDF of inter-exogenous request times is Fc(t). There are C + 1 request

pro
esses at 
a
he c. Their aggregation has a rate

Λc = λc +
∑

i∈C(c)

mR,i. (16)

The C miss pro
esses at the 
hildren of c and the exogenous request pro
ess at 
a
he c are all

independent. Thereby, the result derived by Lawran
e in [17, Eq. (4.1)℄ applies. By Assumption

5, the aggregate request pro
ess at 
a
he c is a renewal pro
ess and the CCDF of the inter-request

time is

H̄c(t) =
λc

Λc

F̄c(t)
∏

i∈C(c)

mR,i

∫ ∞

t

Ḡi(u)du (17)

+
∑

i∈C(c)

mR,i

Λc

Ḡi(t)λc

∫ ∞

t

F̄c(u)du
∏

j∈C(c)
j 6=i

mR,j

∫ ∞

t

Ḡj(u)du.

Equation (5) be
omes

Gc(t) = Hc(t) −

∫ t

0

(1 − Hc(t − x))T̄c(x)dMc(x) (18)

with T̄c(t) the CCDF of the 
a
hing duration at 
a
he c and Mc(t) the renewal fun
tion asso
iated
with the aggregate request pro
ess at the same 
a
he. Equations (17)-(18) provide a re
ursive
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pro
edure for 
al
ulating the CDFs Hc(t) and Gc(t) at ea
h 
a
he c of a tree network. Numeri
al

pro
edures su
h as Romberg's method or other te
hniques for 
omputing (17)-(18) re
ursively


an be found in [23℄. We 
onsider next a spe
ial 
ase in whi
h 
losed-form expressions for Hc(t)
and Gc(t) 
an be found.

6.3 Closed-Form Results with diag.ME RVs

In this se
tion, we 
onsider a tree network where 
a
hing durations at any 
a
he follow a diag.ME

distribution. Also, we will 
onsider that the exogenous request pro
ess at any 
a
he is a renewal

pro
ess whose inter-request time follows a diag.ME distribution. More pre
isely, at a 
a
he c we
have

Fc(t) = 1 −

Jc
∑

j=1

ac,je
−λc,jt, T̄c(t) =

Kc
∑

k=1

bc,ke−µc,kt, (19)

for t > 0. Jc and Kc are the respe
tive orders of the diag.ME distributions. We are now in

position to prove an interesting property that is another main 
ontribution of this work. This

property is the self-preservation of the diag.ME distribution a
ross a tree network as stated in

what follows.

Proposition 6.1 (diag.ME preservation) Under Assumptions 1-5 and as long as (19) is sat-

is�ed at ea
h 
a
he c of a tree network, miss pro
esses and aggregate requests are all renewal

pro
esses whose inter-event time follows a diag.ME distribution (parameters are in the proof).

Proof 6.1 The proof rests on three arguments: (i) the miss pro
ess at ea
h of the lowest-level


a
hes 
he
ks Proposition 6.1; (ii) the aggregate request pro
ess and (iii) the miss pro
ess at

ea
h of the next higher-level 
a
hes verify Proposition 6.1. Arguments (ii) and (iii) will be used

repeatedly until all 
a
hes in the network are 
overed. By Proposition 4.1 and Assumption 5,

the pro
esses at hand are renewal pro
esses. We fo
us then on the distribution of the inter-event

time.

Argument (i): the miss pro
ess at a lowest-level 
a
he. Let c be su
h a lowest-level 
a
he, it


orresponds to a leave in a tree. The CDF of the inter-request time is given by (19). The renewal

equation (1) 
an be written as follows

Mc(t) = Fc(t) +

∫ t

0

Jc
∑

j=1

ac,jλc,je
−λc,j(t−x)Mc(x)dx. (20)

The solution of (20) is given in [19, Se
t. 2.2.1.19℄ whi
h we 
an di�erentiate to �nd

dMc(t) =

Jc
∑

j=1

γc,je
−θc,jtdt (21)

where (θc,j)1≤j≤Jc
are the Jc roots of the algebrai
 equation

0 = 1 −

Jc
∑

j=1

ac,jλc,j

λc,j − z
, (22)

and (γc,j)1≤j≤Jc
are the solution of the linear system

{

0 = 1 +

Jc
∑

j=1

γc,j

θc,j − λc,n

, 1 ≤ n ≤ Jc. (23)
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Combining now (19) and (21), we 
an apply Proposition 4.2 to rewrite (5) as follows

Gc(t) = 1 −

Jc
∑

j=1

ac,j

(

1 +

Kc
∑

k=1

Jc
∑

i=1

bc,kγc,i

θc,i + µc,k − λc,j

)

e−λc,jt

−

Kc
∑

k=1

Jc
∑

i=1





Jc
∑

j=1

(−ac,j)bc,kγi

θc,i + µc,k − λc,j



 e−(θc,i+µc,k)t. (24)

Clearly, the inter-miss time at a lowest-level 
a
he follows a diag.ME distribution, whose order

is Jc(Kc + 1) whi
h is the number of exponentials in (24).

Argument (ii): the aggregate request pro
ess at a next higher-level 
a
he. The CCDF of the

inter-request time at this intermediate 
a
he c is given in (17), where Fc(t) is relative to the

exogenous request pro
ess and Gi(t) is relative to the ith 
a
he in C(c), the set of 
hildren of


a
he c. Re
all that C = |C(c)|. To ease the derivation of Hc(t), we rewrite Fc(t) (19) and (24)

with a new/modi�ed notation (t > 0)

Fc(t) = 1 −

L0
∑

l0=1

a0,l0e
−λ0,l0

t, Gi(t) = 1 −

Li
∑

li=1

ai,lie
−λi,li

t.

The exogenous request rate is denoted r0 =
∑L0

l0=1 a0,l0λ0,l0 . The miss rate at the ith 
a
he in

C(c) is denoted ri. The overall request rate at 
a
he c be
omes Λc =
∑C

i=0 ri (see (16)). After

tedious 
al
ulations, (17) 
an be rewritten

H̄c(t) =

∏C

i=0 ri

Λc

L0
∑

l0=1

L1
∑

l1=1

· · ·

LC
∑

lC=1

C
∑

i=0

λi,li





C
∏

j=0

aj,lj

λj,lj



 exp



−





C
∑

j=0

λj,lj



 t



 . (25)

The inter-request time at the intermediate 
a
he c follows a diag.ME distribution of order

∏C
i=0 Li.

Argument (iii): the miss pro
ess at a next higher-level 
a
he. Argument (i) 
an be repeated

here by 
arefully repla
ing the exogenous request pro
ess with the aggregate request pro
ess dis-


ussed in Argument (ii). We 
an 
on
lude that it is enough to have the 
a
hing duration at a


a
he and the inter-request time at the same 
a
he follow a diag.ME distribution for the inter-

miss pro
ess at this 
a
he to follow a diag.ME distribution. This 
ompletes the proof.

The performan
e metri
s 
an be found at ea
h 
a
he by using Result 4.3 and Proposition

4.3. It is important to start the 
omputation with the lowest-level 
a
hes as their miss rates will

be used to derive Hc(t) at a higher-level 
a
he. It is also H∗
c (s) that should be used instead of

F ∗(s) in Result 4.3 at ea
h higher-level 
a
he.

Se
tions 6.2 and 6.3 provide approximate results as Assumption 5 is not true. The robustness

of our model is tested in Se
t. 7.2.

7 Validation, Numeri
al Results

The obje
tive of this se
tion is to test the robustness of our models against violations of the

main assumptions. We �rst address the 
ase of a single 
a
he by 
omparing the analyti
 results

of Se
t. 4 to results derived from a real DNS 
a
he tra
e. The 
ase of a network of 
a
hes is

addressed next, where the obje
tive is to validate Assumption 5.
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Figure 3: Content ranked 6th: 
orrelated inter-requests.
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Figure 4: Comparison of CDFs for 
ontent ranked 6th.

7.1 Using a Real Tra
e (Single Ca
he)

In this se
tion, we use tra
es 
olle
ted from a real DNS 
a
he to assess the robustness of our

analysis. Our home institution Inria at Sophia Antipolis manages two DNS servers in parallel to

ensure a good load balan
ing. The DNS tra�
 at one of these servers has been 
olle
ted from 21

June to 1 July 2013. The tra
e 
ontains information about 2313984 resour
e re
ords requested

by a total of 2147 users. Pro
essing the tra
e provides, for ea
h resour
e re
ord (or 
ontent):

1. the requests instants (from users to Inria's DNS server);

2. the 
a
he miss instants (
oin
iding with the instants of requests from Inria's DNS server

to Internet);

3. the responses instants (from Internet to Inria's DNS server);

4. the �nal responses instants (from Inria's DNS server to users);

5. the TTL values (in response pa
kets).

A 
areful analysis of this tra
e reveals the following. First, requests instants and �nal re-

sponses instants do not di�er mu
h, thereby justifying our instantaneous transmission/pro
essing

assumption. Se
ond, requests are time-varying (week day/week-end, day/night) and 
learly de-

pendent as illustrated in Fig. 3 for one of the 
ontents (
f. lags 3 and 6). Therefore, Assumption

1 (renewal request pro
ess) is not met. Testing our model using this tra
e will give insights on

its robustness sin
e the main assumptions used in the single 
a
he analysis are not met in this

tra
e. Third, based on the TTLs re
orded, Inria's DNS server respe
ts the TTL rule. We are

therefore in the 
ase of a single traditional DNS 
a
he. The TTLs found in the �nal response

pa
kets vary from 1 to the initial TTL advo
ated by authoritative servers; this emphasizes the

pertinen
e of our models as 
a
hes at the user side are given non-deterministi
 TTLs.

Our aim is to predi
t the 
a
he performan
e metri
s and most importantly the 
a
he miss

pro
ess as it represents the tra�
 that �ows upstream in the DNS hierar
hy (also needed for

network analysis). We randomly pi
ked one resour
e re
ord out of the most requested among

users. The 
a
hing duration of the 
hosen 
ontent (ranked 6th) turns out to be deterministi


and equal to 2 hours (value provided dire
tly by �ve authoritative servers). We used the KPC-

Toolbox [5℄ to �nd the Markovian Arrival Pro
ess (MAP) that best �ts the inter-request times
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Table 2: Performan
e Metri
s and Relative Errors (Rank 6)

Metri
 Tra
e Model Rel. err. (%)

miss rate 0.00013876 0.00013749 0.920
hit probability 0.99943 0.99941 0.002
o

upan
y 0.99914 0.98995 0.920

Table 3: Analyti
 Performan
e Metri
s and their Relative Errors (in Per
entage) at Represen-

tative Ca
hes (λ1 = 1.57 requests/s, λ2 = 0.87 requests/s, λ3 = 1.37 requests/s, λ4 = 0.68
requests/s)

Ca
he Performan
e Distribution of 
a
hing durations Trend

metri
 deterministi
 hypo-exponential exponential hyper-exponential

value rel. err. value rel. err. value rel. err. value rel. err.

1 miss rate 0.49479 0.00921 0.49906 0.00649 0.50039 0.08715 0.50235 0.07702 ր

hit probability 0.43275 0.03832 0.42785 0.02724 0.42632 0.00660 0.42408 0.00065 ց

o

upan
y 0.35786 0.04466 0.36094 0.04712 0.36191 0.03360 0.36333 0.02360 ր

5 miss rate 0.56708 1.1214 0.52673 0.08478 0.51681 0.10264 0.51073 0.00132 ց

hit probability 0.41611 1.4561 0.46389 0.18679 0.47589 0.1514 0.48412 0.10321 ր

o

upan
y 0.58169 1.146 0.54023 0.04850 0.53005 0.06307 0.52379 0.04179 ց

7 miss rate 0.52928 5.0614 0.48234 0.23668 0.46971 0.06873 0.46045 0.00650 ց

hit probability 0.51789 4.536 0.52049 0.25253 0.52361 0.1067 0.52731 0.07069 ր

o

upan
y 0.67667 5.0986 0.61667 0.19648 0.60051 0.02771 0.58866 0.03662 ց

X of the aggregated arrival pro
ess (generated by 145 di�erent users). This tool mat
hes with

priority higher-order 
orrelations and 
an 
onvert any MAP into a renewal pro
ess having inter-

arrival times identi
ally distributed as arrivals in the MAP. The number of states of the �tted

MAP is 128. The moments of the empiri
al inter-request time (as 
omputed by the tool) are:

mean = 4.1614, varian
e = 4476.9, skewness 83.8809, kurtosis 7973.3. For 
ompleteness, we

depi
t in Figs. 4a-4b the empiri
al and �tted distributions of the inter-request times in linear

and logarithmi
 s
ale respe
tively.

Taking as input the �tted distribution and the TTL value, we use the �ndings of Se
t. 4.3.1

to obtain the performan
e metri
s of the 
a
he relative to the 
ontent ranked 6th (
f. Table 2)

and the CDF of the inter-miss times (
f. Fig. 4
). To determine the CDF (6), we use a naive

Riemann's sum for the integral 
omputation. Two parameters must be set: (i) the upper bound
of the integral τ , and (ii) the step length ∆. Clearly, the larger τ and the smaller ∆, the smaller

the numeri
al error but also the larger the 
omputational 
ost. We set τ = 720000 (100 times

the maximum between the mean inter-request time and the TTL) and ∆ = 0.1.

The analyti
 results are 
ompared to those 
omputed from the tra
e. Table 2 reports neg-

ligible values of the relative errors on the performan
e metri
s. Proposition 4.3 appears to be

appli
able even if Assumption 1 is not met. In fa
t, we believe that it is enough to have station-

ary and ergodi
 point pro
esses as requests for Proposition 4.3 to apply; 
f. [2, Eq. (1.3.2), p. 21℄.

Lawren
e's theorem [17, Eq. (4.1)℄ 
an then be repla
ed with [2, Eq. (1.4.6), p. 35℄.

As for the miss pro
ess, Fig. 4
 is 
lear: our model a

urately estimates the CDF of the

inter-miss time. Proposition 4.2 appears to be appli
able even if Assumption 1 is not met. This

se
tion suggests that our single 
a
he model is robust.
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Figure 5: A binary tree with 7 
a
hes.

7.2 Validating Assumption 5

We now pro
eed to evaluating the robustness of our model of a network of 
a
hes. To this end,

we resort to performing event-driven simulations. It is worth re
alling that with exponentially

distributed 
a
hing durations our model 
oin
ides with the one developed in [7℄ to study 
a
hes

that reset the 
a
hing durations at ea
h hit. In [7℄, Assumption 5 is also used; the authors

evaluate the robustness of their model by 
omparing the approximate results it yields to exa
t

analyti
 results that 
an be found when the 
on
eptual IRM is used for requests. An ex
ellent

mat
h is found whi
h legitimates the use of Assumption 5. The same applies to our model when


a
hing durations are exponentially distributed.

We 
onsider a tree 
onsisting of 7 
a
hes as shown in Fig. 5. This tree represents well the

hierar
hy found in DNS: 
a
he 7 is that of the authoritative server, 
a
hes 5 and 6 are typi
ally

those of ISP's DNS servers, and 
a
hes 1-4 are found at the 
lient side (ADSL modem, laptop,

et
.). To 
apture the fa
t that users have interleaving a
tivity and ina
tivity periods, requests

for all 
ontents are assumed to form a Markov-Modulated Poisson Pro
ess (MMPP). In other

words, requests for a single 
ontent form an Interrupted Poisson Pro
ess (IPP). As a 
onsequen
e,

Assumption 5 is not satis�ed at 
a
hes 5, 6 and 7 sin
e ea
h 
omponent (miss pro
ess) of their

overall request pro
ess is not a Poisson pro
ess.

In ea
h performed simulation, we 
onsider a single 
ontent whose requests at ea
h bottom-

level 
a
he form an IPP. The (exogenous) request rate at 
a
he i is λi ∈ [0.5, 20] for i ∈ {1, 2, 3, 4}.

The 
a
hing durations at all 
a
hes follow the same distribution, with expe
tation in [0.5, 1.5].
Four distributions have been 
onsidered in the simulations: deterministi
, hypo-exponential,

exponential and hyper-exponential. Their respe
tive 
oe�
ients of variation are 0, < 1, 1, and
> 1.

The �exa
t� values of the performan
e metri
s are those obtained after running long enough

simulations. Our 
riterion for a long simulation is one that yields a relative in
ertitude on ea
h

metri
 less than 10−4
. For instan
e, the hit probability at 
a
he i obtained through simulation

is hS
P,i (the supers
ript S stands for �simulation�). We 
al
ulated the 99% 
on�den
e interval

[hS
P,i − ǫ, hS

P,i + ǫ], the relative in
ertitude on hP,i is then 2ǫ/hS
P,i. At the end of a simulation run,

the latter was at most 0.6 × 10−4
.

The approximate values of the performan
e metri
s are those predi
ted by our model and

are obtained by following the re
ursive pro
edure explained in Se
t. 6.2. We have implemented

a MATLAB numeri
al solver that determines the CDFs in the network (using (17)-(18)) and

then the metri
s of interest at ea
h 
a
he (using Proposition 4.3 where E[Zc] = Lc(∞)). The

numeri
al error 
omes from the integral 
omputation used in (17)-(18) (e.g., the integrals over

in�nite ranges). Again, we use Riemann's sum and, for simpli
ty, unique values for τ and ∆
for all 
omputations relative to a single simulation run. Consider all inter-request times and all


a
hing durations within the network of 
a
hes. We set τ to one hundred-fold the maximum

expe
tation among all these rvs, and ∆ to one thousandth of the minimum expe
tation among

the same rvs.

We have 
omputed the relative error between the exa
t results obtained from simulations and

the approximate results predi
ted by our model. The average relative error a
ross all simulations
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on the miss rate, the hit probability and the o

upan
y at 
a
hes from di�erent hierar
hi
al levels

are reported in Table 3 (
olumns 4, 6, 8, and 10). Our model is extremely a

urate in predi
ting

the performan
e metri
s when 
a
hing durations are not deterministi
 as the relative error does

not ex
eed 0.3%. For deterministi
 
a
hing durations, an ex
ellent predi
tion is available at

bottom-level 
a
hes. The relative error in
reases as we 
onsider 
a
hes at higher hierar
hi
al

levels, it rea
hes roughly 5% at the third level, whi
h is nevertheless an a�ordable value. We


on
lude that using Assumption 5 is not a limitation and that our model is very robust to

violations of this Assumption.

7.3 Optimal Ca
hing Poli
y in a Network

A

ording to Se
t. 4.4, if the CDF of inter-request times at a 
a
he is 
on
ave, then the best


a
hing poli
y is to 
a
he a 
ontent for a deterministi
 duration. If exogenous request pro
esses

satisfy this 
ondition, it will not be the 
ase of the aggregate request pro
ess rea
hing a higher-

level 
a
he.

Consider again the simulations presented in Se
t. 7.2. Table 3 reports in 
olumns 3, 5, 7,

and 9 the analyti
 values of the performan
e metri
s obtained at 
a
hes 1, 5 and 7 (one 
a
he

at ea
h level) of the syntheti
 network of Fig. 5. The trend observed on these metri
s as the

distribution 
hanges from the least variable (i.e., the deterministi
) to the most variable (i.e., the

hyper-exponential) is shown in 
olumn 11.

The optimal values of the performan
e metri
s are in bold fonts in Table 3. The best dis-

tribution at bottom-level 
a
hes (e.g., 
a
he 1) is the deterministi
 one. This is predi
ted by

Proposition 4.4 whi
h applies here as the inter-request time of an IPP has a 
on
ave CDF. The

trend on ea
h of the metri
s is inverted at higher-level 
a
hes. The deterministi
 poli
y a
hieves

then the worst performan
e. The more variable a distribution, the better the performan
e met-

ri
s. The inter-request time at higher-level 
a
hes no longer has a 
on
ave CDF. Re
all that

these observations are for ea
h 
ontent individually. The parameters of a given distribution will

vary from a 
ontent to another a

ording to the popularity.

The above trends are observed when all the 
a
hes in a tree use the same distribution.

Sin
e we have established that for 
on
ave CDF (the 
ase of IPP requests) the deterministi


distribution is the best, we repeated the simulations des
ribed earlier with the ex
eption of

having deterministi
 TTLs at all bottom-level 
a
hes. We observed the same trends for the same

values of λi for i ∈ {1, 2, 3, 4} as in Table 3 and also for another set of values that is λ1 = 0.052
requests/s, λ2 = 0.061 requests/s, λ3 = 0.091 requests/s, λ4 = 0.078 requests/s.

Our study suggests that for better performan
e, deterministi
 
a
hing durations should be

used only at bottom-level 
a
hes, i.e., at the 
lient side. Ca
hes at servers should store 
ontents

for durations as variable as possible (large 
oe�
ient of variation).

8 Con
lusions

The analyti
 models introdu
ed in this report proved to be very useful to study the modern

DNS 
a
he hierar
hy. Our single 
a
he model has been tested on real DNS tra
es that do not

meet the renewal assumption. It predi
ts the performan
e metri
s and the CDF of the miss

pro
ess remarkably well. The main approximation used in our network of 
a
hes model has been

validated through simulations. We have addressed the problem of the optimal 
a
hing duration

and found that if inter-request times have a 
on
ave CDF, then the deterministi
 poli
y is the

best. For non-
on
ave CDF, our numeri
al analysis suggests that more variable distributions are

better. We plan to pursue the validation of our model using the real tra
es 
olle
ted.
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